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Abstract. The convective stability thresholds and nonlinear evolution of convective rolls are numerically
investigated in a plane horizontal layer of a colloidal suspension with positive separation ratio in the case
of no-slip, impermeable horizontal boundaries. The characteristics of the steady and oscillatory patterns
are analyzed under heating and gravity stratification. The standing and traveling waves are found as stable
solutions within certain domains of parameters (on the plane of the Rayleigh and the Boltzmann numbers).
Complex bifurcation and spatiotemporal properties are caused by the interaction of gravity sedimentation,
Soret-induced gradients, and convective mixing of the fluid.

1 Introduction

Convective instability in a horizontal layer of pure liquid
appears as a result of the forward bifurcation and evolu-
tion of monotonic disturbances. In molecular binary mix-
tures with negative separation ratio, the heavy component
migrates to the hot regions, thereby decreasing the density
stratification in the conductive fluid state. The convection
onset in this case is associated with the backward Hopf bi-
furcation and the growth of the oscillatory perturbations.
There is a great variety of spatiotemporal states in the bi-
nary mixture convection, such as extended standing and
traveling waves and the localized states [1–5]. The rich di-
versity of the patterns is connected with the evolution of
the concentration field. Its redistribution, due to convec-
tion and thermodiffusion, affects the change of buoyant
force acting on a unit volume of the mixture, and hence
the velocity of convective flow.

In the last decade great interest has been focused on
theoretical [6–10] and experimental [11–14] investigations
of colloid binary mixtures and ferrofluids, in particular,
(magnetic colloids) [6,8,11]. In colloidal suspensions grav-
ity stratification plays a role of an important additional
mechanism of concentration redistribution. The evolution
of a concentration field in ferrofluidis is associated with
gravitational stratification [7,9,11], thermal diffusion sep-
aration [7,9–14] and magnetophoresis [6,8]. However, in
the absence of magnetic field, ferrofluids behave as non-
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magnetic colloidal suspensions. In this case it possible to
describe colloids within the model [7,9] taking into ac-
count only the thermal diffusion and gravitational mecha-
nisms of stratification. Since the diffusion coefficients are
strongly different for molecular and binary colloidal mix-
tures, the behaviors of convective flows in these media are
different. It was shown [9] that gravitational stratification
destroys the mirror-glade symmetry of convective regimes
inherent in molecular binary mixtures [4]. The linear the-
ory of the convective stability of a colloidal mixture un-
der gravitational stratification and thermal diffusion was
developed in [7,9] for monotonic and oscillatory distur-
bances. The influence of negative separation ratio, sedi-
mentation length, and Prandtl number on the thresholds
of oscillatory convection was studied in [9].

The nonlinear evolution of the traveling waves was in-
vestigated only in the absence of thermodiffusion when
nanoparticles migrate to hot bottom boundary due to
gravity segregation [9]. Complex spatiotemporal proper-
ties of convective flows caused by the interaction of the
gravity-induced concentration gradient, nonlinear advec-
tion, and mixing of the fluid with nanoparticles were con-
sidered.

The purpose of the present paper is to describe the
results of numerical simulations of the convection in a col-
loidal suspension whose particles have a positive thermal
diffusion coefficient. The colloidal suspension fills a hori-
zontal layer heated from below. In this case thermodiffu-
sion and gravity fluxes have opposite directions. In the qui-
escent state the heavy nanoparticles collect near the upper
(cold) or bottom (heated) boundary depending on the re-
lation between the parameters that characterise the ther-
mal diffusion separation and sedimentation of particles
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Fig. 1. Problem geometry and coordinate system.

in the gravitational field. In the former case, an unsta-
ble stratification of the mixture is formed and convection
occurs owing to forward bifurcation. If the heavy nanopar-
ticles collect near the bottom heated boundary, convection
occurs owing to backward bifurcation and traveling waves
exist in a certain interval of the Rayleigh numbers.

