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Abstract
Using detailed administrative microdata for two countries, we build a modeling
framework that yields new explanations for the origin of firm sizes, the firm
contributions to unemployment, and the job-to-job mobility of workers between
firms. Firms are organized as nodes in networks where connections represent low
mobility barriers for workers. These labor flow networks are determined empirically,
and serve as the substrate in which workers transition between jobs. We show that
highly skewed firm size distributions are predicted from the connectivity of firms.
Further, our model permits the reconceptualization of unemployment as a local
network phenomenon related to both a notion of firm-specific unemployment and
the network vicinity of each firm. We find that firm-specific unemployment has a
highly skewed distribution. In coupling the study of job mobility and firm dynamics
the model provides a new analytical tool for industrial organization and makes it
possible to synthesize more targeted policies managing job mobility.

Keywords: Micro to macro models; Firm-size distribution; Employee mobility; Labor
flow networks

1 Introduction
The explanation of macro-phenomena on the basis of microscopic rules is a classic prob-
lem in social, economic and natural sciences [1]. Theoretical frameworks such as analyti-
cal sociology [2], economic microfoundations [3], and agent-based-modelling [4, 5] have
emerged to address the need to connect the known rules of behavior at the individual level,
along with interactions between those individuals, and the characteristics of the macro-
behavior these rules generate. A distinctive element of micro to macro studies is their abil-
ity to address system heterogeneity [6, 7] where agent-based modelling (computational or
otherwise) is especially useful due to its flexibility.

In the context of employment, the micro to macro problem is also present. However, its
study has mostly been done through fundamentally macro-level approaches [8, 9] at the
exclusion of much underlying micro-behavior. These approaches have utilized aggregation
as one of their pillars, eliminating the numerous non-trivial and potentially dominant ef-
fects played by the ecology of heterogeneous employers, the firms [10, 11]. Most of the
approaches that do incorporate some of the heterogeneity in the system [12, 13] do so by
sectorizing the economy and coarsening the firm-level view (recent notable exceptions
are [14–16] that incorporate firms).
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Recently, through the use of microdata, the study of inter-firm networks of job-to-job
mobility [14, 17, 18] (the phenomenon of an individual separating from one firm, poten-
tially spending some unemployment time, and eventually reaching another firm) suggests
that there is a rich set of phenomena taking place at the micro-level of the system that
couples employers (firms) and their workers. Neither work on firm dynamics, nor work
on employment had been able to identify or characterize such phenomena. Development
of a new disaggregate model of the behavior of the firm-employee joint system, disciplined
by microdata, is our main goal here.

Guided by micro-level empirical observations of the behavior of workers (which we also
call agents) and the firms in which they work, we develop a model of job-to-job mobil-
ity that successfully establishes the micro-to-macro connection, empirically grounded at
both levels. Our model is designed to understand the dynamics of agents in the firm land-
scape of large socioeconomic systems, and accurately predict large scale system behavior.
We base our work on high resolution, extensive firm-employee matched records in two
separate countries (Finland and Mexico), with data spanning large numbers of workers,
firms, and multiple decades. The model we introduce is consistent with known key micro
and macro-level regularities of the problem.

One of the main features of our model is that agents move between jobs inside an empir-
ically constructed network of firms [14, 19]. This inter-firm network, acts as the substrate
for workforce mobility. With this framework, we achieve some important results. First, we
find that firm-size distributions are synthesized in the combination of the connectivity of
firms in the firm network and the steady state movements of agents in the network. Fur-
thermore, we propose a new notion of firm-specific unemployment, an intermediate state
of agents between employment spells that offers a disaggregate picture of job-to-job mo-
bility at the level of individual firms, and how each firm may contribute to unemployment.
The use of a high resolution model to deal with job-to-job mobility is in itself an advance
because it moves away from aggregate approaches to deal with the problem; aggregation
destroys information about local effects like the specific dynamics of agent movements
between close-neighbor firms in the network. Finally, our approach leads to the possibil-
ity to connect two areas of study that have traditionally been separate: job-to-job mobility
and distribution of firm sizes.

We believe our framework has the great virtue of being applicable to a wide spectrum of
situations, from calibrated models of true behavior, to idealized situations of academic or
exploratory value. The reason for this flexibility is that the model captures and isolates the
main ingredients of movement dynamics of workers and employers. These ingredients are:
1) the firm environment, where individuals travel as they change jobs, and 2) the rules of
movement and behavior that individuals and firms satisfy. In this article, we choose those
ingredients with enough realism to allow us to show proof of principle, i.e., to reproduce
some important known facts about firms and worker dynamics at the best resolutions
yet studied. However, the framework can be deployed with different environments and
behavior to address many useful scenarios such as the potential consequences of policy
interventions or the construction of baseline statistical models, to name a few.

It is important to emphasize that the dynamics that emerge from the coupled firm-
employee system are of great practical interest. These dynamics have received atten-
tion in labour studies [8, 9], firm dynamics [20–23], and employment mobility [24, 25].
Usually, this research is parcelled into two separate problems: employment [8, 26] and
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firms [23, 27, 28]. Such division reflects the absence of a theoretical framework capable
of coupling them together. This division is mainly rooted on modelling choices. On one
hand, employment models are often fully aggregate or very course-grained, eliminating
the role of firm heterogeneity and the structure of job-to-job mobility. On the other, mod-
els of firm dynamics do not consider the reallocation of workers, discarding employment
trajectories (e.g., Gibrat’s law [29–31] focuses on the firm abstracted from its workers).
Our model connects the labor mobility and firm dynamics literature, providing an inte-
grated framework. Since our model is disaggregate and constructed to match data, it can
serve as the starting point for more detailed work on dynamical aspects of employment
and firms. Such work may be particularly useful to inform policy (specific measures with
specific targets), provide better analysis of economic scenarios, and develop better fore-
casting frameworks.

2 Labor flow network
Evidence suggests that a worker’s transition from a firm (i) to another firm (j) increases
the probability of observing one or more subsequent worker transitions between the same
firms i and j [18]. Such firm-to-firm transitions are the result of a confluence of factors
(geography, social ties, skills, industry types, etc.) that affect choices made by individuals
when navigating the employment landscape, and of firms when deciding to hire workers.
Considerable research has been directed at the social ties factor [32–34] which has shown
to be relevant but still constitutes just one out of numerous factors that play a large, if not
larger roles.

A more data-driven and simultaneously disaggregate approach has been taken by Guer-
rero and Axtell [14] who proposed to represent firm-to-firm transitions with the use of a
so-called labor flow network (LFN), where firms (nodes) are connected to one another if a
job-to-job transition has been observed between them. Using administrative records from
Finland and Mexico (see Sect. A.1), the authors constructed empirical networks, studied
their structural properties, and found a highly heterogeneous firm environment with in-
teresting regularities in the flow of workers such as virtually balanced flows in and out of
individual firms. The advantage of the approach in Ref. [14] is that it takes into account all
transitions regardless of their driving mechanism.

Our approach is to directly tackle the problem of modeling job-to-job transitions on
the basis of empirically justified mechanisms, using as a starting point the evidence that
previous job-to-job transitions may be predictive of new ones in the future, and that this
justifies the use of inter-firm networks as part of the modeling framework for this problem.
We model an agents-and-firms system by establishing: i) the LFN in which agents move
on the basis of data, ii) a set of basic rules of how agents choose to navigate this network,
and iii) how firms deal with the inflow and outflow of agents. In this section we focus on
i), while ii) and iii) are developed in the next section.

Given available data for firms and agents, one would like to determine those persistent
firm-to-firm transitions that, collected together as a set of edges interconnecting firms,
constitute the substrate for a considerable fraction of the steady flow of the workforce.
Intuitively, there is reason to believe in such a network (e.g., medical professionals move
between hospitals, auto-technicians between car repair shops, the unemployed are more
likely to search for a job where they live rather than far away, etc.), notions also captured
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in work such as [13, 35]. Note that persistent transitions justify the use of labor flow net-
works. If transitions were a consequence of simple random events with no repeated tran-
sitions other than by chance, then there would be no need for a network: a transition from
one node would simply be a random jump to any other node (this is a view consistently
presented in current literature on aggregate studies in labor economics [8]). Transitions
for which one cannot build evidence that they will occur again in the future are labelled
random.

To understand persistent transitions and their consequences better, we proceed as fol-
lows.

2.1 Testing flow persistence between firms
The work by Collet and Hedström [18] focused on virtually comprehensive data for Stock-
holm found that the probability that two firms i and j experience new worker transitions
between them after having had at least one prior transition is approximately 1027 times
larger than transitions between any two random firms in the same system. The implication
of this is that observing one transition between firms is a strong indicator of future tran-
sitions and thus, a strong suggestion that worker movements can be reliably modelled by
introducing links between firms that exhibit certain flow amounts between them. In this
article, we perform threea related tests (the last one is mainly contained in Sect. A.3.3) to
confirm that employee transitions between firms have the same temporal predictability
reported in Ref. [18]. Two of our tests are designed to adjust for firm sizes (an improve-
ment over the methods in [18]); our results support the notion that past transitions are
predictive of future ones.

We focus on the Finnish data. Consider worker flows in a window of time of 2�t years
centered around a given year t. Loosely speaking, we want to test for every pair of firms
with flows in the first �t years, from t – �t + 1 to t, if they also tend to have flows in the
second �t years from t + 1 to t +�t, above what would be expected from chance. We label
the two time periods of size �t before and after t as T< = [t –�t +1, t] and T> = [t +1, t +�t].
To be specific, we define fij(t) as the number of individuals changing jobs from firm i to
firm j in year t, Fij(t) = fij(t) + fji(t) the total undirected flow between i and j in t, Fij(t,�t) =
∑t

t′=t–�t+1 Fij(t′) the total flow between a pair ij during T<, and F̄ij(t,�t) =
∑t+�t

t′=t+1 Fij(t′) the
flow between ij during T>. Let us introduce an arbitrary threshold W for Fij such that, if
the pair of nodes i and j satisfy it (Fij ≥W), we check if the pair ij has flow F̄ij > 0. In other
words, we require a minimum flow amount W to track a pair of nodes from T< during T>.
We then test how informative the value of W is when trying to forecast which node pairs
have flow in T>. If W successfully helps forecast active node pairs in the future, then we
can treat W as an acceptance criterion for adding a link between i and j, thus generating a
labor flow network.

To determine if the criterion is useful, we define several quantities. First, we cap-
ture the set of flows E(t,�t,W) = {(ij)|Fij(t,�t) ≥ W}, i.e. the pairs of nodes during T<

that achieve threshold W . Together with these node pairs, we collect the unique nodes
N (t,�t,W) = {q|(q = i ∨ q = j) ∧ (i, j) ∈ E(t,�t,W)}, that is, all the nodes that take part in
any of the node pairs in E(t,�t,W). We also define a set Ē(t,�t, 1) = {(ij)|F̄ij(t,�t) ≥ 1},
the node pairs that have at least one flow event during T>. Associated with this, we de-
fine N̄ (t,�t,W = 1) = {q|(q = i ∨ q = j) ∧ (i, j) ∈ Ē(t,�t, 1)}, the nodes that take part in
Ē(t,�t, 1). Since the nodes in N (t,�t,W) or in N̄ (t,�t, 1) may not all be present through
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Figure 1 Illustration of the various sets defined to determine flow persistence and the usefulness of the
thresholdW . From the data for flows in the time period T< = [t –�t + 1, t], we identify those node pairs with a
flow equal or exceedingW (width of lines represents flow amounts) and construct a set EW whose elements
are those pairs. Similarly, in the time period T> = [t + 1, t +�t] we identify node pairs with flow and build the
set of pairs Ē1. The set of nodes present in the pairs EW isNW , and the set of those present in Ē1 is N̄1. The
common nodes (in red) areN ∗

W =NW ∩ N̄1. The node pairs of EW and Ē1 that involve exclusively the
nodesN ∗

W are, respectively, E∗
W and Ē∗

1 . The intersection (in blue) E∗
W ∩ Ē∗

1 is the set of node pairs both in
E∗
W and Ē∗

1 . Our statistical model tests whether the observed |E∗
W ∩ Ē∗

1 | is larger than expected from chance

the entirety of the time period between t – �t + 1 and t + �t, we also define the inter-
section N ∗(t,�t,W) = N (t,�t,W) ∩ N̄ (t,�t, 1), composed of nodes that are present in
both E(t,�t,W) and Ē(t,�t, 1), and also the sets E∗(t,�t,W) and Ē∗(t,�t, 1) which are,
respectively, the subsets of E(t,�t,W) and Ē(t,�t, 1) that only include node pairs where
both nodes are in N ∗(t,�t,W). This guarantees that comparisons between flows before
and after year t are well defined. To avoid cumbersome notation, from here we use the
shortened notation E∗

W ≡ E∗(t,�t,W), Ē∗
1 ≡ Ē∗(t,�t, 1), and N ∗

W ≡ N ∗(t,�t,W) (an il-
lustrative diagram of the process can be found in Fig. 1).

