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Abstract. We present the results of numerical simulations of onset and nonlinear regimes of a ternary
mixture convection in a square cavity subjected to the gravity field and vertical gradients of temperature
and concentration. The stability problem for the non-convective state of the mixture is solved using a
software package for the investigation of the stability of flows. Nonlinear regimes of convection are studied
numerically by the finite difference method. The dependences of critical parameters on the net separation
ratio are obtained for the cases of heating from above and below. Numerical data on the temporal evolution
of the integral characteristics of flow and heat and mass transfer and of the fields of stream function,
temperature and concentration are obtained for different values of the Rayleigh number and net separation
ratio.

1 Introduction

Convection in multicomponent systems, which include real
liquids and gases, is a poorly studied area. This is due to
the fact that in multicomponent mixtures mass transfer
of any component can be caused not only by the con-
centration gradient of this component, but also by cross-
diffusion and thermal diffusion, which greatly complicates
the study of such mixtures behaviour. Convective phenom-
ena play an important role in many natural and technolog-
ical processes. In particular, the composition of hydrocar-
bon deposits depends on diffusion and thermal diffusion
processes (in the presence of geothermal gradient). Ther-
mal diffusion is used for separation of isotopes in liquid
and gas mixtures as well as in other separation processes
which include colloids, nanofluids or macromolecules.

Convective stability of a binary mixture consisting of a
non-reactive component was considered in [1]. In chapt. 7
of this monograph monotonic and oscillatory instabilities
are found in the case when heat and mass fluxes are dif-
ferent and independent of each other in equilibrium state.
The review on instability of a plane horizontal layer of
a binary mixture studied within the framework of lin-
ear, weakly nonlinear and nonlinear theories can be found
in [2].

Numerical investigation of Soret-driven convection in
a mixture of water and isopropanol with the mass frac-
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tion ratio 9 : 1 in a cubic cavity, heated from above, at
various levels of gravity was carried out in [3]. The paper
presents the data on the temporal evolution of vertical
component of the velocity, temperature and concentra-
tion, as well as the dependence of time for the onset of
convection on the solutal Rayleigh number. For the lin-
ear stability problem of the Soret-driven binary mixture
convection in a horizontal layer heated from above, the de-
pendence of time for the onset of convection on the solutal
Rayleigh number is obtained in [4]. In [5–8] a Soret-driven
convection in colloidal suspensions was studied theoreti-
cally and experimentally. It was found that both the time
needed to trigger the instability and the period of the ob-
served oscillations obey power law behaviour as a function
of the solutal Rayleigh number. Inclined layer convection
was studied experimentally in [9] for a binary liquid mix-
ture and in [10] for a colloidal suspension with negative
Soret coefficient at large solutal Rayleigh numbers. The re-
sults on the stability of mechanical equilibrium in binary
and ternary mixtures with the Soret effect in a plane hor-
izontal layer with rigid and free boundaries are presented
in [11]. The stability of equilibrium in a ternary mixture
layer has been studied in [12]. Linear stability analysis of a
horizontal layer of water-isopropanol-ethanol ternary mix-
ture, heated from above, was performed in [13] neglecting
cross effects.

In order to describe and predict heat and mass transfer
in multicomponent mixtures, it is necessary to know the
diffusion and thermal diffusion coefficients. In [14] the au-
thors describe the technique for measuring the coefficients
of thermal diffusion by digital optical interferometry and
present the results of the application of this technique to
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the binary mixture of water and isopropanol. In [15] the
thermal diffusion coefficients for hydrocarbon binary mix-
tures were measured by the thermogravitational column
technique varying the molecular weight of alkanes in the
mixture; the density dependence on temperature and con-
centration is obtained.

In [16] analytical and numerical stability analysis of
the Soret-driven convection in a 2D porous cavity satu-
rated by a binary fluid was carried out. The authors ob-
tained the stability diagram, isoconcentrations, isotherms,
and streamlines in the case of realistic boundary condi-
tions. In [17] non-equilibrium diffusive processes in binary
liquid mixtures were studied in the framework of the fluc-
tuating hydrodynamics approach with consideration of the
cases of mass diffusion, thermal diffusion, and pressure
diffusion. The pressure diffusion effect was studied exper-
imentally in [18], where Moiré deflectometry technique is
applied to the investigation of diffusion dynamics of sugar
in pure water.

