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Abstract
As users of mobile devices make phone calls, browse the web, or use an app, large
volumes of data are routinely generated that are a potentially useful source for
investigating human behavior in space. However, as such data are usually collected
only as a by-product, they often lack stringent experimental design and ground truth,
which makes interpretation and derivation of valid behavioral conclusions
challenging. Here, we propose an unsupervised, data-driven approach to identify
different user types based on high-resolution human movement data collected from
a smartphone navigation app, in the absence of ground truth. We capture
spatio-temporal footprints of users, characterized by meaningful summary statistics,
which are then used in an unsupervised step to identify user types. Based on an
extensive dataset of users of the mobile navigation app Sygic in Australia, we show
how the proposed methodology allows to identify two distinct groups of users:
‘travelers’, visiting different areas with distinct, salient characteristics, and ‘locals’,
covering shorter distances and revisiting many of their locations. We verify our
approach by relating user types to space use: we find that travelers and locals prefer
to visit distinct, different locations in the Australian cities Sydney and Melbourne, as
suggested independently by other studies. Although we use high-resolution GPS
data, the proposed methodology is potentially transferable to low-resolution
movement data (e.g. Call Detail Records), since we rely only on summary statistics.

Keywords: Human mobility; Clustering; PCA; User characterization; Unsupervised
learning; Movement patterns

1 Introduction
Today, a large part of data capturing human spatial mobility and behavior is being gen-
erated as byproducts of digital or online activities, for instance, during mobile phone use
(Csáji et al. [9], Ahas et al. [1]) or as a by-product of taxi dispatching systems (Gong et al.
[18]). Such data are often called exhaust data (Mayer-Schönberger and Cukier [34], Neef
[35], George et al. [16]) and more specifically exhaust human movement data (EHMD), if
they record human movement, such as in the examples given above. EMHD represent a
source of potentially useful information about human behavior in space and time. As such
EHMD are, however, not collected following stringent experimental design; they lack a
suitable experimental foundation along with ground truth and demographic parameters
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of the population from which the data originate. Without controlling for population bi-
ases, it is thus difficult to interpret the findings gained from a particular data set and draw
generalizable conclusions (Calabrese et al. [7], Zhao et al. [53]).

So, how can we reliably characterize subgroups of a moving population in the absence
of verifiable ground truth data? In this article, we present a fully data-driven approach to
identify distinct subgroups of moving populations based on EHMD collected from a mo-
bile navigation app. We find that the movement behavior of people belonging to a pop-
ulation (sub)group is indicative of the group’s space use. In other words, how individuals
move (e.g. covering large distances and areas) shows us where they move (e.g. in or be-
tween certain city districts). This separation of behavior represented in relative spatial
displacements on the one hand, from absolute spatial position on the other hand, allows
us to evaluate the identified groups and supports intuitions about the group membership
in the absence of ground truth data. To illustrate our approach, we use positioning data
from a mobile navigation app for the study area of Australia. We find two primary, highly
distinct groups of users that stand out by their behavior:

• ‘travelers’: users that move around extensively, visit different areas with distinct,
salient characteristics and do not stay long at a specific location.

• ‘local residents’: users that move in a more constrained area, e.g. a city, usually cover
only short distances and revisit many of their locations.

Moreover, we find that both groups prefer to visit distinct locations in the two most popu-
lous Australian cities, Sydney and Melbourne. Our methodology and findings can be used
to inform nuanced urban population mixing models supporting spatio-temporal diffu-
sion analysis for, e.g., epidemiological modeling, in the absence of detailed demographic
information about the moving population. Using traditional authoritative data sources on
demographics, such as census data, typically captures only the resident population. The
proposed methodology is capable of distinguishing between locals, travelers and other de-
mographic groups purely based on their movement characteristics. Assuming that many
travelers are indeed tourists, the results of the proposed methodology can be used, for
instance, to study flows and interactions between tourism precincts (Kelly [28]).

2 Related work
2.1 The value of EHMD
The recent substantial surge in human movement data being generated has led to an in-
creased exploitation of data-driven approaches enabling to explore, summarize, and even
predict the behavior captured by the movement data.

Humans use GPS devices (Pappalardo et al. [37]), log into Wi-Fi networks (Ren et al.
[43]), use their mobile phones (Ahas et al. [1]), travel on subway systems (Lathia and Capra
[29]) or take a taxi (Gong et al. [18]), all of which are activities that potentially generate
exhaust data. Exhaust human movement data in particular share the following character-
istics that make their analysis difficult:

EHMD are highly episodic: EHMD are only recorded when the user engages in a digital
activity (Calabrese et al. [8]) or if a certain set of conditions are met during the broader
data collection. Thus, EHMD often lack continuity (Phithakkitnukoon et al. [40]).