If the information of which pairs “are connected” in E∗
W allows us to predict to some

extend the flows in Ē∗
1 , then it means that the criterion used to create E∗

W is informative.
To test if there is a relationship between E∗

W and Ē∗
1 , we determine the number of firm-

pair flows in the period T> that were also firm-pair flows (≥W) in the years T<; to obtain
a fraction, we divide the number by |E∗

W |. This produces the density ℘W (t), defined as

℘W (t,�t) =
|E∗

W ∩ Ē∗
1 |

|E∗
W | . (1)

The denominator counts the opportunities for a node pair that satisfies the flow threshold
during T< to also have flow subsequently; the numerator counts how many times the op-
portunities are actually realized. Note that if the fraction took the value of 1 it would mean
that all pairs that had flows of magnitude ≥W up to year t also had flows after year t; if the
value were 0, it would mean that none of the pairs with flows ≥ W up to year t had flows
after that year. Crucially (establishing a null model, developed in detail in Sect. A.3.1), if
the flows captured in E∗

W provided no relevant information about the flows captured in
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Figure 2 The densities ℘(t,�t) and ℘W (t,�t) with the following color and symbol code: black without
symbols represents �t = 2, red with + represents �t = 3, green with ∗ represents �t = 4, blue with ×
represents �t = 5; (—) lines representW = 1, (– · ·–) lines representW = 2, (– – –) lines representW = 3;
thin lines represent ℘(t,�t), and thick lines represent ℘W (t,�t). The brackets signal the location of ℘(t,�t)
and ℘W (t,�t) in the plot

Ē∗(t,�t, 1), one would expect ℘W (t,�t) to be the same as

℘(t,�t) =
|Ē∗

1 |
(|N ∗

W |
2

) , (2)

the density of node pairs with a flow of at least 1 during T>. The numerator in Eq. (2) counts
the number of node pairs with flow and the denominator the total number of possible node
pairs (this equation is the usual link density equation of a network). An intuitive way to
understand why ℘ and ℘W should be the same when the flows before and after t are not
related is to note that by pure chance the expectation 〈|E∗

W ∩ Ē∗
1 |〉 of the number of times

a node pair in E∗
W is also in Ē∗

1 is given by ℘|E∗
W |, i.e. the number of trials |E∗

W | of finding
a connection times the success rate ℘ ; if we insert this expectation into the numerator of
Eq. (1), we confirm our claim. In fact, the null model is described by a hypergeometric
distribution for which ℘ is the expected value for ℘W (in Sect. A.3.1 we explain this and
estimate the p-value which confirms the significance of our threshold test). If the flows
E∗
W are indicative of the flows Ē∗

1 , we expect ℘W > ℘ . To test this, we calculate the excess
probability xW , given by the ratio

xW (t,�t) =
℘W (t,�t)
℘(t,�t)

(3)

that highlights any potential increase of ℘W over ℘ .
We compute ℘(t,�t),℘W (t,�t), and xW (t,�t) for a combination of years t and time

windows �t to get a comprehensive picture of the situation (see Sect. A.1 for details on
data). Note that the size of the time window �t impacts the range of years used: since the
earliest dataset is for 1988 and the latest for 2007, then a window of time �t means the
years of analysis are 1987 + �t ≤ t ≤ 2007 – �t. In Fig. 2 we present results for thresholds
W = 1, 2, 3, and for time windows �t = 2, 3, 4, 5 (additional analysis and robustness checks
are shown in Sect. A.7). Clearly, ℘W 
 ℘ by orders of magnitude across all combinations
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Figure 3 Excess probability xW forW = 1 (—),W = 2 (– · ·–), andW = 3 (– – –)

of W ,�t. This is because the observed values of |E∗
W ∩ Ē∗

1 | are indeed also orders of mag-
nitude larger than their expectations 〈|E∗

W ∩ Ē∗
1 |〉 = ℘|E∗

W | (see Table 3). The size of the
time window �t does not have a pronounced effect on any of the probabilities, although ℘

seems slightly more sensitive to it than ℘W . On the other hand, W increases all the prob-
abilities in the plot. More importantly, specifically for ℘W we can see that as W increases
from 1 to 3, the likelihoods of any of the flows in E∗

W to also appear in Ē∗
1 increase from

over (℘W ≈) 10% to around (℘W ≈) 50–60% and in some years even more.b

The excess probabilities for some of the previous curves are presented next, restricted
only to �t = 2 given the minor impact of �t on the results, but including the thresholds
W = 1, 2, 3 (see Fig. 3). For W = 1, the excess probability is largest, which means that the
first flow event generates the greatest fractional increase between ℘ and ℘W (an increase
of more than 103, the same order of magnitude as in [18]). The threshold W = 2 has an
excess probability in the 400 to 500 range. Threshold W = 3 has excess probabilities in the
range of 150 to 350. The decrease of the, still considerably large, excess probabilities xW
with W is a consequence of the saturation effect that ℘W undergoes (as it approaches 1
with increasing W) in comparison to the unsaturated evolution of ℘ with W .

To improve on the previous test, we present a modification that addresses the hetero-
geneity of firm sizes. Concretely, note that if flow occurs between two large firms within
the time interval T<, then just by random chance the likelihood that another flow event
occurs between these firms in the interval T> should be larger than when the same situ-
ation occurs between two small firms. Thus, one could wonder if ℘W 
 ℘ might break
down due to the firm-size heterogeneity.

The modification we introduce concerns a change to the null model. In the previous
test, the null model predicts that ℘W should approach the value of ℘ , but is instead found
to be orders of magnitude larger. That test rests on the assumption that any of the flows
in Ē∗

1 are equally likely to occur among any pair of nodes in N ∗
W , despite the differences

in those nodes.
The new null model is constructed via Monte Carlo by randomizing the flows contained

in Ē∗
1 among the nodes i ∈N ∗

W with each node i preserving its observed in- and out-flows.
For each random rewiring of Ē∗

1 we obtain a set of simulated flows S̄∗
1 , and determine the

size |E∗
W ∩ S̄∗

1 | of their overlap with the flows for the period T<. For M realizations, we can
calculate an expectation value 〈|E∗

W ∩ S̄∗
1 |〉(HF) where HF stands for heterogeneous firms.
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Figure 4 The densities ℘ (HF)(t,�t), ℘W (t,�t) and the excess probability x(HF)
W (t,�t), where �t = 2 with the

following symbol code: (—) lines representW = 1, (– · ·–) lines representW = 2, (– – –) lines represent
W = 3; thin lines represent ℘ (HF)(t,�t), thick lines represent ℘W (t,�t), and thick lines with ◦ represent
x(HF)
W (t,�t). The brackets signal the location of ℘(t,�t), ℘W (t,�t), and x(HF)

W (t,�t) in the plot. The plot has
been constructed with M = 104 simulations

In a similar way to the previous test, we compare ℘W against the average density

℘(HF) =
〈
℘(t,�t)

〉
HF =

〈|E∗
W ∩ S̄∗

1 |〉(HF)

|E∗
W | , (4)

as well as the excess probability x(HF) = ℘W /℘(HF). The results are shown in Fig. 4. In a
similar way to the previous test, we find that ℘W 
 ℘(HF). The excess probability x(HF)

W has
values that roughly correspond to a factor of 10, not as large as xW but still significant;
the fact that x(HF)

W < xW provides an a posteriori justification for the need for this new test.
Additional considerations, including a discussion of p-values can be found in Sect. A.3.2.

As a final check, we present in Sect. A.3.3 an additional test that focuses on the amount of
flow predicted by our threshold method in comparison with the heterogeneous firm null
model. We find that the node pairs identified by the threshold method carry anywhere
from about 30% to as much as 70% of the overall flow in the network depending on the
specific t. The flows carried by the node pairs emerging from the null model consistently
carry about a tenth of this flow.

Summarizing the results of the previous three tests, it is clear that the use of a threshold
W identifies flows that persist into the future, and carry a very large fraction of the overall
flow of the system. Furthermore, the likelihood that these flows are seen again increases
monotonically with W . For W = 2, we already find that the likelihood of a pair of nodes
having repeated flows is around (℘W=2 ≈) 40%. As we argue in Sect. A.7, the qualitative
results of our analyses do not change by increasing this parameter, and therefore, in the
main article we present results with W = 2 which balances size of the sample with a sig-
nificant certainty that flows are persistent.

2.2 Assembling the labor flow network
We construct the LFN G for a given dataset (Finland or Mexico) by assembling all N firms
together with the edges that are found to be persistent according to the criterion above.
The network is unweighted and undirected, characterized by the symmetric adjacency
matrix A of dimension N ×N , with Aij = Aji = 1 if i and j are connected and zero otherwise.



López et al. EPJ Data Science            (2020) 9:33 Page 9 of 41

In order to make better use of the data, we construct a network on the basis of the entire
time frame for each dataset (20 years for Finland, and just over 29 years for Mexico). This
is supported by results in Sect. A.8, specially those associated with Fig. 24. The LFNs built
by this procedure (W = 2) are found to carry a large portion of the job-to-job transitions:
in Finland ≈ 60.33% out of the total of 1,808,412 transitions observed, and in Mexico,
≈ 33.7% out of the total of 624,880 transitions. Extending the criterion to include edges
where transitions occur 3 times or more (W = 3), the number of transitions captured is
still high, with ≈ 51.17% for Finland, and ≈ 24.8% for Mexico.

The network that results from this procedure is characterized by a skew distributions
of degree ki (number of neighbors of i), total transitions through each node τi (typically
called node strength in the networks literature), and link weights Fij. Beyond the non-
trivial nature of the distributions, it is worth mentioning that each of the quantities is
necessary for a full description of the network: for instance, it is not enough to know the
strength of a node τ (or even its directed versions τ (in), τ (out)) in order to know k. This is
important to realize as it indicates that the network structure or the results we describe
later do not emerge directly from a single mechanism such as labor supply (which would
imply that τ statistically describes k). The distributions, along with a lengthy discussion
of their interpretation, are shown in the Appendix, Sect. A.4.

As a final point in this section, let us discuss the unweighted undirected nature of G.
Qualitatively, LFNs are defined to reflect the presence (or absence when there is no edge)
of employment “affinity” between two firms, necessary for firm-to-firm transitions. This
approach captures the notion of a categorical relationship between firms [36]. Considering
the limited microscopic data available, this is the most unbiased choice we can make when
modelling observed persistent transitions between firms. If the choice is sound, the model
should be able to accurately reproduce observations, as we confirm in this article. The
choice of considering an edge as a categorical relationship also leads to the undirected
assumption, as there is no a priori reason to discard transitions in either direction, and
since the weights are all equal, there is no need to have directed edges.

3 Modelling firms and individuals
Having established that LFNs capture a large number of job-to-job transitions, we proceed
to model agents navigating these networks.