The density dependences on temperature and concen-
trations and the concentration fields are obtained in [19]
for the ternary hydrocarbon mixture in a two-dimensional
cavity filled with a porous medium, subjected to the com-
bined heating, accounting effects of thermal diffusion and
barodiffusion, for different permeabilities of the medium.

The influence of static gravity level on the Soret-driven
convection of a ternary mixture with the components hav-
ing different signs of the separation ratio in a square cavity
heated from above is investigated numerically in [20].

In [21] the long-wave instability of a multicomponent
mixture steady flow in a vertical layer whose boundaries
are maintained at different temperatures was studied. The
problem was solved excluding cross-diffusion effects.

In practice, we often have to deal with a closed cav-
ity. Therefore it is necessary to define the boundaries of
stability of the multicomponent mixture in such geometry.
This paper presents the results of a study of the onset and
the nonlinear regimes of ternary mixture convection in a
square cavity, conducted in preparation for the space ex-
periment on measuring the diffusion and thermal diffusion
coefficients. For pure thermal convection in a cubic cavity,
it is found in [22] that the most dangerous perturbation “is
similar to the one obtained for the two-dimensional case
and appears as a roll where the hot liquid rises along one
vertical wall and the cold liquid descends along the oppo-
site wall”. It justifies the use of 2D approach in our case.

2 Problem statement

Let us consider Soret-driven convection in a square cav-
ity with the side L filled with a homogeneous multicom-
ponent fluid. It is assumed that the cavity has rigid im-
permeable boundaries. The vertical boundaries are per-
fectly insulated and the horizontal boundaries are kept at
constant different temperatures. The mixture density is
a linear function of temperature T and concentration of
components C = (C1, . . . , Cn−1)T

ρ = ρ0(1 − βT (T − T0) − I · B(C − C0)), (1)

where ρ0, C0 = (C1 0, . . . , Cn−1 0)T and T0 are the ini-
tial density, the vector of concentrations and the tem-
perature of the mixture, βT = −(1/ρ0)(∂ρ/∂T )|Ci

, i =
1, . . . , n − 1, is the thermal expansion coefficient, B =
diag{βC1 , . . . , βCn−1} is the diagonal matrix of solutal ex-
pansion coefficients (so βCi

= −(1/ρ0)(∂ρ/∂Ci)|T,Cj
, j =

1, . . . , n − 1, i = 1, . . . , n − 1, j �= i), I = (1, . . . , 1) is the
unit vector.

To describe the free Soret-driven convection we use the
following dimensionless unsteady equations in the Boussi-
nesq approximation:

∂u

∂t
+ (u · ∇) u = −∇p + ∇2u +

Ra
Pr

(T + I · C) k, (2)

∂T

∂t
+ (u · ∇) T = Pr−1∇2T, (3)

∂C

∂t
+ (u · ∇) C = SC

(
∇2C − ψ∇2T

)
, (4)

∇ · u = 0. (5)

Here u is the velocity vector, p is the pressure, k is the
unit vertical vector. We introduce the following scaling
quantities: L for the length, ν/L for the velocity, L2/ν
for the time, ρ0ν

2/L2 for the pressure, the characteris-
tic temperature difference ΔT is used for the temperature
and βT ΔTB−1 for the vector of concentrations, where ν is
the viscosity of the mixture. Equations (2)–(5) contain the
following dimensionless parameters: ψ = −β−1

T BD−1DT

is the vector of separation ratios having the dimension
(n − 1), where D is the matrix of molecular diffusion
coefficients, DT is the vector of thermal diffusion co-
efficients, Pr = ν/α is the Prandtl number, where α
is the thermal diffusivity, Ra = gβT ΔTL3/(να) is the
Rayleigh number, where g is the acceleration of gravity,
SC = ν−1BDB−1 is the matrix of parameters of the di-
mension (n−1)×(n−1), {SC}ij = (βCi

/βCj
)Sc−1

ij , where
i, j = 1, . . . , n−1, Scii = ν/Dii are Schmidt numbers, Dii

are diagonal elements of the diffusion matrix.
Generally, the concentration equation contains a pres-

sure diffusion term. However, for hydrocarbons mixtures
the pressure diffusion coefficient, as well as the ratio
of pressure diffusion term to thermal diffusion term are
small. For example, for gaseous mixture of methane,
ethane, iso-butane the pressure diffusion coefficient is of
the order of 10−16, and the ratio of two terms mentioned
above ∼ 10−10 [19]. For this reason, in the present paper
the effect of pressure diffusion is not considered.