The paper is organized as follows. In sect. 2 we de-
scribe the problem formulation, and discuss the mathe-
matical model. Subsection 3.1 contains the linear stability
theory of the colloidal suspension quiescent state with re-
spect to small normal perturbations. The computational
method and results of direct numerical simulations within
the two-dimensional problem are presented in subsect. 3.2.
Different convective solutions and the bifurcation maps
are discussed in sect. 4.

2 Formulation of the problem

An infinite plane horizontal layer bounded by two par-
allel rigid plates is filled with a colloidal suspension; its
boundaries are impermeable for the mixture components.
The x-axis of the Cartesian coordinate system is directed
along the layer, while the z-axis is normal to its boundaries
(fig. 1). The layer is located in the static gravity field with
the acceleration g = −gn (n is an upward unit vector). A
vertical temperature gradient is applied to the boundaries:
T (z = 0) = Θ/2, T (z = h) = −Θ/2. Due to thermal diffu-
sion and gravity sedimentation, a concentration gradient
is developed in the mixture.

The equation of state of the mixture can be written in
the form

ρ = ρ0(1 − αδT + βδC).

Here δT = T −T∗ and δC = C−C∗ denote the deviations
of the temperature and the concentration of heavier com-
ponent from their mean values T∗ and C∗, respectively; α
and β are the thermal and solutal expansion coefficients;
ρ0 is the density of the mixture at the mean values of
temperature and concentration.

The governing equations for the velocity v, tempera-
ture T and concentration C are the equations of the buoy-
ancy convection within the Oberbeck-Boussinesq approxi-
mation [15,16]. Using the layer thickness h for the length,
h2/χ for the time, χ/h for the velocity Θ for the tem-
perature, ρ̄νχ/h2 for the pressure and C∗h/lsed for the
concentration (lsed = kBT∗/(ΔρV g) is the sedimentation
length, kB is the Boltzmann constant, Δρ is the difference

between the densities of the particles and carrier medium,
and V is the volume of the particle), one can write the
dimensionless equations of the convection colloidal sus-
pension as follows:

∂v

∂t
+ (v∇)v = −∇p + PΔv + P · (RT − BC)n,

∂T

∂t
+ (v∇)T = ΔT, n = (0, 0, 1),

∂C

∂t
+ (v∇)C = L

[
Δ

(
C + ψ

R

B
T

)
+

1
l

∂

∂z
C

]
, (1)

div v = 0,

where p is the pressure, and the dimensionless parame-
ters R = gαΘh3/(νχ), B = gβC∗h

4/(νχlsed), P = ν/χ,
L = D/χ, l = lsed/h, ψ = −κT βC/(T∗βT ) = −C∗(1 −
C∗)ST β/α are the Rayleigh number, the Boltzmann (or
barometric) number [7,9], the Prandtl number, the Lewis
number, the dimensionless sedimentation length, and the
separation ratio, respectively, while κT = T∗C∗(1−C∗)ST

is the thermodiffusion coefficient and ST is the Soret co-
efficient, ν is the kinematic viscosity, χ is the thermal dif-
fusivity and D is the concentration diffusion constant of
the mixture, respectively.

In the equation of concentration we took into account
the thermal diffusion effect and the gravity sedimentation
of heavy particles. The intensity of the thermal diffusion
is characterized by the separation ratio ψ. The sign of this
parameter indicates the direction of the mass flux of the
solute resulting from the thermal diffusion. We consider
the case ψ > 0 (the so-called positive Soret coupling),
when the heavier component migrates in the direction op-
posite to the temperature gradient.

The boundary conditions on the horizontal plates are
the following:

v(x, 0) = v(x, 1) = 0,

T (x, 0) = 0.5; T (x, 1) = −0.5,

∂C

∂z
+ ψ

R

B

∂T

∂z
+

1
l
C = 0 at z = 0, 1. (2)

They correspond to no-slip, impermeable for colloidal sus-
pension, and isothermal horizontal plates.