EHMD contain implicit semantics: In a trajectory, a journey from home to work is implic-
itly encoded as a sequence of spatio-temporal locations, but without the explicit semantic
information about the origin and destination that would allow to interpret the intent of
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the trip. Attaching semantic information to EHMD requires sophisticated and careful pro-
cessing (Calabrese et al. [7]).

EHMD are biased: Without controlling for population biases, it is difficult to interpret
and draw generalizable conclusions from the findings gained from a particular data set
(Zhao et al. [53]). Firstly, only specific groups may take part in digital activities (Zhang
et al. [52], Birenboim and Shoval [4]). Secondly, not all movement is recorded, e.g. GPS
navigation devices may only be used when traveling unknown routes and therefore EHMD
do not capture a representative picture of the population behavior.

EHMD lack ground truth: as the intent behind the spatio-temporal behavior must be
inferred from the data and the socio-demographic attributes of individuals are not con-
trolled for during data collection (or are often not available at all), the correct labeling and
interpretation of the data and analytical results are either intractable, or reliant on the skill
of the analyst (Calabrese et al. [7]).

Yet, in earlier studies EHMD have supported important findings about human mobility:
Humans move regularly, follow a reproducible pattern (Song et al. [46]) and return to a
few significant locations (González et al. [19]). Humans who move similarly tend to have
more intensive social connections, and share more interactions (Wang et al. [50]). Most
importantly, EMHD have the potential to cover complete populations, or at least large
samples of a population, as opposed to traditional data following an experimental design,
which usually represent only small samples, typically counting a few dozens, and at most
several hundreds or several thousands of users.

2.2 How to process EHMD
Data mining methods have the potential to efficiently discover hidden structures in data,
thus supporting the discovery of patterns and clusters, or automatically assigning labels
from a pre-defined set of classes to previously unseen data (Witten et al. [51], Han et al.
[20]).

In all cases, data pre-processing fundamentally determines the success of data mining.
Attribute reduction, via attribute subsetting and attribute construction (aka feature en-
gineering) fundamentally impact on the results of the analysis (Witten et al. [51], Han et
al. [20]). Attribute subsetting and dimensionality reduction lead to a more compact rep-
resentation of the dataset while preserving its integrity. Attribute subsetting removes at-
tributes without descriptive relevance. Dimensionality reduction recodes the data into a
lower number of dimensions, constructing new features describing a set of the original at-
tributes. Our approach, as outlined in Sect. 3, combines methods from feature extraction,
dimensionality reduction and unsupervised learning on movement data.

2.3 Data mining with movement data
Data Mining has been successfully applied to the analysis of movement data. This includes,
among others, the exploration of the dependencies between urban land use and space
use (Pan et al. [36]), the classification of moving objects and mode of transport from the
recorded characteristics of their movement, (Zheng et al. [54], Dodge et al. [13]), the un-
derstanding of the spatio-temporal and demographic patterns of human movement (Csáji
et al. [9]), and the inference of environmental pollution (i.e., noise) based on large-scale
crowd sensing (Zheng et al. [55]). A good overview of the techniques applied to feature
extraction, characterization, and mining of movement data based on trajectories is avail-
able in a series of complementary papers of (Parent et al. [39], Lin and Hsu [32], Dodge,
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Laube, & Weibel [12]), focusing on linking movement data with trajectory semantics, on
the computational aspects of trajectory processing, and on trajectory similarity, respec-
tively.

These techniques are applicable in a wide range of domains, from refined algorithms
supporting efficient carpooling (Trasarti et al. [49]), through characterization of commut-
ing patterns (Csáji et al. [9]), to the understanding of the nature of movement (Lee et al.
[30], Pappalardo et al. [38]). In this paper, we explore how characteristic parameters of a
user’s movement behavior are manifested in their space use, thus combining two distinct
perspectives on movement analysis to gain insights about the typology of the user.