By diagonalizing matrix of molecular diffusion coeffi-
cients in the initial dimensional equations, we can elimi-
nate the cross-diffusion effects, which reduces the number
of governing parameters. This transformation in dimen-
sionless form can be written as [21]

C = BV(BQ)−1Ĉ, ψ = BV(BQ)−1ψ̂, (6)

where V is the matrix whose columns are the eigenvectors
vi = (vi1, . . . , vin−1)T of the matrix D, Q is the diagonal
matrix, qi = β−1

i

∑n−1
j=1 βjvij .

The transformation (6) allows to reduce the dimen-
sionless equations to a system with a diagonal matrix
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ŜC = ν−1D̂, vector of concentration Ĉ and vector of sep-
aration ratios ψ̂.

∂u

∂t
+ (u · ∇) u = −∇p + ∇2u +

Ra
Pr

(
T + I · Ĉ

)
k, (7)

∂T

∂t
+ (u · ∇) T = Pr−1∇2T, (8)

∂Ĉ

∂t
+(u · ∇) Ĉ = ŜC

(
∇2Ĉ − ψ̂∇2T

)
, (9)

∇ · u = 0. (10)

At the boundaries we impose the no-slip conditions,
the absence of diffusion flux of solutes, fixed different tem-
peratures at the horizontal boundaries and the absence of
heat flux at vertical boundaries:

x = 0, 1 : u = 0,
∂T

∂x
=

∂Ĉ

∂x
= 0, (11)

y = 0, 1 : u = 0, T = ±1/2,
∂Ĉ

∂y
− ψ̂

∂T

∂y
= 0. (12)

3 Linear stability problem

The problem (7)–(12) allows the solution, corresponding
to the mechanical equilibrium:

us = 0, ps =
Ra(Ψ + 1)

2Pr
(y − y2),

Ts =
1
2
− y, Ĉs = Ψ

(
1
2
− y

)
, (13)

where Ψ = ψ1 + . . .+ψn−1 is the net separation ratio. The
case Ra > 0 corresponds to the heating from below and
Ra < 0 – to the heating from above.

Let us consider the stability of state (13) with respect
to small perturbations. For that we represent the fields of
velocity, temperature, pressure and concentrations as the
sums of the base state (13) and small perturbations:

(
u, p, T, Ĉ

)
=

(
us, ps, Ts, Ĉs

)
+

(
u′, p′, T ′, Ĉ ′

)
. (14)

The linearized equations for small perturbations of the
base state (13) have the form

∂u′

∂t
= −∇p′ + ∇2u′ +

Ra
Pr

(
T ′ + I · Ĉ ′

)
k, (15)

∂T ′

∂t
+ (u′ · ∇) Ts = Pr−1∇2T ′, (16)

∂Ĉ ′

∂t
+ (u′ · ∇) Ĉs = ŜC

(
∇2Ĉ ′ − ψ̂∇2T ′

)
, (17)

∇ · u′ = 0. (18)

We restrict ourselves to the consideration of 2D per-
turbations and introduce stream function and vorticity as
u′

x = ∂ψ
∂y , u′

y = −∂ψ
∂x , ϕ = curlz u = −Δψ. Equations for

small two-dimensional perturbations written in terms of
the stream function and vorticity are as follows:

∂ϕ

∂t
= Δϕ + Ra Pr−1

(
∂T ′

∂x
+ I · ∂Ĉ ′

∂x

)

, (19)

∂T ′

∂t
− ∂ψ

∂x

∂Ts

∂y
= Pr−1ΔT ′, (20)

∂Ĉ ′

∂t
− ∂ψ

∂x

∂Ĉs

∂y
= ŜC

(
ΔĈ ′ − ψ̂ΔT ′

)
, (21)

ϕ = −Δψ. (22)

The boundary conditions for the perturbations in
terms of ψ and ϕ are

x = 0, 1 : ψ =
∂ψ

∂x
=

∂T ′

∂x
=

∂Ĉ ′

∂x
= 0, (23)

y = 0, 1 : ψ =
∂ψ

∂x
= T ′ =

∂Ĉ ′

∂y
− ψ̂

∂T ′

∂y
= 0. (24)

Let us consider the normal perturbations in the form
e−λt, where λ = λr + iω is the complex decrement, λr is
the real part of decrement, ω is the circular frequency.