The problem specified by the system of equations (1)
and boundary conditions (2) has the conductive distribu-
tions of both temperature and nanoparticle concentration
in a motionless liquid:

v0 = 0, T0 = 0.5 − z,

C0 =
e−z/l

(1 − e−1/l)

[
1 − ψR

B

]
+

lψR

B
. (3)

In the case when

R = B/ψ, (4)

the concentration field is homogeneous in the quiescent
suspension: C0 = l in dimensionless form. Using the scales
for length and concentration one can see that C0 = C∗.
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To solve numerically the problem of convection in the
form rolls with axes oriented along the y-axis, stream func-
tions Ψ(x, z, t) and the vorticity ϕ(x, z, t) are introduced:

vx =
∂Ψ

∂z
, vz = −∂Ψ

∂x
, ϕ = (rot v)y. (5)

Formulation of the problem in terms of the following
scalar fields (Ψ, ϕ, T, C) is written as follows:

∂ϕ

∂t
+

∂Ψ

∂z

∂ϕ

∂x
− ∂Ψ

∂x

∂ϕ

∂z
= PΔϕ − P ·

(
R

∂T

∂x
− B

∂C

∂x

)
,

ΔΨ = ϕ,

∂T

∂t
+

∂Ψ

∂z

∂T

∂x
− ∂Ψ

∂x

∂T

∂z
= ΔT,

∂C

∂t
+

∂

∂x

(
C

∂Ψ

∂z

)
− ∂

∂z

(
C

∂Ψ

∂x

)
=

L

(
ΔC + Ψ

R

B
ΔT +

1
l

∂

∂z
C

)
. (6)

These equations are supplemented with boundary condi-
tions

z = 0 : Ψ = 0,
∂Ψ

∂z
= 0, T = 0.5,

∂C

∂z
+ ψ

R

B

∂T

∂z
+

1
l
C = 0,

z = 1 : Ψ = 0,
∂Ψ

∂z
= 0, T = −0.5,

∂C

∂z
+ ψ

R

B

∂T

∂z
+

1
l
C = 0, (7)

The lateral boundary conditions of the computational
domain are treated as periodic, therefore all the fields
F ≡ {Ψ, ϕ, T, C} in x-direction are set to periodic

F(x, z, t) = F(x + λ, z, t). (8)

In the present paper, we employ the set of parameters
that is typical of colloidal suspension: the Lewis number
L = 10−4, the Prandtl number P = 10, and separation
ratio ψ > 0.

3 Numerical results

3.1 Linear stability analysis

First, we briefly discuss the behaviour of small distur-
bances of the basic state (2). let us consider small normal
disturbances of the conductive state (2) taken as

{Ψ, T̃ , c̃} = exp(γt + ikx){Ψ(t, z), θ(t, z), ξ(t, z)}, (9)

here γ is the growth rate of the disturbances, k = 2π/λ is
the wave number.

After linearization one can obtain the following spec-
tral boundary value problem for small normal distur-
bances:

γ

(
d2

dz2
− k2

)
w = P

(
d2

dz2
− k2

)2

w − Pk2(Rθ − Bξ),

γθ = −w
∂T0

∂z
+ Δθ,

γξ = −w
∂C0

∂z
+ L

((
d2

dz2
− k2

) (
ξ +

ψR

B
θ

)
+

1
l

∂ξ

∂z

)
,

(10)

z = 0, 1 : w = 0,
∂w

∂z
= 0, θ = 0,

∂ξ

∂z
+ ψ

R

B

∂θ

∂z
+

1
l
θ = 0, (11)

where we use the ratio between vertical velocity and
stream function vz = w = −ikΨ .

We perform the linear stability analysis of the basic
state (3) by solving the spectral-amplitude problem (10)-
(11). The numerical procedure is based on the shooting
(sequential) method with the orthogonalization scheme for
integration [17].