Given that the specific choices made by agents travelling in the LFN are likely to be
partially driven by chance, we introduce a discrete time stochastic model that encodes
the behavior of agents and firms in the network.c The rules of the model are given by the
following:

1. Agents: These can have two states, employed or unemployed. At the start of the time
step, an employed agent remains in its firm, say i, with probability 1 – λi, and leaves
(or separates) with probability λi. An unemployed agent at the start of the time step
first determines whether neighbors of firm i are accepting applications and, if any of
them are, chooses one of them to apply to with uniform probability.

2. Firms: At the start of the time step, firms make a choice to receive applications with
probability vi or not receive them with probability 1 – vi. If firms choose to receive
applicants, then each is accepted with a probability hi.

The set of neighbors of i is denoted by �i, and has size ki = |�i|, the degree of i. A specific
subset of neighbors of node i receiving applicants in a given time step is denoted by γi,
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and this can change from step to step. In this time step, the number of open neighbors is
|γi|. Our calculation contains terms for configurations for which we condition γi to have
neighbor j open, and in those cases the configuration is denoted by γ

(j)
i . The occurrence

of configuration γi is a random event with probability Pr(γi) =
∏

j∈γi
vj

∏
�∈�i\{γi}(1 – v�).

We also find it useful to define the average hiring rate 〈h〉γi =
∑

j∈γi
hj/|γi| of neighbors of

i given γi.
To track the state of the system, we define the probabilities r(i, t) and s(i, t) that an agent

is, respectively, employed or unemployed at node i at time t. These two probabilities, ex-
plained in detail below, satisfy the equations

r(i, t) = (1 – λi)r(i, t – 1) + hi
∑

j∈�i

s(j, t – 1)
∑

{γ (i)
j }

1
|γ (i)

j | Pr
(
γ

(i)
j

)
(5)

and

s(i, t) = λir(i, t – 1)

+ s(i, t – 1)
[ ∑

{γi �=∅}
Pr(γi)

1
|γi|

∑

j∈γi

(1 – hj) + Pr(γi = ∅)
]

. (6)

The first equation states that the probability for an agent to be employed at node i at time
t is given by the probability to be employed at node i at time t – 1 and to not separate, plus
the probability that the agent is unemployed at one of the neighbors of i, that i is accepting
applications, that the agent chooses to apply to i, and that the application by the agent leads
to being hired. The second equation states that the probability to be unemployed at i at
time t is given by the probability to be employed at i at time t – 1 and be separated, or
to have been unemployed at time t – 1 at i but not find a job among the neighbors of i,
either because none of them are receiving applications, or because the agent chooses to
apply to one of the neighbors and is not hired. Note that the brackets in Eq. (6) simplify to
1 –

∑
{γi �=∅}〈h〉γi Pr(γi).

The rules and equations above (Eqs. (5) and (6)) give rise to a Markov chain, where
workers act independently of one another, and the model parameters are static in time.
We assume that the parameters hi and vi are independent of ki, and that 0 < hi, vi ≤ 1. With
these assumptions, and by calibrating from data the remaining model parameters, namely
ki and λi, we show below that the model reproduces key empirical observations. To explore
the model, we now present an analysis of its steady state for the cases of heterogeneous vi

(each firm has its on value of v) and homogeneous vi = v (constant v).
In the steady state, the conditions r(i, t) – r(i, t – 1) = 0 and s(i, t) – s(i, t – 1) = 0 are

satisfied. Using the notation r(i, t) → r∞(i) and s(i, t) → s∞(i) we find

0 = –λir∞(i) + hi
∑

j∈�i

s∞(j)
∑

{γ (i)
j }

1
|γ (i)

j | Pr
(
γ

(i)
j

)
, (7)

0 = λir∞(i) – s∞(i)
∑

{γi �=∅}
〈h〉γi Pr(γi), (8)
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which, when solved for r∞(i), lead to the matrix equation

�X = 0, (9)

where � is an N × N matrix given by

�ij := Aji

hi
∑

{γ (i)
j } Pr(γ (i)

j )/|γ (i)
j |

∑
{γj �=∅}〈h〉γj Pr(γj)

– δ[i, j], (10)

and X and 0 are column matrices of size N × 1 with Xi = λir∞(i) and 0i = 0, and δ[i, j] is
the Kronecker delta. To determine s∞(i) one can either construct a similar expression to
Eq. (9) or solve for X and then apply Eq. (8).

A unique solutiond to Eq. (9) can be obtained upon introduction of the normalization
condition 1 =

∑
i[r(i, t) + s(i, t)] =

∑
i[r∞(i) + s∞(i)] (details in Sect. A.6). For the general

case where for each i the parameters vi,λi and hi have different values, there is no simple
closed form solution. However, for the simpler case vi = v, the probability Pr(γi) simplifies
to v|γi|(1 – v)ki–|γi|, making the matrix elements �ij take the form Aijhi/(kj〈h〉�i ) – δ[i, j],
leading to

r(v)
∞ (i) =

χhi〈h〉�i ki

λi
, (11)

s(v)
∞ (i) =

χhiki

1 – (1 – v)ki
, (12)

χ =
1

∑
i∈G hi〈h〉�i ki[ 1

λi
+ 1

〈h〉�i [1–(1–v)ki ]
]
. (13)

The expression for s(v)∞ (i) can be rewritten by noting that the agent unemployed at i has
the same probability ξi for any time step to find a job among its neighbors, given by ξi =
〈h〉�i [1 – (1 – v)ki ]. This is because the likelihood that at least one of the �i neighbors is
open is 1 – (1 – v)ki for all time steps, and over configurations, the effective probability to
be hired at any of them is 〈h〉�i . With this result

s(v)
∞ (i) =

χhi〈h〉�i ki

ξi
. (14)

The rates λi and ξi play similar roles for employment and unemployment, respectively.
An agent has a probability λi(1 – λi)t–1 to be employed at i for t time steps, and similarly a
probability ξi(1 – ξi)t–1 to be unemployed t time steps at i. These are geometric distribu-
tions, for which the average times of employment (job tenure) and unemployment (spells)
are, respectively, 1/λi and 1/ξi. Fortunately, in data sets where the span of time spent un-
employed is available (such as for the Mexican data we utilize here), ξi can be empirically
estimated (together with ki and λi), adding important practical value to this new param-
eter. As we explain below, ξi plays an important role when studying the unemployment
consequences of our approach.
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If the system has H agents, the steady state probabilities for the numbers of employed
(Li) and unemployed (Ui) agents at firm i can then be computed via

Pr(Li) =
(

H
Li

)
[
r∞(i)

]Li[1 – r∞(i)
]H–Li (15)

and

Pr(Ui) =
(

H
Ui

)
[
s∞(i)

]Ui[1 – s∞(i)
]H–Ui . (16)

These expressions are broadly useful because they are always valid in the steady state.
Thus, even if r∞(i) and s∞(i) cannot be determined analytically but, say, numerically, their
values can be used directly to determine Pr(Li) and Pr(Ui).

One other important concept arises from this derivation: the quantity Ui can be inter-
preted as a firm-specific unemployment, which corresponds to the number of individuals
that had i as their last employer but that are yet to find new employment. This notion
is a powerful one, as it captures the essential nature of the network effect on mobility: if
firm neighbors are not receiving new agents (probability 1 – v), there is no place for the
unemployed from i to go.

To illustrate some possible circumstances in which Ui can be useful we now discuss
three scenarios. These represent examples of how the network introduces local effects to
job markets, which cannot be captured in aggregate models, and can only be understood
through firm-specific notions like those defined here. First, consider that there are regions
of the LFN in which links are present because the connected firms hire similar individuals,
and thus agents in one firm can more easily change jobs by going to the other firms in
the same region of the network. This is a common situation and in numerous cases the
regions of the network are rather cohesive (composed, say, of firms in the same or adjacent
industrial sectors). This means that nodes in that region of the network are likely to react
in similar ways to economic shocks. Therefore, if the firms in this region begin to lay off
workers, they will quickly flood the local network neighborhood with job-seekers, most
of which would have a hard time finding work. In addition to this, there would be nodes
adjacent to the affected network region that would soon feel the effects of the employment
shock by being flooded with new job seekers. In contrast, nodes in distant regions of the
economy would feel a much more attenuated effect in a considerably longer time frame.
In this shock scenario, the specific initial nodes affected, their unemployment values Ui,
and the structure of the local network play significant roles.

There are other scenarios that can take place where Ui is informative. For example, in
some cases links may be present due to differences in nodes rather than similarities (in two
firms that react in opposite ways to an economic shock, for instance, one firm can become
an alternative destinations for the workforce of the other firm). Knowing firm-specific
unemployment for the neighboring nodes could be used to measure how anticorrelated
their reactions are to economic shocks.

One more example is related to the steady state behavior of Ui for any given firm. Note
that firms that have simultaneously large λi and hi have a tendency to contribute large Ui

to the network, and thus influence their neighboring nodes with a correspondingly large
number of unemployed individuals seeking jobs, rapidly flooding their hiring capacities
and then creating local unemployment in the network.
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It is important to note that many individuals perform job searches while still employed.
Therefore, to assume as we do that an agent must first separate from a job before looking
for another job is an idiosyncratic choice. However, performing a job search while still
employed is not fundamentally different from our approach since the individual still has
to seek jobs with similar rules among firm neighbors, and thus the results of the Markov
process are not qualitatively different, with the caveat that additional parameters are re-
quired to model the more nuanced case. Fortunately, as we see in our empirical analysis
below, our current model assumptions seem to be effective in practice.

Note the versatility of our approach: since the equations are fully disaggregate, it is al-
ways possible to construct coarse-grained versions of the problem that can range from
partially to fully aggregate. For instance, one known improvement over fully aggregate la-
bor models are sectoral specialization models [12], which segment the labor market into
submarkets each with its own set of shared employment mechanisms and parameters (also
called matching technologies). In this context, one can picture the economy as constituted
by an aggregation of several sectors (say, healthcare, technology, etc.) which have internal
and external employment dynamics. In our model, this partial aggregation can be effi-
ciently tackled by fully connecting all firms in a given sector and also adding links from
each of these firms to all other firms in all other sectors of the economy. On the basis of the
equations above, all firms of a given sector behave identically, effectively becoming a single
representative firm. Representative firms connect to all other representative firms in the
economy with appropriate weights (possibly adjusted on the basis of survey data such as
the Job Openings and Labor Turnover Survey from the US Bureau of Labor Statistics). The
result of applying our methods directly to the disaggregate description while introducing
sectorized information or, alternatively, creating from scratch a reduced economy made
of only representative firms are equivalent, and it is a matter of choice which approach to
take, or even how to decide what firms are assigned to what sectors.

4 Empirical tests and results of the model
Armed with tools to determine the labor flow network as well as rules to model the be-
havior of agents, we now proceed to test the quality of our model. First, we focus on de-
termining whether the system can be reliably modeled in the steady state. After that, we
contrast the predictions emerging from the model with data from Finland and Mexico .e

As we see below, the data and the model are consistent.

4.1 Testing the steady state assumption
In the previous section, we have constructed solutions for the steady state. In order to
determine if such solutions are representative of typical economic situations, we check
whether the number of individuals entering and exiting a node approximately match one
another. In Fig. 5 we present the distribution of net flow at a node.

It is clear from our results that indeed firms typically operate around a steady state where
the number of workers entering and leaving a firm approximately balance out. This pro-
vides empirical validity at the micro-level. For further support, in the Appendix we present
several other tests that highlight the steady state nature of the system (see Sect. A.8).

4.2 Firm sizes
Data available to explore the dynamics of the firm-employee system do not contain infor-
mation about {vi}i=1,...,N or {hi}i=1,...,N . However, data is available to estimate the values of
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Figure 5 Distribution of the difference between flow of workers into and out of a firm. In this plot, there are
over 49,000 firms for Mexico and close to 300,000 firms for Finland

λi. For Finland, this is done by calculating the ratio of agents leaving a firm with respect to
the size of the firm. A value of λi is created for every year of the sample, and then all the
values for a given firm are averaged over those yearly samples.