4 Numerical methods

The problem (19)–(24) was solved using a software pack-
age developed for the investigation of the stability of
flows [23]. The generalized linear eigenvalue problem
Ax = λBx, obtained by the discretization of the origi-
nal problem by the finite difference method was solved.
Here A is the sparse non-symmetric complex-valued ma-
trix, B is a singular, diagonal matrix with either 0 or ±1
at the diagonal, λ are the eigenvalues (decrements of per-
turbations), x is the eigenvector composed of the velocity
perturbations (pressure, temperature, depending on the
task). The original equations (19)–(22) with the bound-
ary conditions (23), (24) were discretized on the mesh with
uniform spatial step h = 0.0256. Spatial derivatives were
approximated by finite differences of the second order.

To solve the spectral problem Ax = λBx the Newton-
Raphson method is used in the package [24].

The calculations of the linear stability problem were
carried out for model ternary mixture with the following
parameters: the Prandtl number Pr = 10, Schmidt num-
bers Sc1 = 100, Sc2 = 1000 and the separation ratio of the
first component ψ1 = 0.3. These parameters are typical for
liquid mixtures.

In addition to the solutions of linear stability prob-
lem, direct numerical simulation of nonlinear convec-
tion regimes for ternary mixture was conducted. Non-
linear equations (7)–(10) with the boundary condi-
tions (11), (12), rewritten in terms of the stream function
and vorticity, were solved numerically by finite difference
method. Spatial derivatives were approximated by central
differences. Unsteady equations were solved using explicit
finite difference scheme with a constant time step h2/8,
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where h is spatial step. For nonlinear calculations we used
the uniform spatial grid with the same step as that for
the linear stability problem. This grid was chosen to en-
sure the optimum relation between the computation time
and the required precision both in the linear and nonlinear
cases. The Poisson equation for the stream function was
solved by successive overrelaxation method. The vortic-
ity values at the boundaries of the cavity were calculated
using the Thom’s formula [25]. The initial conditions cor-
responded to the mechanical equilibrium of the mixture.
The algorithm and numerical code for the nonlinear cal-
culations were tested by the problem of the Soret-driven
convection of binary fluid.

5 The results for linear stability problem

In mixtures with the Soret effect the molecules of the com-
ponent with negative separation ratio under the tempera-
ture gradient move to the warmer part of the cavity, and
the molecules of the component with positive separation
ratio to the colder part. If gravity is absent, convective
flow in the mixture does not arise, there is only the ther-
mal diffusion separation of components. In the presence of
gravity, convective flow arises in the case when the heav-
ier component of the mixture is situated above the lighter
one.

For ternary fluid, if the ratio of the Schmidt numbers
Sc1/Sc2 is small, then the diffusion properties of the sec-
ond solute are significantly worse than that of the first so-
lute, and the type of instability will be determined by the
sign of the separation ratio ψ2 of the second component.
Because of that, we first discuss the case of binary mix-
ture with the parameters equal to the parameters of the
second solute of the ternary mixture. It is known [1] that
for binary mixtures heated from above the concentration
gradient of lighter component with positive Soret effect
is directed towards the hot boundary, which leads to the
stability of the system. For mixture with negative Soret
effect the heavier component is accumulated near the hot
boundary which leads to monotonic instability. Here, the
sinking fluid element after the temperature equalization
in the cavity to the temperature of the surrounding fluid
will have greater density than that of the fluid, and will
continue a downward motion.

In the case of heating from below the positive Soret
effect leads to the decrease of critical Rayleigh number
(hereinafter the critical Rayleigh number, Rac), since the
concentration gradient of the lighter component is directed
towards the hot boundary. Since the density of the rising
fluid element is always lower than that of the surround-
ing fluid, it will continue to rise despite of the mass diffu-
sion and thermal conduction. Therefore, under the heating
from below the monotonic instability is realized in binary
mixtures with a positive separation ratio ψi.