The neutral curves of the instability, R(k), are shown
in fig. 2 for several values of the Boltzmann number B
and ψ = 10. The instability domains are located above
the curves. The long-wave limit of the instability bound-
ary is determined by relation R = (B + 720L)/ψ [9].
At the small values of Boltzmann numbers only the
monotonous instability exists (fig. 2a). The calculation
shows that the critical Rayleigh numbers for monotonous
disturbances are slightly smaller than the values which are
predicted by simple Galerkin approximation Rc = B/ψ [7,
9] (fig. 2). The oscillatory instability appears at some val-
ues of the Boltzmann number B1(ψ). The neutral curves
consist of two parts (fig. 2b,c), which reflects the compe-
tition between monotonous and oscillatory disturbances
with different wavelength. The instability connects with
monotonous disturbances in the interval B1 < B < B2

(fig. 2b) and with the oscillatory ones when B > B2

(fig. 2c). In the case ψ = 10 we have B1 = 6995 and
B2 = 9907.

The appearance of the oscillatory instability is easily
explained with the help of the decrement spectra γ(R).
Figure 3 shows the behavior of γr = �(γ) for some
lower levels of the decrement spectra in dependence on
the Rayleigh number close to instability boundary. One
can see that instability connects with the complex conju-
gated pair whose real part (blue thick line) crosses the zero
level. The imaginary part of this decrement is frequency of
the neutral oscillation ω = γi = �(γ). Slightly above the
instability boundary the complex conjugated pair trans-
forms into two real levels of the decrement spectra.

In fig. 4 the dependencies of the critical Rayleigh num-
ber for monotonous (solid lines) and oscillatory (dashed
lines) disturbances are presented versus the Boltzmann
number at different values of the separation ratio ψ. The
growth of value of thermodiffusion parameter correspond-
ing to the greater accumulation of the heavier component
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Fig. 2. Neutral stability curves for convection of the colloidal
suspension R (k) for different Boltzmann number: a) B = 5000;
b) B = 7590; c) B = 16510. The other parameters are ψ = 10,
L = 10−4, P = 10, l = 30.

near the upper cold plate causes the stability boundary to
shift down. The increase in the Boltzmann number B cor-
responding to a stronger gravity stratification stabilizes
the quiescent state; the instability boundary increases in

Fig. 3. (Color online) The decrement spectra in dependence on
the Rayleigh number R The blue thick lines represent the real
part of the complex conjugate decrement pair for oscillation
disturbances, thin (black) lines represent real decrements for
monotonic disturbances. The parameters are k = 3.14, L =
10−4, P = 10, l = 30, B = 16950.

Fig. 4. Critical values of the Rayleigh number Rc for monoto-
nous (solid lines) and oscillatory disturbances Rosc(B) (dashed
lines) versus the Boltzmann number B for different values of
separation ratio ψ = 1, 2, 5, 10. The dotted lines correspond
to the law R = B/ψ. The other parameters are L = 10−4,
P = 10, l = 30.

accordance with the approximate law Rc ≈ B/ψ, which,
however, is observed with a good accuracy. In the case
Rc > R0

st (R0
st is the critical Rayleigh number in a homo-

geneous fluid) the oscillatory instability Rosc(B) comes at
lower values of the Rayleigh number than it is predicted
by linear law Rosc < B/ψ.

3.2 The nonlinear evolution of convective patterns

To obtain approximate solutions of the boundary value
problem (6)–(8) the finite-difference technique is applied
to a set of discrete points, uniformly spaced within the
computational domain with respect to each independent
variable. In this case, the spatial derivatives of the equa-
tions of motion and heat transfer are approximated by
central differences. The finite-difference approximation of
the equation for the concentration in eqs. (6) should sat-
isfy the mass conservation law. This property is ensured
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Fig. 5. (Color online) Bifurcation diagram of laterally ex-
tended convective states with the wave number k = π in the
colloidal suspension layer, the maximal values of the stream
function as functions of the Rayleigh number R, at ψ = 10,
L = 10−4, P = 10, l = 30. Solid (or dashed) lines correspond
to stable (or unstable) regimes.

by the conservative form of the equation and its approx-
imation by the control volume method [18]. The Poisson
equation was solved by the successive upper relaxation
method. The solution was constructed on a 82 × 41 grid.
The test calculations were performed on a 122 × 61 grid.
Refining the mesh did not have any significant effect on
characteristics of the convective regimes.