To deal with the absence of information for hi, vi, we concentrate on comparing the data
with the homogeneous vi = v version of our model in the hope that, if some of the main
qualitative features of the system have been properly captured, we could find a reasonable
level of agreement between data and prediction.

We now proceed to test the homogeneous model with vi = v (a constant) for all i. How-
ever, we retain the freedom for each firm i to have its own independent acceptance rate hi

in order to conform with experience (there are more selective and less selective firms in
terms of hiring). Focusing first on the sizes of firms, we make use of Eqs. (11) and (15) to
find that the most probable (or mode) firm size L∗

i is

L∗
i =

⌊
(H + 1)r(v)

∞ (i)
⌋ ∼ Hχhi〈h〉�i ki

λi
. (17)

This is a model prediction. One possible check for our model against the available data is
to determine whether the measured L∗

i and ki/λi relate as predicted by Eq. (17), assum-
ing independence among the variables hi, ki, and λi. Furthermore, we can also study the
distribution Pr(Li|ki/λi) to develop a broader picture.

To simultaneously learn about Pr(Li|ki/λi) and L∗
i , we use the Finnish data to generate

Fig. 6, a 3-dimensional plot of log10[Pr(Li|ki/λi)/ Pr(L∗
i |ki/λi)] as a function of log10 Li and

log10(ki/λi), where each Li is the size of a Finnish firm, ki its degree based on repeated ob-
served transitions, and λi its separation rate estimated over the years of data as explained
above. Here, Pr(L∗

i |ki/λi) is the probability associated with the conditional mode L∗
i . For a

given ki/λi, the logarithm of the ratio Pr(Li|ki/λi)/ Pr(L∗
i |ki/λi) becomes 0 when Li = L∗

i , and
is < 0 for other values of Li. To interpret the plot, we introduce a plane P parametrized
as indicated in Fig. 6, normal to the base plane log10 Li, log10(ki/λi) and running parallel
to its diagonal (which means it is a proportionality plane between Li and ki/λi). This nor-
mal plane also cuts the ratio log10[Pr(Li|ki/λi)/ Pr(L∗

i |ki/λi)] at or very close to 0, i.e., when
Li = L∗

i . Therefore, it means that L∗
i from the data is proportional to ki/λi, supporting the

prediction from Eq. (17). The correspondence we observe between the data and prediction
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Figure 6 Behavior of log10[Pr(Li|ki/λi)/ Pr(L∗i |ki/λi)] (surface S ) with respect to log10 Li and log10 ki/λi for
Finland. The data is logarithmically binned as follows: Li belongs to bin b (a non-negative integer) if
Lminζ

b < Li ≤ Lminζ
b+1 with ζ > 1 (for this plot ζ = 2) and Lmin =min[{Li}] (smallest firm size in the data); ki/λi

is binned in the same way with ζ and (k/λ)min =min[{(ki/λi)}]. Blue points represent the local maximum of S
at each bin. The vertical plane P is parametrized as (ki/λi ,CLki/λi , z) where z is a free parameter. CL is chosen
to minimize

∑
b(L

∗
b – CL(k/λ)b)

2 with the first three bins excluded because the smallest firm size is 1. The large
range within which the intersection of P and S runs parallel to the maxima of S strongly supports Eq. (17)

also supports the assumption that, on average, the parameters hi and 〈h〉�i do not depend
strongly on ki or λi [15] (see Table 1 for a summary of the relation between parameters
and results).

If indeed ki/λi is strongly correlated to Li as indicated by the results above, we can assume
the relation

Li ≈ CL
ki

λi
, (18)

where CL is independent of ki and λi (but still depends on the remaining model parameters
v, {hi},χ ). Under this assumption, the distributions of both Li and ki/λi should be related
by the change of variables theorem, which (written in the continuous limit) yields

Pr(Li)dLi = Pr(ki/λi)d(ki/λi). (19)

In Fig. 7, we show the probability distributions of both Li and ki/λi which are close to
parallel, and display a heavy tail, indeed supporting our assumption. It has been known
for a long time that Pr(Li) satisfies Zipf ’s law [20–23], which supports the notion that the
probabilities in Fig. 7 follow a power law. Employing this functional form in Eq. (19) with
decay exponent z, i.e., Pr(ki/λi) ∼ (ki/λi)–z , we find

Pr(Li) ∼ L–z
i . (20)

The value of z estimated from a least squares fit of the slope of log Pr(ki/λi) with respect
to ki/λi turns out to be ≈ 1.97 ± 0.02, consistent with the exponent of the decay of Pr(Li)
that we measure against our data (see Table 2). Note also that this exponent is consistent
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Figure 7 Probability distributions of Li (red) and ki/λi (blue) for Finland binned logarithmically with 30 bins
for the range of values of both sets. For most of the range of Li and ki/λi , the two distributions are almost
parallel, supporting the validity of Eq. (19) to explain Pr(Li)

with the decay exponent close to –1 of the cumulative distributions of Li observed for
numerous countries [23].

This result offers a new interpretation for the origin of the power law distribution of
firm sizes [20–22]. In our picture, the collection of employment affinities, and hence con-
nectivity distribution, plays a dominant role (together with the separation rates) in the
observed distribution of firm sizes. We should emphasize that this does not equate to a
statement of causality (ultimate causes of employment affinity are structural variables such
as geography, employee skills, etc.), but rather the realization that employment affinities
are highly useful quantities with which to model because they possess a great power of
synthesis about the system behavior.

4.3 Firm-specific unemployment
The homogeneous model with vi = v also provides an estimate for our new concept of
firm-specific unemployment. This quantity can be calculated in a similar way as L∗

i , and
it is given by

U∗
i ∼ Hχhi〈h〉�i ki

ξi
. (21)

Although we do not have enough information in the Finnish dataset to determine the
set {ξi}, we do for the Mexican dataset. From the latter, we determine the {ξi} through
maximum likelihood (see Sect. A.5). We test Eq. (21) in a similar way as Eq. (17),
through a 3-dimensional plot of log10[Pr(Ui|ki/ξi)/ Pr(U∗

i |ki/ξi)] as a function of log10 Ui

and log10(ki/ξi), where Ui, ki, and ξi are all determined empirically for Mexico. The results
are shown in Fig. 8, and support the conclusion that U∗ ∼ ki/ξi. For Mexico, we average
Ui over the whole observation window of D = 10,612 days to obtain stable values for firm-
specific unemployment.

To better understand firm-specific unemployment, we present in Fig. 9 its probability
distribution. This is the first time this quantity is reported. Its importance revolves around
the fact that firms which have a large contribution to unemployment may constitute a ma-
jor problem for economies as a whole. In the same plot, we also display the probability
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Figure 8 Behavior of log10[Pr(Ui|ki/ξi)/ Pr(U∗
i |ki/ξi)] (surface S ) with respect to log10 Ui and log10 ki/ξi for

Mexico. The data is logarithmically binned as in the same way as in Fig. 6 (ζ = 2) with Umin =min[{Ui}{i}]
(smallest firm-specific unemployment size in the data) and (k/ξ )min =min[{(ki/ξi)}{i}]. Blue points represent
the local maximum of S at each bin. The vertical plane P is parametrized as (ki/ξi ,CUki/ξi , z) where z is a free
parameter. CU is chosen to minimize

∑
b(U

∗
b – CU(k/ξ )b)

2 with the last five bins excluded at the point where
the linear relationship breaks down. The large range within which the intersection of P and S runs parallel to
the maxima of S strongly supports Eq. (21)

Figure 9 Probability distributions of Ui (red) and ki/ξi (blue) for Mexico binned logarithmically with 30 bins for
the range of values of both sets. For most of the range of Ui and ki/ξi , the two distributions are almost parallel

distribution of ki/ξi. The parallel between the two distributions mirrors the situation with
Li and ki/λi: Eq. (21), which connects Ui to ki/ξi, allows explaining Pr(Ui)dUi through a
change of variables so that Pr(Ui)dUi = Pr(ki/ξi)d(ki/ξi). This plot also indicates the pres-
ence of a heavy-tail distribution for Pr(Ui). Some care must be taken in interpreting Fig. 9
due to the way in which the Mexican data was collected, focusing on uniformly sampling
individuals rather than firms. This may play a role in the cross-over in slopes observed in
the distributions of both Ui and ki/ξi.
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Figure 10 Distribution of β̂ obtained form 1,000,000 estimations of the RANSAC algorithm, using OLS as the
underlying model

4.4 Ratio of firm separation to waiting rates
An additional test can be performed on the basis of the symmetry between Eqs. (17) and
(21). The ratio between these leads to

〈Li〉
〈Ui〉 =

L∗
i

U∗
i

= α

(
ξi

λi

)β

(22)

with α and β equal to 1. To determine if the prediction is matched by the data, we ap-
plied the re-sample consensus algorithm (RANSAC) [37] (see Sect. A.10) with 106 es-
timations for the Mexican data. The results can be seen in Fig. 10. The average β is
1.00000 ± 2 × 10–5, while the most frequent is 1.0065. The average estimator α of the
intercept is 1.13637 ± 5 × 10–5. These results are quite close to the theoretical prediction
of (22).f

5 Discussion and conclusions
Detailed microdata, such as the one analyzed in this article, provides an opportunity to
construct new, highly resolved models of macro level phenomena from micro level empir-
ically justified mechanisms. In our particular case, our approach offers a picture of firms
and employment that links them together in a precise way, opening the opportunity for
an integrated theory of these two areas of research.

Our network picture of firms and employment offers the novel idea that the sizes of firms
become encoded in the number of independent connections firms have with other firms.
These connections, which reflect an economic affinity (low mobility barriers) relevant to
employment transitions, synthesize the numerous possible structural variables (skills, ge-
ography, social contacts, etc.) that an agent is affected by when searching for employment,
but because the connections are determined from the data (empirically calibrated), even
those variables that may not be traditionally tracked are taken into account.

The ability of this data-driven approach to incorporate both known and unknown mech-
anisms in the firm-employee system makes our method less prone to idiosyncrasies asso-
ciated with methods of modelling that require choosing a set of starting assumptions and
then trying to model from that point on. For instance, if one had assumed that labor supply
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was the main mechanism, the result would be that the model would not fit the data, and
thus additional assumptions would have been needed to explain observation. This strategy
would create a model that has to be adjusted ad hoc, is not parsimonious (due to the need
for additional variables to control the adjustments), and is thus less tractable conceptually.
Even if additional well-known mechanisms are incorporated into the modelling to try to
achieve the adjustments, there is no guarantee that one can capture all relevant effects,
producing the same incomplete and non-parsimonious modelling situation.

A new concept of firm-specific unemployment is also introduced here. From the stand-
point of the theory of processes on graphs, it is a useful tool to account for a ‘search’ state
of the agent, as one would see in queuing processes such as data routing on computer net-
works. In our particular case of employment and firm sizes, beyond its technical value,
firm-specific unemployment introduces new economic notions about employment, relat-
ing to the relevance that specific firms along with their surroundings contribute to the
overall unemployment rate.

The time scales that our model addresses (and their relation to real time scales), de-
pend on whether the economy is steady enough that its behaviour between samples is not
changing a great deal (see the discussion on the steady state in Sect. A.8) or if, in contrast,
it is very dynamic. In the steady (or even in the slow dynamic) state, the model time scale
and the real-world time scales basically match as the solutions to the model quickly ad-
just to the model parameters for that sampling period. When the dynamics are very rapid
due to a fast economic shock, the time scales of the model need to be considered within
the sampling period, a problematic situation since we would be unable to compare model
results with data. In this regime, the time scale of the dynamics would be dictated by the
first eigenvalue of the stochastic matrix of the Markov chain.

In the future, as our models improve and further data is gathered and analyzed, it may
become possible to develop even more detailed models that could tackle more complex
problems such as the formation of new firms and the construction of realistic shock sce-
narios, which are necessary to design real-time high resolution forecasting of employment
flow. This task, which has not yet been possible, may be within our reach for the first time,
with considerable potential for social policy design that is well grounded empirically and
for which its effect can be forecast in great detail.