2.4 Travelers and locals: characterization of users by movement behavior
Understanding the spectrum of the urban population and their space use is of fundamental
importance for the management of cities, their transportation infrastructure, the provi-
sion of adequate services and governance, and the maintenance of public safety. Travelers
and locals have distinct needs in an environment. In one of the first studies of EHMD for
urban movement behavior analysis, Girardin et al. [17] studied the digital footprints cap-
tured from image databases (Flickr) and collected from aggregated call record data (e.g.
Call Detail Records, CDR). Primarily focusing on the visualization of the users’ behavior,
they explored so called desire lines constructed from digital traces, to contrast space use
by international tourists from the USA and Italians in the city of Rome. The information
about the country of origin of the users was, crucially, available from the mobile phone
subscription. They suggest that this kind of data complements traditional surveys and
data collection about tourism behavior. While call record data are difficult to access, an-
notated Flickr photographs remain a popular, and accessible source of information about
tourist space use worldwide (Kádár and Gede [26]). These approaches, however, rely on
the ability to distinguish locals and (usually only international) tourists based on a con-
trollable piece of information. Despite their importance to the local economy, domestic
tourists and locals are often not studied or included in studies focused on tourism (Hede
and Hall [23]).

On the opposite end of the level of detail, Asakura and Iryo [2] studied highly detailed
patterns of user movement captured by GPS. Their clustering-based method enabled to
identify tourists with similar trajectories using an index of trajectory topology. Yet, this
approach was based on a controlled study of pedestrians in a highly constrained area of
interest (approx. 300 m × 300 m). Here, we capture numerous characteristics of user tra-
jectories not constrained to a specific mode of transport or area, to improve the classifi-
cation across coarser behavioral groups, rather than identifying the specific space use in a
given city, by (known) user type. As such, our contribution provides a method applicable
in situations where ground truth about the user type is not available. More detailed stud-
ies can then be targeted at the identified subpopulation of the tracked population, possibly
within a constrained spatial area to analyze detailed patterns of space-use of, for example,
travelers or locals (Edwards and Griffin [14]).

3 Methodology
This section describes the proposed methodology to infer user types from EHMD, in the
absence of ground truth. We describe the data used to illustrate our approach and intro-
duce the steps of the methodology one by one. Hence, each individual step of the proposed
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methodology is not only introduced and described, it is also directly applied to the EHMD
data set that we use as a case study.

3.1 Data
Movement data of mobile users were provided by Sygic, a mobile app service for global
navigation assistance with over 100 Million users (Sygic [47]). Users run the Sygic app
when requiring additional information relating to their travel. This includes navigation
instructions if they are not familiar with their environment and in need of assistance to
follow a route; assistance information for wayfinders locating an unknown place in an oth-
erwise familiar environment; and additional traffic information for motorists about con-
gestions, accidents, or speed cameras. It is, therefore, reasonable to assume that the Sygic
app users will include a mix of different types, such as users traveling longer distances, as
well as users in more local transportation settings, such as commuters or delivery drivers,
as different user groups are serviced by at least some of the functions provided by the Sy-
gic app. Sygic does not collect information about the users. Accordingly, public transport
users and pedestrians might use the app as well. The navigation aid is, however, clearly
targeted at drivers of motorized vehicles. We therefore argue that only an insignificant
percentage of the app users are non-motorists, and these would not change the patterns
detected.

Anonymized user data were available for this study, recorded in Australia between Jan-
uary 1 and January 31, 2016, capturing the movement of 71,207 unique users. Accordingly,
no data from the Sygic Travel app was used, as it was only acquired by Sygic in April 2016.
Australia offers an ideal test area due to its isolation and lack of land border crossings, thus
representing an encapsulated system.

The data comprise of GPS tuples with position (latitude/longitude) and timestamp. Each
tuple has a unique ID, which relates to a specific user. Tuples are recorded at a five sec-
ond interval. Data are not logged locally (i.e. they are stored on Sygic servers) and are not
recorded when the app is not actively used or is outside the range of mobile coverage.

3.2 Overview
The overview of our user type inference methodology from spatio-temporal footprints is
shown in Fig. 1. We define a spatio-temporal footprint as the aggregated movement (equal-
ing the entirety of a user’s recorded trajectories) as seen in the raw positioning data (in our
case GPS). Accordingly, it can be seen as a proxy of the user’s spatio-temporal behavior
over time. A user type then denotes a certain group of users with a similar behavior. An
example of a user type is a traveler, who visits different areas and only stays for a brief
period of time at a single location. It is important to note that user types are derived from
the data and not defined a priori.