The concentration gradient of the lighter component
with negative Soret effect is directed towards the cold
boundary, which leads to the increase of Rac. The rising
fluid element, as in the previous case, has lower density
than the surrounding fluid, but after the cooling its den-

Fig. 1. Dependence of the critical Rayleigh number Rac on
the separation ratio ψ2. Solid lines: ternary mixture, dashed
lines: binary mixture with Pr = 10, Sc2 = 1000; curves 1 and
1′: oscillatory instability boundaries; 2, 2′ and 3, 3′: monotonic
instability boundaries; the domain of instability is shaded.

sity becomes higher than the density of the surrounding
fluid and it moves to the bottom wall of the cavity. Thus,
for negative values of the separation ratio less than a cer-
tain value ψ∗, the oscillatory perturbations are responsi-
ble for the equilibrium stability loss. In [1] to determine
the value ψ∗ for the problem of binary mixture convec-
tion in vertical layer with artificial boundary conditions
(fixed concentrations at the boundaries) an expression is
obtained, from which it follows that at Sc > Pr the value
ψ∗ should be negative, and at Sc � Pr it should be neg-
ative and close to zero. It was not possible to prove the
monotonicity principle and to determine the range of oscil-
latory perturbations existence in the case of impermeable
boundaries. The generalization of the monotonicity of per-
turbations for the case of a multicomponent mixture with
the Soret effect for the same boundary conditions as in [1]
was carried out in [11].

Our calculations for the case of binary mixture (ψ1 =
0) at Pr = 10, Sc = 1000 (fig. 1, dashed lines), despite the
use of other, more realistic conditions for the concentra-
tions at the boundaries, give the results which well agree
with [1]: the critical separation ratio Ψ∗ approximately
equals −3 · 10−5. The crosspoint of curve 2 with y-axis
(ψ2 = 0, Ψ = 0) corresponds to Ra ≈ 2540 which coincides
with the value of Ra obtained in [1] for single-component
fluid.

The results of our calculations for the ternary mixture
with the above-indicated parameters are shown in fig. 1
(solid lines). As is described above, the type of instability
is determined by the sign of the separation ratio ψ2 of the
second component, that is why the critical Rayleigh num-
ber is given in dependence on the separation ratio of the
second component. It is seen that, as in the case of binary
mixture, in ternary mixtures the oscillatory instability is
observed under heating from below and the monotonic
instability at heating from above and below. The point
separating the domains of monotonic and oscillatory in-
stabilities in this case is close to ψ2 ≈ 0. The calculations
at Schmidt numbers Sc1 = 100 and Sc2 = 1000 gave for
this point the value ψ2 ≈ − 0.003 which is close to zero.
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Fig. 2. Dependence of the critical circular frequency ωc on
separation ratio ψ2. Solid line: ternary mixture, dashed line:
binary mixture with Pr = 10, Sc2 = 1000.

Thus, in the case of ternary mixture heated from below
(Ra > 0) at ψ2 < − 0.003 the oscillatory perturbations
are most dangerous and at ψ2 > − 0.003 the monotonic
perturbations are the most dangerous.

The mixture with positive Soret effect of the second
component is subjected to strong destabilizing effects of
temperature and concentration gradients of both solutes.
In the range of oscillatory instability the temperature gra-
dient and the concentration gradient of the first solute
destabilizes the system, and the concentration gradient of
the second solute increases its stability. With |ψ2| growth
in the domain Ψ < 0.3 the stabilizing influence of negative
Soret effect of the second solute is also increasing, which
is accompanied by the growth of the critical value of the
Rayleigh number.

The monotonic perturbations are responsible for the
instability at heating from above (Ra < 0). The values
Ψ > 0.3 correspond to the positive Soret effect of both
solutes, and instability is not observed. When Ψ < 0.3,
the first solute has a positive Soret effect (concentration
gradient is stabilizing), and the second solute has negative
Soret effect (concentration gradient plays a destabilizing
role). This causes an instability of the mechanical equi-
librium of mixture only under certain conditions. The de-
pendence of the critical circular frequency on ψ2 is shown
in fig. 2. Note, that the critical frequency becomes zero at
different values of the separation ratio for the binary and
the ternary mixture.

As one can see from fig. 1, the addition of the solute
with positive Soret effect (ψ1 = 0.3) to the binary mixture
leads to the destabilization of monotonic and oscillatory
instabilities under heating from below and to the stabiliza-
tion of the monotonic instability at heating from above.
This is explained by the argument presented above for a
binary mixture.

6 The results of nonlinear calculations

Let us illustrate the nonlinear regimes of the ternary mix-
ture convection in a square cavity by an example of model

Fig. 3. Temporal evolution of |ψm| for different Rayleigh num-
ber values. Mixture with ψ1 = 0.3, ψ2 = 0.1, Ψ = ψ1+ψ2 = 0.4.