Appendix A
A.1 Data
We use two different datasets of employer-employee matched records. The first is the
Finnish Longitudinal Employer-Employee Data (FLEED), which consists of an annual
panel of employer-employee matched records of the universe of firms and employees in
Finland. The panel was constructed by Statistics Finland from social security registries by
recording the association between each worker and each firm (enterprise codes, not es-
tablishments), at the end of each calendar year. If a worker is not employed, it is not part of
the corresponding cross-section. The result is a panel of 20 years (1988 to 2007) that tracks
every firm and every employed individual at the end of each year (approximately 3 × 105

firms and 2 × 106 workers). From two consecutive years of this data, one can determine if
an employee in one firm has moved to another, hence generating data for inter-firm job-
to-job transitions. We have direct access to this data on transition, but not the entirety of
FLEED.
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Table 1 Parameters that are either used directly as inputs in our model, Eqs. (5) and (6), or used to
determine or postulate those input parameters. The firm-size distribution (FSD) emerges for the
conditions stated in the table, particularly that there are no interdependencies among the
parameters for a node (one particularly problematic one would be that hi and/or ki were correlated,
but our results do not support this)

Parameter Empirical Model Model conditions for FSD

λi � � –
ξi � �(function of hi , vi) –
hi – � 0 < hi ≤ 1, no parameter interdependencies
vi – � 0 < vi ≤ 1, no parameter interdependencies
fij � – –
aij – �(determined from fij) –

Table 2 Quantities predicted by the model against measured counterparts

Quantity Prediction Measurement

z [Eq. (20)] –1.97±0.02 [from Pr(ki/λi)] –1.97±0.03 [from Pr(Li)]
α [Eq. (22)] 1 1.13637± 5× 10–5

β [Eq. (22)] 1 1.00000± 2× 10–5

Unemployment periods cannot be determined from FLEED. For this we use a dataset
from Mexico consisting of employer-employee matched records with daily resolution. The
data was obtained by sampling raw social security records from the Mexican Social Se-
curity Institute. Approximately 4 × 105 individuals who were active between 1989 and
2008 were randomly selected and their entire employment history was extracted (hence,
covering dates prior to 1989). This procedure generates a dataset with nearly 2 × 105

firms. The records contain information about the exact date in which a person became
hired/separated by/from a firm. Therefore, it is possible to identify unemployment spells,
duration of each spell, and associations between job seekers and their last employer.

As a supplementary dataset, useful for determining sizes of firms and separation rates,
we use Statistics Finland’s Business Register, constructed from administrative data from
the Tax Administration, and from direct inquiries from Statistics Finland to business with
more than 20 employees. This data provides firm sizes and profits from different sources.

A.2 Summary of empirical and model parameters. Model predictions
To facilitate the presentation as well as provide a summary of the role of the parameters of
the model, we present in this section Table 1 with all the parameters that bear relevance to
the inputs of the model. We also indicate the conditions under which these parameters are
consistent with the empirical observations we attempt to reproduce in this work, namely
the firm-size distribution (FSD).

In Table 2, we provide a summary of the quantities predicted by the model and those
that are measured empirically and matched against the model.

A.3 Testing persistence in the Finnish dataset
In this section we explain further details, particularly regarding the null models, about
the effectiveness of the threshold criterion in determining which node pairs should be
connected using a link on the basis of the flow of individuals between the firms.
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A.3.1 Null model and p-values for threshold criterion
To address the construction of a p-value for the analysis of persistence carried out in
Sect. 2.1, we can define the null model mathematically. For this purpose, suppose that
among the nodes N ∗(t,�t,W), the null model is defined by the fact that the flows cap-
tured in E∗(t,�t,W) and those captured in Ē∗(t,�t, 1) overlap only as a consequence of
random chance. Concretely, every flow in E∗(t,�t,W) that also belongs to Ē∗(t,�t, 1) is
considered a successful random trial, which takes away a success state (sampling without
replacement). The success states are the flows in Ē∗(t,�t, 1). The overall population, i.e.,
places where the flows Ē∗(t,�t, 1) can be placed, consists of all the unique pairs of nodes
among N ∗(t,�t,W). Therefore, the likelihood that there are |E∗(t,�t,W) ∩ Ē∗(t,�t, 1)|
successful trials is given by the hypergeometric distribution

Pr
(∣
∣E∗ ∩ Ē∗∣∣) =

( |E∗|
|E∗∩Ē∗|

)( (|N∗|
2 )–|E∗|

|Ē∗|–|E∗∩Ē∗|
)

((|N∗|
2 )

|Ē∗|
) , (23)

where, for brevity, we use the shortened notation E∗
W , Ē∗

1 , and N ∗
W . Therefore, the expec-

tation value 〈|E∗
W ∩ Ē∗

1 |〉 for |E∗
W ∩ Ē∗

1 | is given by

〈∣
∣E∗

W ∩ Ē∗
1
∣
∣
〉

=
|Ē∗

1 ||E∗
W |

(|N ∗
W |
2

) , (24)

where |E∗
W |/(|N ∗

W |
2

)
is the probability of picking a pair of nodes among N ∗

W between which
there is flow that belongs to E∗

W ; if Pr(|E∗
W ∩ Ē∗

1 |) were given by a binomial instead, the
expectation value would be the same (this is relevant below). Rewriting the last expression
somewhat, we find

〈|E∗
W ∩ Ē∗

1 |〉
|E∗

W | =
|Ē∗

1 |
(|N ∗

W |
2

) = ℘, (25)

where the second equality comes from the definition of ℘ in Eq. (2) above. Note also that
the left hand side is the expectation value for ℘W in the null model. In other words, Eq. (25)
is a proof of our statement that, in the random model, the expected value for ℘W should
correspond to ℘ . However, the observed ℘W are much larger than ℘ , supporting the use
of W as a selection criterion for links. To estimate a p-value using the hypergeometric
distribution is difficult because the values of E∗

W , Ē∗
1 , and N ∗

W are quite large (see the ta-
ble below). Therefore, we estimate the p-values using a normal distribution which can,
in turn, be explained from a binomial distribution approximation to the hypergeomatric
distribution, well justified in our case given that

(|N ∗
W |
2

) 
 |E∗
W |, |Ē∗

1 |. In the binomial ap-
proximation, in order to maintain the same expectation value, the success probability ρs

is given by

ρs =
|E∗

W |
(|N ∗

W |
2

) , (26)

which says that to pick a node pair where there was flow during T<, the chances are propor-
tional to the number of node pairs |E∗

W | in that time period. In the normal approximation
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to this binomial distribution, the mean and standard deviation are given by

μ =
∣
∣Ē∗

1
∣
∣ρs,Q =

√∣
∣Ē∗

1
∣
∣ρs(1 – ρs) (27)

since |Ē∗
1 | is the number of trials. For this approximation, the p-value is then given by the

integral

p-value of
∣
∣E∗

W ∩ Ē∗
1
∣
∣ ≈ 1√

2πQ2

∫ ∞

|E∗
W∩Ē∗

1 |
e– (φ–μ)2

2Q2 dφ. (28)

On the basis of the values in the table below, the magnitude of φ is very large in comparison
to μ and therefore, one can approximate the integral via an asymptotic expansion of first
order derived by integration by parts, giving estimates for the p-value of

p-value of
∣
∣E∗

W ∩ Ē∗
1
∣
∣ ≈ 1√

2π

Q
|E∗

W ∩ Ē∗
1 | – μ

e–
(|E∗

W∩Ē∗
1 |–μ)2

2Q2 . (29)

Subsequent terms in the expansion are also dominated by the exponential term and there-
fore, it is reasonable to truncate the expansion at first order. The values of the exponent
are large enough that it is better to express these results under a logarithm, producing

ln
[
p-value of

∣
∣E∗

W ∩ Ē∗
1
∣
∣
]

≈ –
(|E∗

W ∩ Ē∗
1 | – μ)2

2Q2 + ln

[
1√
2π

Q
|E∗

W ∩ Ē∗
1 | – μ

]

≈ –
(|E∗

W ∩ Ē∗
1 | – μ)2

2Q2 – ln

[ |E∗
W ∩ Ē∗

1 | – μ√
2Q

]

– ln(2
√

π )

≈ –
(|E∗

W ∩ Ē∗
1 | – μ)2

2Q2 = –
(|E∗

W ∩ Ē∗
1 | – 〈|E∗

W ∩ Ē∗
1 |〉)2

2Q2 , (30)

where the last equality uses the fact that μ = |Ē∗
1 ||E∗

W |/(|N ∗
W |
2

)
= 〈|E∗

1 ∩ Ē∗
1 |〉, and drops

the logarithmic term and the constant since they are much smaller in magnitude than the
quadratic term.

The p-value estimates are contained in Table 3. The order of magnitude of these results
is overwhelmingly below the usual significance threshold of 10–3. To illustrate this with
one of the combinations of values below (t = 1989,�t = 2,W = 1), note that ρs = 2.2 ×
10–4, μ = |Ē∗

1 |ρs = 8.78, and Q =
√

|Ē∗
1 |ρs(1 – ρs) = 2.96. Therefore, our estimate produces

ln[p-value] ≈ –4.64×106 � ln 10–3. For reference, ln 10–3 ≈ –6.91 where 10–3 comes from
a p-value = 10–3. All other results in the table show similar behavior, orders of magnitude
removed from the 10–3 significance threshold. This provides convincing evidence for the
validity of our method. The results of our tests for several combinations of years, time
windows �t, and values of W is shown in Table 3.

A.3.2 Null model and p-values for threshold criterion for heterogeneous firms
The p-values for the null model addressing the heterogeneity are calculated from the
Monte Carlo simulations. As explained in the main text, we generate random realizations
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Table 3 Table for test of threshold method for the cases that ignore or take into account the firm
heterogeneity (HF). The table only includes �t = 2, as other values of �t have only a minor effect on
the probability densities ℘ ,℘ (HF) , and ℘W . We show a selection of years for each of the three values
ofW = 1, 2, 3. Note that the p-values are exceedingly small for both tests

t W |N ∗
W | |E∗

W | |Ē∗
1 | μ = 〈|E∗

W ∩ Ē∗
1 |〉

(ln[p-value])
μHF = 〈|E∗

W ∩ S̄∗
1 |〉

(ln[p-value])
|E∗

W ∩ Ē∗
1 |

1990 1 20,181 49,855 25,213 6.17 (–3.16× 106) 1144.30 (–1.78× 104) 6253
1995 1 22,707 33,398 39,424 5.11 (–3.50× 106) 975.66 (–2.01× 104) 5986
2000 1 32,913 68,225 64,381 8.11 (–6.83× 106) 1793.58 (–3.56× 104) 10,532
2005 1 40,037 72,123 88,335 7.95 (–8.64× 106) 2278.98 (–3.15× 104) 11,727
1990 2 6505 7584 12,986 4.66 (–7.08× 105) 516.73 (–9.23× 103) 2571
1995 2 5200 4470 16,817 5.56 (–3.51× 105) 398.19 (–6.93× 103) 1981
2000 2 7888 8462 27,800 7.56 (–8.92× 105) 761.25 (–1.40× 104) 3680
2005 2 8584 7630 38,601 8.00 (–7.95× 105) 830.87 (–1.09× 104) 3573
1990 3 3488 3202 8494 4.47 (–2.61× 105) 340.20 (–5.18× 103) 1532
1995 3 2631 1853 10,403 5.57 (–9.83× 104) 219.36 (–4.84× 103) 1052
2000 3 3716 3263 17,121 8.09 (–2.37× 105) 448.39 (–7.86× 103) 1967
2005 3 4388 2826 25,735 7.56 (–2.10× 105) 474.05 (–5.33× 103) 1789

S̄∗
1 of the flows Ē∗

1 (for T>) that respect the total in- and out-flows of each of the nodes
in N ∗

W . We then determine for each S̄∗
1 its overlap E∗

W ∩ S̄∗
1 with the flows in the period

T<. The equivalent quantity to ℘ of the previous test is ℘(HF) = 〈|E∗
W∩S̄∗

1 |〉(HF)
|E∗

W | (defined in

Eq. (4)) or, alternatively we can calculate the distribution Pr( |E∗
W∩S̄∗

1 |
|E∗

W | ) from the values of
|E∗

W ∩ S̄∗
1 |/|E∗

W | of each realization. Both ℘(HF) or the distribution over realizations can be
compared against ℘W , but we require the distribution to determine a p-value. Our results
indicate that a Gaussian fits well the distribution Pr(℘(HF)).