Figure 1 summarizes the main steps of our approach, described in detail in the following
sections. After data cleaning, we compute a set of meaningful behavioral spatio-temporal
features for each user with a spatio-temporal footprint (feature extraction). Again, these
features do not relate to a specific absolute location in space and time, but rather describe
the relative movement of a user, for example the average extent of the area a user has cov-
ered in a single day. Accordingly, users roaming in two different cities may have similar
characteristics of their footprints, although they do not visit the same places. We then
perform a principal component analysis (PCA) to single out the most informative combi-



Scherrer et al. EPJ Data Science  (2018) 7:19 Page 6 of 21

Figure 1 Inferring User Types from raw movement data

nation of features (feature reduction). According to the principal components, we cluster
the users into distinct groups (clustering), as a form of unsupervised learning. We interpret
these groups of user types (cluster interpretation) and explore their behavior in the cities
of Melbourne and Sydney, Australia, thus relating the characteristics of their movement
to their spatial setting.

In this proposed methodology, the feature extraction and dimensionality reduction steps
make explicit human behavior that is implicitly hidden in exhaust human movement data,
while the unsupervised learning by clustering allows us to draw inferences and interpre-
tation without ground truth.
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3.3 Data cleaning
We cleaned the data by removing users with almost no movement (<300 m) during a single
day; users with abnormal speed values (>180 km/h); and lastly users that did not run the
app for at least 5 days out of the 31 days for which we had data. After the cleaning, 19,106
users—from originally 71,702—remained for further analysis.

3.4 Feature extraction
For each user we defined 32 features, which we derived from the spatio-temporal foot-
prints (see Table 1). A feature is a meaningful summary statistic about a specific aspect
of a user’s movement. Features are solely based on relative spatial, temporal, and spatio-
temporal characteristics and are divided into five types: Temporal Activity (6 features),
Spatial Distance (10), Spatial Area (5), Spatial Variability (4), and Spatio-Temporal Dy-
namics (7).

Temporal Activity captures how often, how regularly and for how long a user engages
with the app. We expect to distinguish active and occasional users. Spatial Area comprises
statistics about the area in which a user roams, its shape, size and extent. We expect to
distinguish users with different areal patterns, i.e. users who visit small, compact regions
and those who roam in the entire country. Spatial Distance comprises statistics about the
spatial path of a user, its stages and its distance covered. We expect to distinguish users
with mostly short trips and those with mostly long journeys. Spatial Variability comprises
features relating to the variability of a user’s location in space. We expect to distinguish
spatially stable users, roaming between a few distinct clusters, and spatially volatile users,
visiting many locations dispersed in space. Finally, Spatio-Temporal Dynamics relate to the
behavior of a user in space and time. We expect to distinguish users with continuous and
variable movement patterns, the former moving uniformly, and the latter changing their
mobility dynamics over time. The 32 features serve as a basis for dividing the individual
users into distinct groups and for inferring user types. As such, they capture characteristics
shared by a type of users, whether they are in Sydney, Melbourne, or elsewhere in the area
covered by the trajectory data (Australia, in our case).

3.5 Iterative feature reduction and clustering
The 32 computed features may not be equally important for distinguishing distinct groups
of users. Principal component analysis (PCA) (Bro and Smilde [5]) is a data reduction
technique enabling to reduce a dataset described by data vectors with n attributes to a
dataset described by k n-dimensional vectors capturing the bulk of the variation in the
dataset (James et al. [24]).

A subsequent cluster analysis of the principal components (PC) enables to identify cohe-
sive, meaningful groupings in the data. There are numerous methods for clustering mul-
tidimensional data (Kaufman and Rousseeuw [27]), yielding distinct results of different
plausibility. A suitable method should lead to cohesive, useful and interpretable clusters
(James et al. [24]). The performance of a particular clustering method depends on the
problem at hand, as well as on the expected or desired number of clusters and the explana-
tory power of the input data (here, the number of principal components used to capture
the variation in the data). These three parameters are mutually dependent and cannot be
decided on in isolation. We have therefore designed an iterative data-driven approach to
identify an optimal clustering method with an optimal number of clusters and an optimal
number of principal components to identify user types in the data.
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Table 1 The initial 32 features derived from the spatio-temporal footprint of each user

Feature name Clarification and description Feature type

1 Active days The number of days the user has used the app Temporal
Activity

2 Consecutive days The highest number of consecutive days the
user has used the app

Temporal
Activity

3 Weekdays The number of distinct weekdays the user has
used the app

Temporal
Activity

4 Period The number of days between the first and last
usage

Temporal
Activity

5 Total time The total amount of time the app has been
running [s]

Temporal
Activity

6 Variation of time stamp The standard deviation of all time stamps [s] Temporal
Activity

7 Total distance The total distance the user has covered [m] Spatial Distance
8 Maximum distance The distance between two most distant points

a user has visited [m]
Spatial Distance

9 Daily distance The average distance covered in a day [m] Spatial Distance
10 Variation of daily distance The standard deviation of the average

distances per day [m]
Spatial Distance

11 Daily centroid distance The average distance of two consecutivea daily
centroids [m] The centroid is the centroid of
the daily concave hull