We monitor the time evolution of the maximum of the
stream function Ψ field in the x-z cross section perpendic-
ular to the roll axes

Ψmax(t) = max
x,z

[Ψ(xi, zj , tk)], (12)

as well as the local time evolution of Ψ at a fixed position
(x = L/4, z = 1/2)

Ψloc(t) = Ψ(x = 4/3, z = 1/2, t). (13)

Our numerical code gives the critical Rayleigh number,
R0

st = 1700, for the onset of convection in a homogeneous
liquid.

We are concerned with the properties of the convec-
tive system at different values of the Boltzmann number
B. The bifurcation diagrams are presented in fig. 5 at
three different ratios between thermodiffusion and grav-
ity separation. Let us first consider rather small B val-
ues B = 1.65 · 104 (B < R0

st · ψ): the thermodiffusion
separation is stronger then gravity sedimentation. In a
quiescent liquid the heavy component migrates to up-
per (cold) boundary. In this case the bifurcation diagram
looks like the one for the absence of gravity sedimentation
and positive separation ration. When the heating intensity
increases quasi-statically, the onset of convection occurs
via a forward bifurcation at the Rayleigh number value
Rc(B). The maximum of the stream function Ψ in the
convective regime monotonically grows with the increase

Fig. 6. Bifurcation diagram of laterally extended convective
states with the wave number k = π in a colloidal suspension as
functions of Rayleigh number R. Thin lines refer to the max-
imal stream function (upper frame) and the frequency (lower
frame), with full (dashed) lines denoting stable (unstable) so-
lutions. B = 1.73 · 104, ψ = 10, L = 10−4, P = 10, l = 30.

Fig. 7. Map of the regimes on the plane of parameters {B, R}:
mechanical equilibrium (quiescent liquid) EQ, traveling wave
TW, steady overturning convection SOC. Critical numbers
(line 1) Rst and (line 2) RTW

S versus B for L = 10−4, P = 10,
ψ = 10, and l = 30. The solid straight line is R = B/ψ.

of the Rayleigh number R. The second case, B = R0
st · ψ,

corresponds to homogeneous liquid: the thermodiffusion
flux of heavy colloidal particles to cold upper boundary
is compensated by gravity segregation of these particles.
In this case one can see the bifurcation diagram of a sin-
gle component (pure) fluid. If gravity segregation domi-
nates B > R0

st · ψ, the onset of convection corresponds
to the backward Hopf bifurcation. The dependencies of
maximal value of the stream function and oscillation fre-
quency on the Rayleigh number are presented in fig. 6.
The two-dimensional right and left traveling wave solu-
tions bifurcate backward out of the conductive state at
Rosc(B), which is in good agreement with the predictions
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Fig. 8. (Color online) The temporal evolution Ψloc = Ψ(x =
4/3, z = 1/2, t) and Ψmax: a) standing wave regime SW at
R = 1651; b) the transient regime to SOC at R = 1665; c) the
transient regime to SOC at R = 1705; B = 1.65 · 104, ψ = 10,
L = 10−4, P = 10, l = 30.

of the linear stability theory (see sect. 3.1). The waves
gain stability via a saddle-node bifurcation at the value
of Rayleigh number RTW

S (B). For instance, at the Boltz-
mann number B = 1.73 · 104 the critical Rayleigh number
is Rosc(B = 1.73 · 104) = 1728 and the Hopf frequency
is ωH = 2.23, the saddle-node point is characterised by
the following parameters RTW

S (B = 1.73 · 104) = 1716,
ωTW

S = 0.4.
Within the interval RTW

S < R < Rosc both the stable
TW regime (solid lines in figs. 5, 6) and the unstable one

Fig. 9. (Color online) Snapshots of the concentration, stream
functions and temperature fields in the convective cell at SOC
regime: R = 1665; B = 1.65 · 104, ψ = 10, L = 10−4, P = 10,
l = 30.