Since both ℘ and ℘(HF) are defined with the |E∗
W | in the denominator, we can determine

p-values equally well by comparing Pr(|E∗
W ∩ S̄∗

1 |) and |E∗
W ∩ Ē∗

1 |. This can be seen in a
general way using φ = φ̃/α and μ = μ̃/α, which lead to the identity

1√
2πσ

∫ ∞

φo

e– (φ–μ)2
2σ2 dφ =

1√
2πσ̃

∫ ∞

φo/α
e– (φ̃–μ̃)2

2σ̃2 dφ̃, (31)

where σ is the standard deviation for x, and its transformed version σα = σ̃ provides the
standard deviation for φ̃. This transformation also highlights that, in terms of functional
form, if Pr(℘(HF)) is Gaussian, then so is Pr(|E∗

W ∩ S̄∗
1 |).

In Fig. 11(a) we present histograms h(|E∗
W ∩S̄∗

1 |) for t = 1992 and in Fig. 11(b) histograms
for t = 2000, both for W = 1, 2, 3, as well as their regressions (described next). Since we do
not have a theoretical way to specify 〈|E∗

W ∩ S̄∗
1 |〉(HF) or its distribution Pr(|E∗

W ∩ S̄∗
1 |),

we resort to regression to determine the parameters of the histogram and subsequently
estimate p-values using Eq. (30) (results in Table 3). With φ = |E∗

W ∩ S̄∗
1 |, we use

h(φ) = hoe
– (φ–μHF)2

2σ2
HF , (32)

where μHF and σHF emerge from the regression. These are the two parameters we care
about, as the normalization constant of the Gaussian is determined by σHF. The quality of
the fit is clear from Fig. 11.
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Figure 11 Histograms h(|E∗
W ∩ S̄∗

1 |) from simulations (symbols) and their least square fits (lines) withW = 1
(black ◦), 2 (red�), 3 (green ♦) for years t = 1992 (top) and t = 2000 (bottom). All histograms have been
constructed from M = 104 Monte Carlo realizations

A.3.3 Overall flows captured by threshold criterion
The final test we carry out concerns how the threshold criterion performs with regards to
accounting for the overall flow in the network.

Specifically, we define the total flow

F̄∗
·
(
t,�t|Ē∗(t,�t, 1)

)
=

∑

(i,j)∈Ē∗(t,�t,1)

F̄∗
i,j(t,�t), (33)

that is, the total number of individuals changing firms over the pairs of nodes in
Ē∗(t,�t, 1). As above, we use the simplified notation F̄∗· (Ē∗

1 ) to mean F̄∗· (t,�t|Ē∗(t,�t, 1))
as typically there is no confusion about the time t and time window �t we are concen-
trating on. Note that F̄∗· (Ē∗

1 ) counts all the repeated transitions between node pairs, i.e.,
all the flows happening during T>.

Our test consists of comparing F̄∗· (Ē∗
1 ) to the average of the quantity

F̄∗
·
(
t,�t|E∗(t,�t,W) ∩ Ē∗(t,�t, 1)

)
=

∑

(i,j)∈E∗(t,�t,W)∩Ē∗(t,�t,1)

F̄∗
i,j(t,�t), (34)

which is the number of individuals that change jobs in the time period T> exclusively on
those node pairs that also had flows ≥ W in the time period T<. We denote this flow as
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F̄∗· (E∗
W ∩ Ē∗

1 ). The main purpose of this test is to show that a considerable percentage of
future flow is captured using the threshold criterion, much more than the flow predicted
by the null model for heterogeneous firm sizes presented above in Sects. 2.1 and A.3.2.

The overall flow during T> associated with a given Monte Carlo realization of the null
model for heterogeneous firm sizes is denoted by F̄∗· (E∗

W ∩ S̄∗
1 ) where S̄∗

1 is the set of
flows that emerges from one random rewiring that preserves in- and out-flows for each
and every firm. As we discussed in Sect. A.3.2, flows T> are reliably predicted by flows
in the interval T<. Thus, we expect that typically F̄∗· (E∗

W ∩ Ē∗
1 ) is greater or even much

greater than any typical F̄∗· (E∗
W ∩ S̄∗

1 ). To confirm this is the case, we generate the his-
togram h(F̄∗· (E∗

W ∩ S̄∗
1 )) of the overall flows predicted by the null model in order to com-

pute Pr(F̄∗· (E∗
W ∩ S̄∗

1 )), its average 〈F̄∗· (E∗
W ∩ S̄∗

1 )〉HF, and the p-value for the actual mea-
sured flow F̄∗· (E∗

W ∩ Ē∗
1 ). In addition, following the same conceptual framework as for the

previous two tests, we define the fractions

θW (t,�t) =
F̄∗· (E∗

W ∩ Ē∗
1 )

F̄∗· (Ē∗
1 )

(35)

and

θ (HF)(t,�t) =
〈
θ (t,�t)

〉
HF =

〈F̄∗· (E∗
W ∩ S̄∗

1 )〉HF

F̄∗· (Ē∗
1 )

, (36)

and the excess probability

yW =
θW (t,�t)
θ (HF)(t,�t)

. (37)

Figure 12 corresponds to θW , θ (HF), and yW . In consistent fashion with the results for
℘(HF),℘W , and xW , the values of θW are roughly an order of magnitude larger than those
for θ (HF), measured by yW . The values for θW in particular are largely in a range that spans
between 30% and 50% and reaches as high as just over 70%.

The calculation of p-values follows the same approach as the two previous tests. Fig-
ure 13 shows the histograms h(F̄∗· (E∗

W ∩ S̄∗
1 )) for W = 1, 2, 3 and the years (a) t = 1992

and (b) t = 2000, along with their least square fit (solid lines). The histograms were cre-
ate with M = 104 rewirings of each individual yearly network. From the fits we estimate
Pr(F̄∗· (E∗

W ∩ S̄∗
1 )), its average 〈F̄∗· (E∗

W ∩ S̄∗
1 )〉HF and standard deviation, which we then use

in estimating the p-value of each set of years and thresholds. The results of this analysis
are shown in Table 4.

A.4 Topological properties of labor flow network
The use of the criteria developed in Sects. 2.1 and A.3 leads to a labor flow network
with certain topological properties that are captured in the distributions of degree, node
strength, and link weights. These distributions are found in Figs. 14, 15, and 16 for a range
of values of W . A satisfactory feature of these distributions is that their functional forms
remain stable even as W increases.

An important observation that it worth highlighting is that, while ki and τi are clearly
related, one is not predictive of the other. In other words, as has been found in prior re-
search on real weighted networks compared to weighted network models, a full descrip-
tion of such networks typically requires knowledge of all the variables describing a node i,
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Figure 12 The fractions θ (t,�t) and θW (t,�t) and the excess probability y(HF)
W (t,�t), where �t = 2 with the

following symbol code: (—) lines representW = 1, (– · ·–) lines representW = 2, (– – –) lines represent
W = 3; thin lines represent θ (HF)(t,�t), thick lines represent θW (t,�t), and thick lines with ◦ represent
y(HF)
W (t,�t). The brackets signal the location of θ (t,�t), θW (t,�t), and y(HF)

W (t,�t) in the plot

Figure 13 Histograms h(F̄∗···(E∗
W ∩ S̄∗

1 )) from simulations (symbols) and their least square fits (lines) with
W = 1 (black ◦), 2 (red�), 3 (green ♦) for years t = 1992 (top) and t = 2000 (bottom). All histograms have
been constructed from M = 104 Monte Carlo realizations

including ki, τi and the distribution of the link weights Fij [38]. The relevance of this point
stems from the fact that it confirms that the labor flow network is not simply a direct effect
of the sizes of firms present in the economy: the observed ki is not trivially predicted as the
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Table 4 Table for test of overall flow carried by node pairs predicted by threshold test. The table only
includes �t = 2, as other values of �t have only a minor effect on the probability densities θ (HF) and
θW . We show a selection of years for each of the three values ofW = 1, 2, 3. Note that the p-values
are exceedingly small

t W F̄∗· (E∗
W ∩ Ē∗

1 ) F̄∗· (E∗
W ∩ S̄∗

1 ) F̄∗· (Ē∗
1 ) lnp-value

1990 1 17,520 1762.32 44,754 –79,197.93
1995 1 17,322 1527.78 61,896 –86,403.38
2000 1 27,944 3396.18 96,933 –98,918.60
2005 1 34,484 4848.07 131,740 –101,314.57
1990 2 10,979 1375.66 28,013 –39,196.11
1995 2 10,217 1295.19 33,601 –35,239.02
2000 2 16,522 3009.81 52,207 –36,770.46
2005 2 20,864 2320.71 69,983 –83,855.28
1990 3 8298 1015.37 20,547 –32,485.19
1995 3 7942 949.05 24,333 –27,038.30
2000 3 12,921 2292.62 38,423 –31,750.46
2005 3 15,814 2229.20 53,088 –48,158.52

Figure 14 Distributions of degree Pr(ki) of the networks created by applying the threshold criterionW = 2
(black ◦),W = 3 (red�),W = 4 (green ♦), andW = 5 (blue �)

result of the τi transitions firm i exhibits. If this were true, the system could be explained
by so called labor supply assumptions, i.e., that the sizes of firms (numbers of employees
or numbers of individuals moving through the firms) determine other properties of the
firms such as their degree; for the labor supply assumption to be sufficient to explain the
system, transitions between firms would need to be considered random so that additional
assumptions can be avoided. Thus, a configuration model reconstruction of the labor net-
work only fixing τi per node would confirm (or reject) the labor supply assumption.

The counter-side to the labor supply assumption is that meaningful links between firms
do exist which cannot be simply a consequence of the random jumps of individuals be-
tween firms. We have already provided evidence that indeed links are meaningful in our
persistence tests above. Here we provide further evidence of the need for a labor flow net-
work with specific links by showing that the configuration network model where only the
observed τi are fixed does not match observation.