Fig. 4. Temporal evolution of the concentration difference be-
tween the centers of the upper and lower boundaries for the
mixture with ψ1 = 0.3, ψ2 = 0.1, Ψ = ψ1 + ψ2 = 0.4.

mixtures with ψ1 = 0.3, ψ2 = 0.1, Ψ = ψ1 + ψ2 = 0.4
and ψ1 = 0.3, ψ2 = −0.4, Ψ = ψ1 + ψ2 = −0.1, heated
from below, the mixture with ψ1 = 0.3, ψ2 = −0.1,
Ψ = ψ1 + ψ2 = 0.2 heated from above, and the mix-
ture dodecane-isobutylbenzene-tetralin, the components
of which are taken in the proportions 1 : 1 : 1.

For the mixture with ψ1 = 0.3, ψ2 = 0.1, Ψ =
ψ1 + ψ2 = 0.4, heated from below, as shown in fig. 1, the
monotonic instability is observed. Figures 3 and 4 show
the time dependence of the characteristics of the convec-
tion: the module of maximum value of the stream func-
tion in the cavity (fig. 3) and the concentrations difference
between the centers of the upper and lower boundaries
(fig. 4) for different values of the Rayleigh number. Dur-
ing a certain period of time, the mixture remains in non-
convective state (stream function is zero, fig. 3), then the
fluctuations gradually increase and the flow arises. The
concentration difference of the mixture component shows
a similar behaviour (fig. 4). The onset of convection is ac-
companied by sharp jumps of the flow intensity and of
the concentration difference between the upper and lower
boundaries for both solutes. The lower the level of grav-
ity, the later instability occurs, which later is replaced by
steady flow.

The structure of the steady flows induced by the heat-
ing from below for a mixture with positive separation ra-
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Fig. 5. Stream function and the component concentration
fields for steady regimes of the mixture with ψ1 = 0.3, ψ2 =
0.1, Ψ = ψ1 + ψ2 = 0.4, Ra = 300.

Fig. 6. Temporal evolution of the stream function in the center
of the cavity for different Rayleigh number values. Mixture
with ψ1 = 0.3, ψ2 = −0.4, Ψ = ψ1 + ψ2 = −0.1.

tios for both solutes for Ra = 300 is shown in fig. 5. The
flow is single-vortex, the isolines of concentrations become
deformed strongly with the increase of gravity. The solutes
with positive separation ratios are accumulated near the
hot lower boundary.

For the mixture with ψ1 = 0.3, ψ2 = −0.4, Ψ =
ψ1 + ψ2 = −0.1, heated from above the oscillatory in-
stability is observed, as is seen from fig. 1. The temporal
evolution of the stream function in the center of the cav-
ity is shown in fig. 6 for Ra = 2800, 3000. As seen, at
the beginning the growing oscillations are observed, then
they are replaced by the steady single vortex flow. Stream
function, temperature and concentration fields are shown
in fig. 7 for Ra = 3000. It is seen that the first solute with
positive separation ratio ψ1 = 0.3 is accumulated near the
warm lower boundary and the second solute with negative
separation ratio near the cold upper boundary.

The temporal evolution of the stream function in the
center of cavity is shown in fig. 8 for Ra = 2646. This value
of the Rayleigh number is close to the critical value Rac =
2645.5 according to the linear stability results. We could
see that at such low supercriticality the evolution time of
perturbations is very larger. The frequency equals ω =
0.883, while the critical value of frequency for the mixture
with such parameters is ωc = 0.88. The transformation
of the flow structure during the period of oscillations is
shown in fig. 9 for Ra = 2646. Time moments for the
corresponding flow structures are marked on the plot of
the temporal evolution of the stream function in the center
of the cavity (fig. 8b).

Fig. 7. Stream function, temperature and concentration fields
for steady regimes of the mixture with ψ1 = 0.3, ψ2 = −0.4,
Ψ = ψ1 + ψ2 = −0.1, Ra = 3000.

Fig. 8. (a) Temporal evolution of the stream function in the
center of cavity. (b) Time moments for which the flow struc-
tures are presented. Mixture with ψ1 = 0.3, ψ2 = −0.4,
Ψ = ψ1 + ψ2 = −0.1, Ra = 2646.