(dashed lines) exist. As in the case of molecular binary
mixture [5], the concentration field is strongly nonlinear
in the stable regime, while it is weakly nonlinear when the
traveling wave is unstable. Moreover, the S-shape form of
the unstable TW branch (fig. 6) connects with the coin-
cidence of the maximal value of the vertical convective
velocity |w| = kΨmax and the phase velocity of the travel-
ling wave vph = ω/k [5].

Within the range R < RTW
S the binary mixture con-

vection decays and the system relaxes to the conductive
state. The branch of stable TWs ends at the value of re-
duced Rayleigh number Rst(B = 1.73 · 104) = 1735 and
the stationary overturning convection (SOC) solution is
formed. Thus, the highly developed, nonlinear traveling
wave convection is stable within the interval of the re-
duced Rayleigh numbers RTW

S < R < Rst.
Figure 7 represents the stability diagram of the con-

vection modes in the parameter plane {R,B}. The steady
convection solutions (SOC) are observed at B < 17000
above the dashed line. The critical Rayleigh number R
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depends linearly on B as R = B/ψ. This result is in agree-
ment with the results of linear theory [7,9]. At B > 17000,
oscillatory perturbations grow and the traveling wave TW
regime exists in the range RTW

S < R < Rst. It is shown
that the growth of Boltzmann number leads to an increase
in the characteristic values of the critical parameter Rst.

The new oscillating solution in the form of standing
wave SW is found slightly above the convective instability
boundary when thermodiffusion separation exceeds grav-
ity segregation B < R0

st ·ψ. This solution exists in the nar-
row interval of the Rayleigh number: ΔR < 1665−1650 =
15 (fig. 8). The oscillatory instability produces undamped
supercritical oscillations which are so weak that they do
not destroy the concentration profile completely (fig. 8a).
The growth of the Rayleigh number leads to the changing
of concentration field and the damping of SW oscillation
(fig. 8b,c). The standing wave SW solution transforms into
the SOC regime. The stream function, temperature and
concentration fields for stationary convective solution are
shown in fig. 9 by snapshots in the x-z plane. All fields
demonstrate a mirror symmetry between oppositely turn-
ing vortices. The convective mixing in SW solution has
low intensity so temperature isolines are slightly curved.

4 Conclusion

The influence of gravity sedimentation and thermodiffu-
sion separation on the convective instability and pattern
formation in a colloidal suspension is investigated in a
horizontal layer heated from below. Finite-difference nu-
merical simulations were carried out for typical of colloidal
suspension parameters with positive Soret coupling.

It is shown that an increase of the Boltzmann num-
ber leads to an increase of the critical control param-
eters: Rayleigh numbers RTW

S , Rosc, Rst. The nonlinear
convective patterns are found depending on the Rayleigh
and Boltzmann numbers: standing wave SW, TW and
SOC state. The contour plots of the stream function and
concentration fields represent the specific features of SW
convective solution. Our results are summarized in bifur-
cation diagrams displaying the scenarios of possible tran-
sitions, as well as the stability map where the observed
convection flow patterns are shown.

This work was partially supported by grant provided by the
Russian Foundation for Basic Research (projects Nos. 14-01-
96027, 14-01-31299).

References

1. E. Moses, J. Fineberg, V. Steinberg, Phys. Rev. A 35,
R2757 (1987).

2. J.J. Niemela, G. Ahlers, D.S. Cannell, Phys. Rev. Lett. 64,
1365 (1990).

3. D. Bensimon, P. Kolodner, C.M. Surko, H. Williams, V.
Croquette, J. Fluid Mech. 217, 441 (1990).
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