In Figs. 17, 18, and 19 we show, respectively, comparisons of the observed distributions
of ki, τi, Fij with respect to their Monte Carlo simulated versions k(s)

i , τ (s)
i , F (s)

ij . The Monte
Carlo distributions have been generated with M = 103 realizations. Distributions Pr(τi)
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Figure 15 Distributions of total flow Pr(τi) through nodes of the networks created by applying the threshold
criterionW = 2 (black ◦),W = 3 (red�),W = 4 (green ♦), andW = 5 (blue �)

Figure 16 Distributions of flow weights Pr(Fi,j) through node pairs of the networks created by applying the
threshold criterionW = 2 (black ◦),W = 3 (red�),W = 4 (green ♦), andW = 5 (blue �)

and Pr(τ (s)
i ) are virtually identical given the condition of the Monte Carlo to fix τi per node

to satisfy the labor supply assumption.g The other distributions, however, differ between
their observed and random versions. The fixed flow condition has a tendency to spread
flows evenly over nodes which leads simultaneously to nodes that tend to have larger de-
gree in simulation than in reality and links that tend to have more homogenized flows
than in the real system. The effect on weights is strong enough that it is patently easy to
see in the distributions. However, it is slightly harder to see the effect on ki, but an elo-
quent illustration of the effect can be found in the scatter plot Fig. 20. In this plot, we
see that virtually none of the degrees generated as a result of the labor flow assumption
is smaller than ki. The results systematically generated larger degree. If labor supply was
properly descriptive of the real network, the cloud of generated degrees should lie evenly
along the diagonal. It is of note that only approximately 0.12% of the nodes have a degree
in the simulated networks that is less than the actual degree of the node; most simulated
degrees are equal or larger than observed degrees. This makes clear the disparity between
the networks that emerge from the labor supply assumption versus the observed network.
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Figure 17 Distributions Pr(ki) (black ‘◦’) and Pr(k(s)i ) (red ‘�’) for M = 103 Monte Carlo realizations. The
distributions are similar but Pr(k(s)i ) systematically deviates to become more skewed as ki , k

(s)
i increase,

signaling that fixing the overall flow through a node and allowing the degree to emerge as a consequence of
this leads to larger degree than in observation

Figure 18 Distributions Pr(τi) (black ‘◦’) and Pr(τ (s)
i ) (red ‘�’) for M = 103 Monte Carlo realizations. The

distributions are virtually identical as the Monte Carlo has been set up to preserve each node’s overall flow τi

A.5 Determining ξi from the data via MLE
We determine the values of ξi by using the fact they are the rates of success of the geometric
distributions of the waiting times to be hired. Consider Si agents that have experienced
an unemployment spell from i, each with duration tm, m = 1, . . . , Si. The log-likelihood to
observe those unemployment spells is given by

log

[ Si∏

�=1

ξi(1 – ξi)t�–1

]

= Si
[
log ξi +

(〈t〉Si – 1
)

log(1 – ξi)
]
, (38)

where 〈t〉Si =
∑Si

�=1 t�/Si. The maximum likelihood estimator for ξi corresponds to

ξi = 1/〈t〉Si . (39)
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Figure 19 Distributions Pr(Fij) (black ‘©’) and Pr(F(s)ij ) (red ‘�’) for M = 103 Monte Carlo realizations. The

distributions differ widely, with Pr(F(s)ij ) considerably steeper than Pr(Fij), illustrating the way that the condition
to fix τi for each node has the effect of spreading flows evenly over the network, thereby eliminating large
flow between node pairs

Figure 20 Scatter plot of observed ki versus k
(s)
i . It is clear from this plot that the model with only a constraint

of τ (in)
i , τ (out)

i predicts the wrong degree for the nodes

Thus, to determine ξi, we calculate the average length of time agents that last worked at i
spend waiting to get their next job.

A.6 Unique solutions of the model
Equations (7) and (8) of the main text constitute a homogeneous system of linear equations
for the steady state probabilities of being employed at firm i. Repeating the equations here,
we have

�X = 0 (40)

with

�ij = Aji

hi
∑

{γ (i)
j } Pr(γ (i)

j )/|γ (i)
j |

∑
{γj �=∅}〈h〉γj Pr(γj)

– δ[i, j] (41)
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and

Xi = λir∞(i), (42)

where A is the adjacency matrix of the LFN. A homogeneous system such as the one above
always has, at least, the trivial solution X = 0. For there to be interesting, non-trivial so-
lutions, it is necessary for the matrix � to be singular, i.e., to have determinant equal to
zero [39].

In this section we show that � is indeed singular and, furthermore, that for a connected
network with adjacency matrix A, the singularity stems from matrix � having a reduced
rank of N – 1, where N is the number of network nodes (matrix � is N × N ). This means
that there is a 1-dimensional space of solutions for X which satisfies �X = 0. To obtain a
unique solution, one simply needs to make use of the normalization condition

N∑

i=1

(
r∞(i) + s∞(i)

)
= 1 (43)

together with [4] of the main text,h which makes Eq. (43) take on the form

N∑

i=1

[
1
λi

+
1

∑
{γi �=∅}〈h〉γi Pr(γi)

]

λir∞(i) = 1. (44)

Before we embark on showing the proofs, we should note the intuitive reason why �

is not of full rank, but instead has a rank reduced by one unit: since the probability flow
is conserved, it is not necessary to know the probabilities at all nodes. Clearly, due to
conservation, if we know the probabilities in N – 1 nodes, then the probability for the N th
node can be determined from Eqs. (43) or (44). Matrix � encodes the way the probabilities
flow across the system without normalizing them.

To show first that � is singular, it is sufficient to show that all of its columns add to zero,
which is equivalent to saying that at least one of its rows is linearly dependent on other
rows. This can be seen if we first sum �ij over i

N∑

i=1

�ij = –1 +
N∑

i=1

Aji

hi
∑

{γ (i)
j } Pr(γ (i)

j )/|γ (i)
j |

∑
{γj �=∅}〈h〉γj Pr(γj)

, (45)

where –1 comes from –
∑

i δ[i, j]. We can now show that the numerator and denominator
of the second term are indeed equal. To see this in detail, we organize the elements of {γ (i)

j }
by cardinality |γ (i)

j |, and rewrite the numerator as

N∑

i=1

Ajihi
∑

{γ (i)
j }

Pr
(
γ

(i)
j

)
/
∣
∣γ (i)

j
∣
∣ =

|�j|∑

c=1

1
c

∑

i

Ajihi
∑

{|γ (i)
j |=c}

Pr
(
γ

(i)
j

)
, (46)

where the last sum is over all elements of {γ (i)
j } with equal size c. Now, the sum over i

guarantees that each neighbor of j belonging to a particular γ
(i)
j is summed, along with the
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corresponding hr , where r ∈ γ
(i)
j . Therefore, the sum over i can be rewritten as

∑

i

Ajihi
∑

{|γ (i)
j |=c}

Pr
(
γ

(i)
j

)
=

∑

{|γj|=c}

(∑

r∈γj

hr

)

Pr(γj) (47)

and inserting this into the sum over c leads to

|�j|∑

c=1

1
c

∑

{|γj|=c}

(∑

r∈γj

hr

)

Pr(γj) =
∑

{γj �=∅}

∑
r∈γj

hr

|γj| Pr(γj) =
∑

{γj �=∅}
〈h〉γj Pr(γj) (48)

Therefore,

N∑

i=1

Aijhi
∑

{γ (i)
j }

Pr
(
γ

(i)
j

)
/
∣
∣γ (i)

j
∣
∣ =

∑

{γj �=∅}
〈h〉γj Pr(γj), (49)

which means that for all j, (45) is identically zero.
In order to determine the rank of matrix �, we first highlight the following relations to

the flow probabilities of the random walker. First, note that

his(j, t)
∑

{γ (i)
j }

Pr
(
γ

(i)
j

)
/
∣
∣γ (i)

j
∣
∣ = ηji, (50)

is the probability current for the transition s(j, t) → r(i, t + 1) from unemployment at node
j to employment at node i. Also,

s(j, t)
∑

γj �=∅
Pr(γj)〈h〉γj = ηj., (51)

is the entire probability flow out of j, which is to say s(j, t) → r(�j, t + 1) (i.e., the probability
of being employed at any of the neighbors of j). Due to conservation of probability, it is
clear that

ηj. =
∑

i∈�j

ηji, (52)

which we use below.
The proof that � has incomplete rank can also be written by making use of Eq. (52).

Hence

N∑

i=1

Ajihi
∑

{γ (i)
j }

Pr
(
γ

(i)
j

)
/
∣
∣γ (i)

j
∣
∣ =

∑
i∈�j

ηji

s(j, t)
=

ηj.

s(j, t)
=

∑

γj �=∅
Pr(γj)〈h〉γj . (53)

In addition to this simplification, one can also make use of this reformulation to test for
the rank of a reduced matrix �′ which is equivalent to � but missing a row and a column.
In this case, we choose to eliminate the N th row/column, which is a fully general choice
given the arbitrary nature of the labeling of nodes.
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We want to show that, for a connected graph, the rows of �′ form a linearly independent
set of vectors. Thus, defining

��i = (�i,1, . . . ,�i,N–1), [i = 1, . . . , N – 1], (54)

where each �ij, when rewritten by using Eqs. (50) and (51), is

�ij = Aji
ηji

ηj.
– δ[i, j], (55)

we can form an equation on the coefficients {μi}

�0 =
N–1∑

i=1

μi ��i (56)

and show that it can only be satisfied if all μi are zero, which would prove that the set of
vectors ��1, . . . , ��N–1 are linearly independent. Expanding the right hand side of this last
expression, we obtain

N–1∑

i=1

μi ��i =

(N–1∑

i=1

μi�i1,
N–1∑

i=1

μi�i2, . . . ,
N–1∑

i=1

μi�i,N–1

)

=
(∑N–1

i=1 μiA1iη1i

η1.
– μ1, . . . ,

∑N–1
i=1 μiAN–1,iηN–1,i

ηN–1.
– μN–1

)

. (57)

Equating this to �0, we obtain the set of equations

∑
i∈�′

j
μiηji

ηj.
– μj = 0 [∀j = 1, . . . , N – 1], (58)

where �′
j represents the graph neighbors of j excluding node N . With the aid of Eq. (52),

this set of equations can be rewritten as

∑

i∈�′
j

μiηji – μj
∑

i∈�j

ηji = 0 [∀j = 1, . . . , N – 1], (59)

where one should note that for ηj. , the set of neighbors used includes N . Explicitly sepa-
rating the (possible) flow between j and N , this becomes

∑

i∈�′
j

μiηji – μj
∑

i∈�′
j

ηji = μjAj,Nηj,N

⇒
∑

i∈�′
j

(μi – μj)ηji = μjAj,Nηj,N [∀j = 1, . . . , N – 1]. (60)

The last expression highlights the relationships that need to hold among the otherwise
independent link flows to satisfy Eq. (56). From a physical standpoint, these relations tell
us that the vectors in Eq. (54) are indeed linearly independent in contrast to the case when
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all the nodes are present (i.e., the full matrix � as opposed to the reduced matrix �′). In
matrix �, there is redundant information because knowing all the flows for N – 1 nodes
provides the information needed to determine the flows to the remaining node. But for
the row vectors of �′, that is Eq. (54), the absence of the variables accounting for the flows
going into and out of one of the nodes (in our case N ) breaks the linear dependence. We
see this in more detail next.

In order to find the {μi} that solve Eq. (56), or equivalently Eq. (60), we proceed as fol-
lows. Out of the N – 1 members of Eq. (60), consider the ones where j is not a neighbor
of N . This means that Aj,N = 0, making the right hand sides equal to 0. It also means that,
for this case, �′

j = �j because there are no connections to N . Then, the only admissible so-
lutions require that μi = μj (which we label μ for simplicity) for all i ∈ �j, since the flows
ηji �= 0. In other words

∑

i∈�j

(μi – μj)ηji =
∑

i∈�j

(μ – μ)ηji = 0 [j /∈ �N ]. (61)

Furthermore, we note that the μ chosen for one j “propagates” to other nodes since the
network is connected (has a single cluster). To understand this, let us consider two situa-
tions for i: 1) i is itself not a neighbor of N , in which case it also needs to satisfy Eq. (61),
but because this i is connected to j, also satisfying Eq. (61), then they must share the same
μ value for consistency, or 2) i is a neighbor of N (which we consider next). Before we
tackle 2), note that 1) implies all the neighbors of N (�N ) also have μj = μ because the
nodes that are at distance 2 from N all propagate μ to the nodes in �N .

When a node j is a neighbor of N , Aj,N = 1, and it is clearer to write Eq. (60) in the
form (59), and use Eq. (52) to obtain

∑

i∈�′
j

μiηji – μjηj. = 0 [j ∈ �N ]. (62)

But because all the μi above have been shown to be equal to μ, we have

μ
∑

i∈�′
j

ηji – μηj. = μ(ηj. – ηj,N ) – μηj. = –μηj,N = 0 [j ∈ �N ], (63)

which cannot be generally satisfied unless μ = 0, showing that indeed the only solution for
Eq. (56) is μi = 0,∀i = 1, . . . , N .

If all nodes are neighbors of N , Eq. (60) for all nodes is given by

∑

j∈�′
j

(μi – μj)ηji = μjηj,N (64)

but because the ηji are independent, the only way to satisfy the equation is if μi = 0 for all
i.

A.7 Robustness of results to changes in the W threshold
In the main text and in Sect. A.3, we discuss how we construct the network encoded in A.
We indicate that the edges are considered significant if multiple transitions take place be-
tween the two firms connected by the edge, and we set the minimum number of transitions
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to W = 2. This choice ensures maximum amount of data to increase statistical significance
of the results.