To illustrate the flow structure in the case of heating
from above, we selected the mixture with ψ1 = 0.3, ψ2 =
−0.1, Ψ = ψ1 + ψ2 = 0.2. As is seen from fig. 1, for this
mixture the monotonic instability is observed. Temporal
evolution of the modulus of maximal stream function and
of the concentration difference between the centers of the
upper and lower boundaries are presented in figs. 10, 11.
The flow intensity increases monotonically until it reaches
a constant value. The smaller the gravity the later the
steady flow starts.

The steady flow is of single-vortex structure (fig. 12).
The first solute with the separation ratio ψ1 = 0.3 is ac-
cumulated near the warm upper boundary and the second
solute with ψ2 = −0.1 near the cold lower boundary. Pa-
rameters of the first solute correspond to non-convective
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Fig. 9. Transformation of flow structure during the period of
oscillations. Mixture with ψ1 = 0.3, ψ2 = −0.4, Ψ = ψ1 +ψ2 =
−0.1, Ra = 2646. The white (black) color corresponds to the
higher (lower) values of the stream function.

Fig. 10. Temporal evolution of |ψm| for different Rayleigh
number values. Mixture with ψ1 = 0.3, ψ2 = −0.1, Ψ = ψ1 +
ψ2 = 0.2.

case, but convection arises because of the destabilizing ef-
fect of the second solute with negative separation ratio.
The concentration isolines of the first solute are weakly
deformed. With the increase of Rayleigh number (level of
gravity) the concentration field deformation becomes more
pronounced.

The ternary mixture dodecane-isobutylbenzene-
tetralin with components, taken in equal portions,
at T = 298K, has a thermal expansion coefficient
βT = 0.914 · 10−31/K, solutal expansion coefficients
βC1 = 0.258, βC2 = 0.121, kinematic viscosity
ν = 1.528 · 10−6 m2/s, mass diffusion coefficients
D11 = 6.70 · 10−10 m2/s, D12 = 0.43 · 10−10 m2/s,
D21 = −1.08 · 10−10 m2/s, D22 = 11.10 · 10−10 m2/s,
thermal diffusion coefficients DT1 = −0.81 ·10−12 m2/s K,
DT2 = −0.93 · 10−12 m2/s K and separation ratios

Fig. 11. Temporal evolution of the concentration difference
between the centers of the upper and lower boundaries for the
mixture with ψ1 = 0.3, ψ2 = −0.1, Ψ = ψ1 + ψ2 = 0.2.

Fig. 12. Stream function and concentration fields for steady
regimes of the mixture with ψ1 = 0.3, ψ2 = −0.1, Ψ = ψ1 +
ψ2 = 0.2, Ra = 300.

Fig. 13. Stream function and concentration fields for steady
regimes of the mixture dodecane-isobutylbenzene-tetralin,
Ra = 40.

ψ1 = 0.324 and ψ2 = 0.126 [26]. The transformation (6)
gives ψ̂1 = 0.109, ψ̂2 = 0.341 and Ŝc1 = 1390, Ŝc2 = 2244.
The positive values of separation ratios show that the
instability is possible only for heating from below. Linear
and nonlinear calculations performed at this type of
heating confirm the onset of monotonic instability at
the Rayleigh number Rac ≈ 27.2. The temporal evolu-
tion flow characteristic repeats qualitatively the results
obtained for the model mixture (figs. 3, 4). Fields of
the stream function and concentration for Ra = 40 are
shown in fig. 13 (the concentration fields obtained in
the calculations based on eqs. (7)–(12) were subjected
to the inverse transformation (6)). For this mixture the
diagonalization procedure has not brought qualitative
changes as compared to the results of the calculations.
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7 Conclusion

The paper presents the results of a numerical investigation
of the linear stability of mechanical equilibrium and non-
linear convection regimes of ternary mixtures in a square
cavity with rigid, impermeable boundaries subjected to
the gravity field and vertical temperature gradient. The
dependences of critical parameters on net separation ratio
of the mixtures are determined. The boundaries of mono-
tonic and oscillatory instabilities for heating from below
and the boundary of monotonic instability for heating
from above, as well as the structure of the stream func-
tion, temperature and concentration fields are obtained.
Numerical data on the structure of nonlinear regimes
for the model ternary mixtures with different values of
net separation ratios, giving different types of instabil-
ities, are obtained. For hydrocarbon mixture dodecane-
isobutylbenzene-tetralin the data on nonlinear flow regime
at heating from below are obtained and compared with the
results obtained for the model mixture.

The work was supported by Russian Scientific Foundation
(grant No. 14-01-00090).
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