However, for this threshold to be acceptable, we have to check whether our results are
robust to increasing W . This is the purpose of this section and, as we indicated in the main
text, the results below support our choice to use W = 2 for our main analysis. To under-
take the robustness test, we construct plots of the quantity log10[Pr(Li|ki/λi)/ Pr(L∗

i |ki/λi)]
which are equivalent to Fig. 2 of the main text, but here we use the minimum number of
job-to-job transitions to be W = 3, 4, 5 (Fig. 21). If the key characteristics of the surface
log10[Pr(Li|ki/λi)/ Pr(L∗

i |ki/λi)] remain as W increases, it means that the results for W = 2
are not an artifact of such a choice. The key characteristic we care about is the typical
functional relation between L∗

i and ki/λi. Just as for the plot discussed in the main text,
we can see that the level sets of maximum probability are parallel to the linear “best fit”
planes. Note that in all the plots, for values of Li ∼ 102 and above together with ki/λi ∼ 102

and above, the level sets of highest probability run parallel to the linear planes of “best fit”.
Furthermore, we can observe that as W increases, the range of the level sets that deviates
from the “best fit” planes is located at the small values of L∗

i and ki/λi, which should not be
surprising since an increase in W means that firms with very few numbers of employees
cannot be well represented.

Therefore, the overall conclusion is that the match between the homogeneous model,
represented by Eqs. (15) and (16) with r∞(i) = r(v)∞ (i) and s∞(i) = s(v)∞ (i) from Eqs. (11) and
(12), respectively, are supported by our analysis of the Finnish data even as the criterion
for including a link in A is made more stringent.

A.8 Further evidence of steady-state behavior
While the balanced-flows plot presented in the main text provide evidence of steady-state
behavior in the data, the reader might be concerned about other types of fluctuations that
are not addressed by such test. For example, it might be the case that, even with balanced
flows and a constant population, the firm size cumulative distribution might change its
shape through time. Figure 22 shows the firm size cumulative distribution obtained for
yearly measurements from the Finnish data. It is clear that the distribution is robust across
time, and that the only changes are upward shifts due to the population growth through
several years. This way of showing evidence of steady-state behavior is more standard in
the study of firm dynamics.

In addition to the previous test, we also check that the effects that may be proportional
to firm size do not hide systematic behavior that we cannot see in the simple study of raw
flows. In Fig. 23, we plot the histogram of the net fractional flow for Finland. Here too,
we see a very large concentration of the histogram around a zero fractional flow. Note the
vertical logarithmic scale.

As a final test, we look at the changes in the network structure from year to year using
the time dimension of our data. Consider V (t) the set of network links that are accepted
to the overall labor flow network when the data is analyzed starting from the year t and
going to the end of the data in year tf (the data spans from to = 1988 to tf = 2007). In other
words, the links in V (t) are between node pairs that had flow at or above the threshold
W = 2 between years t and tf . Now, we calculate V (t) for all possible t (i.e. systematically
varying the starting year) which creates the series V (to), V (to + 1), . . . , V (tf – 1). From these
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Figure 21 Behavior of log10[Pr(Li|ki/λi)/ Pr(L∗i |ki/λi)] (surface S ) with respect to log10 Li and log10 ki/λi for
Finland when A is created with links where the traffic has a minimum of 3,4,5 transitions (top, middle, bottom
plots). The data is logarithmically binned as follows: Li belongs to bin b (a non-negative integer) if
Lminζ

b < Li ≤ Lminζ
b+1 with ζ > 1 (for this plot ζ = 2) and Lmin =min[{Li}] (smallest firm size in the data); ki/λi

is binned in the same way with ζ and (k/λ)min =min[{(ki/λi)}]. Blue points represent the local maximum of S
at each bin. The vertical plane P (linear “best fit”) is parametrized as (ki/λi ,CLki/λi , z) where z is a free
parameter. CL is chosen to minimize

∑
b(L

∗
b – CL(k/λ)b)

2 with the first three bins excluded because the
smallest firm size is 1. The large range within which the intersection of P and S runs parallel to the maxima of
S strongly supports Eq. (18) of the main text
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Figure 22 Annual firm size cumulative distributions for Finland between 1988 and 2008

Figure 23 Histogram of fractional net flows with respect to firm size for the Finnish dataset. The results are
concentrated around 0, supporting the steady state assumption

results, we define the Jaccard index J(t) of the links as the quotient

J(t) =
|V (t) ∩ V (t + 1)|
|V (t) ∪ V (t + 1)| , (65)

where the numerator counts how many links that are accepted into V (t) from analyzing
the data from year t to tf are also accepted into V (t + 1) using years t + 1 to tf of the data,
and the denominator counts the number of unique links that belong to either V (t) or
V (t + 1) including links belonging to both. In other words, J(t) measures how similar V (t)
and V (t + 1) are to one another; at its limit values, J(t) is equal to 1 when V (t) = V (t + 1)
and 0 when V (t) ∩ V (t + 1) = ∅, i.e., V (t) and V (t + 1) do not have any common links.
Figure 24 shows the results of this analysis. For the vast majority of years, the Jaccard
index is close to 1 and decays slightly towards the later years due to the short time range
available to test links against the acceptance criterion. The meaning of these results is that
despite the dynamics of the network, the labor flow network determined from persistent
links changes by 10% or less in any typical year. Thus our method should be stable to yearly
changes in the network over time to a level that generally exceeds 90%.
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Figure 24 Jaccard index for the link sets V(t) of the data, defined as J(t) = |V(t)∩ V(t + 1)|/|V(t)∪ V(t + 1)|. The
solid line corresponds to the points (to , J(to)), (to + 1, J(to + 1)), . . . , (tf – 1, J(tf – 1))

A.9 Firm sizes for Mexican data
In the main text, we present the analysis of firm sizes for Finland and the firm-specific
unemployment for Mexico but, because there is no data available to deal with Finnish
firm-specific unemployment, we do not present results for this case. However, there is
data for firm sizes for Mexico which, in the interest of space, we do not show in the main
text. Here, we present this analysis as a supplement to our main analysis. Because of the
method of collection of the data for Mexico, it is not possible to have results as clean as
those for Finland since the sampling has not been done uniformly on firms but rather
on individuals. However, the results for the Mexican data are not inconsistent with the
Finnish results.

As in the main text, we use the data to draw a comparison with the homogeneous model
that assumes vi = v. This model predicts that Li ∼ ki/λi, as seen from Eq. (18) of the
main article. Therefore, in Fig. 25, we present the 3-dimensional plot of log10[Pr(Li|ki/λi)/
Pr(L∗

i |ki/λi)] as a function of log10 Li and log10(ki/λi). Once again, Pr(L∗
i |ki/λi) corre-

sponds to the probability associated with the conditional mode L∗
i . The normal plane is

parametrized as indicated in the caption. The relation between Li and ki/λi is again sup-
ported by this plot, although more fluctuations appear towards firms of larger size and/or
of large degree ki. These firms are less likely to be properly sampled because, even though
they have more employees, there are fewer of them (the same complication emerges for
the plots of firm-specific unemployment, by the way).

A.10 RANSAC
The RANSAC algorithm [37] is a popular method to estimate parametric models when
data has large amounts of outliers, which is our case. The algorithm performs an OLS
estimation by randomly sampling the minimum number of data points needed to fit the
model. Then, it identifies those data points from the entire dataset that fall within a given
distance from the estimated model. These two steps are repeated until a model with a max-
imum number of inlier data points is found. Since RANSAC is non-deterministic, it yields
slightly different estimations every time it is performed. For this reason, we performed 1
million RANSAC estimations and analyzed the distribution of their estimates. We em-
ployed the default parameters of 2 minimum observations, the median absolute deviation
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Figure 25 Behavior of log10[Pr(Li|ki/λi)/ Pr(L∗i |ki/λi)] (surface S ) with respect to log10 Li and log10 ki/λi for
Mexico. The data is logarithmically binned as follows: Li belongs to bin b (a non-negative integer) if
Lminζ

b < Li ≤ Lminζ
b+1 with ζ > 1 (for this plot ζ = 2) and Lmin =min[{Li}] (smallest firm size in the data); ki/λi

is binned in the same way with ζ and (k/λ)min =min[{(ki/λi)}]. Blue points represent the local maximum of S
at each bin. The vertical plane P is parametrized as (ki/λi ,CLki/λi , z) where z is a free parameter. CL is chosen
to minimize

∑
b(L

∗
b – CL(k/λ)b)

2 with the first three bins excluded because the smallest firm size is 1. The large
range within which the intersection of P and S runs parallel to the maxima of S strongly supports Eq. (18) of
the main text

as a threshold to distinguish between inliers and outliers, and the maximum number of
trials of 100 which are standard values in the literature.

To be specific, each RANSAC run consists of two steps. First, a data subset is sampled
and the model is estimated. The sample size has to be of the minimum necessary to esti-
mate the model. Second, the data that was not sampled is compared against the predictions
of the estimated model. Given an error threshold, those data points that are not predicted
by the model are considered outliers. The points that are correctly predicted form the
consensus set. If the consensus set contains too few data points, the estimated model is
dropped and the algorithm goes back to step one. Otherwise, the model is re-estimated
with the consensus set and the error is computed. These steps are repeated until the error
term reaches a threshold. Parameter calibration used default values from the implemen-
tation in the SciKit Learn package.
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Endnotes
a In fact, beyond the temporal tests presented in this Sec., we conducted non-temporal tests not reported here.

However, these tests are inappropriate for this context because they have a tendency to suggest that flows
between small firms are significantly non-random and those for large firms are, instead, more likely to be random.
Crucially, every time that one finds a pair of nodes with a single flow event, such tests suggest strong significance,
even though this flow may never be seen again, undermining the entire meaning of a network of steady flows.

b The increase of ℘ as a function ofW may seem surprising at first. However, we must remember that ℘ depends on
Ē∗
1 andN ∗

W (and on E∗
W throughN ∗

W ), and thus asW increases, the density of the resulting set of flows among
the pairs of nodes inN ∗

W increases because the nodes selected tend to be those with more overall flows anyway.
Note that the increases of ℘ with respect toW appear more pronounced than those of ℘W , but this is because
℘W is already large and starts to have less room for increase as it begins to approach 1 (a saturation effect).

c The parameters that control the stochastic model, defined in the main text, can be systematically chosen on the
basis of well structured economic models that optimize certain economic features (see e.g. [15])

d For a connected graph, the solution is unique, but if the graph is separated into disconnected components, one can
set up calculations identical to the one here for each component and obtain a unique result for the set of all
components.

e In this manuscript, prediction does not refer to temporal forecasting. Rather, it specifically means the result of
solving our model and using it to calculate quantities that can be contrasted with their empirically measured
equivalents.

f Even more surprisingly, the estimate for α to be close to 1 is usually difficult to obtain when RANSAC is performed
without restriction. The usual procedure is to assume α has a given value and estimate β only, but in our case, this is
not necessary.

g Although most of the distribution of τ (s)
i is identical to that of τi , there are differences at the right tail. This is because

the algorithm for rewiring the flows sometimes produces networks with a small number of unmatched flows (in a
sample of M = 103 rewired networks, an average of 919.5± 30.3 flows were missed out of ≈ 1.8× 106 for each
random network). This happens when the algorithm tries to rewire a node with itself. If this happens, we simply
ignore this attempt and move onto the next match of in- and out-flows. The probability of this happening is very
small, hence leading to only a fraction of about 5× 10–4 missed flows. Large nodes are mores susceptible to this.
Around kx = 750, each node i with ki ≥ kx is likely to have at least one missed flow per realization. There are only 97
such nodes in the network of 292,614 nodes. The average number of flows missed among those nodes is less than
10 per node.

h Using [4] from the main text allows us to write s∞(i) in terms of r∞(i), and hence have the normalization condition
written purely in terms of X.
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