Spatial Distance

12 Variation of daily centroid
distance

The standard deviation of the distance
between two consecutive daily centroids [m]

Spatial Distance

13 Distance to centroid The average distance between the daily
centroid and the overall centroid [m]

Spatial Distance

14 Variation of distance to
centroid

The standard deviation of the distance
between the daily centroid and the overall
centroid [m]

Spatial Distance

15 Average step length The average distance covered in a move
segmentb [m]

Spatial Distance

16 Standard deviation of
step length

The standard deviation of the distances
covered in move segments [m]

Spatial Distance

17 Area The total area the user has covered [m2]c Spatial Area
18 Circumference The circumference of the total area the user

has covered [m]
Spatial Area

19 Complexity The complexity of the total area
(area/circumference)

Spatial Area

20 Compactness The compactness of the total area
[4 ∗ area/π ∗maximum distance squared]

Spatial Area

21 Daily area The average area of the daily areas covered
[m2]

Spatial Area

22 Variation of daily area The standard deviation of the daily areas
covered [m2]

Spatial
Variability

23 Overlap The average percent of overlap of two
consecutive daily areas covered [%]

Spatial
Variability

24 Variation of overlap The standard deviation of the percentage of
overlap of two consecutive daily areas covered
[%]

Spatial
Variability

25 Spatial clusters The number of clusters of start, stop or end
pointsd

Spatial
Variability

26 Number of moves The absolute number of move segments Spatio-Temporal
Dynamics

27 Average speed The average speed in the move segments
[m/s]

Spatio-Temporal
Dynamics

28 Standard deviation of
speed

The standard deviation of the speed in the
move segments [m/s]

Spatio-Temporal
Dynamics

29 Number of stops The total number of stops Spatio-Temporal
Dynamics
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Table 1 (Continued)

Feature name Clarification and description Feature type

30 Total stop duration The total duration of all stops [s] Spatio-Temporal
Dynamics

31 Stop duration The average duration of a stop [s] Spatio-Temporal
Dynamics

32 Variation of stop duration The standard deviation of the stops [s] Spatio-Temporal
Dynamics

Figure 2 Rank aggregation of different clustering setups

Four clustering algorithms—DIANA, CLARA, AGNES (Kaufman and Rousseeuw [27])
and k-means (MacQueen [33]), five different sets of clusters (two to six clusters), and three
sets of principal components (three, five and six PCs)—have been tested, leading to a total
of 60 different clustering setups. The results of these setups were tested using five distinct
statistical tests per setup. The tests comprise the silhouette width (Rousseeuw [44]), the
gap statistic (Tibshirani et al. [48]) and three stability measures: average proportion of
non-overlap, average distance, as well as average distance between means (Datta and Datta
[11]). The results of the tests have been aggregated to decide on the optimal combination
of parameters.

3.6 Finding an optimal clustering approach
Rank aggregation of all test results (Pihur et al. [41]) enables to find a consensus between
the ranked lists from the five test statistics applied to the clustering setups. It generates an
overall ranking that shows the highest consistency with all individual ranked lists. When
computing the final rank aggregation of the test results, the five clustering quality mea-
sures were weighted unequally. The silhouette width and the gap statistic list were each
weighted one, whereas the three stability measures together were weighted one third each,
since they are similar in nature and are expected to yield similar results. Kendall’s tau dis-
tance was applied to measure the distances between the ranked lists.

The rank aggregation in Fig. 2 shows the ranks of all setups for the five different clus-
tering quality measures (light grey lines), the overall mean rank for each setup (dark grey
line) and the weighted mean (red line). Accordingly, the best setup (k-means with three
clusters and three PCs—green box) can be found on the left side of Fig. 2.

Statistical properties are, however, only one way of evaluating the goodness of clustering.
It is also important to produce useful and interpretable clusters (Brock et al. [6], James et al.
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[24]), which in our case would lead to meaningful user types. A final inspection step of the
two best-ranked approaches performing at par led to the selection of the second ranked
setup, a k-means clustering with 5 clusters based on 4 principal components (marked with
the orange box in Fig. 2).

3.7 Interpretation
The selected clustering approach yields five groups of users with distinct spatio-temporal
footprints. Labeling of these five groups is challenging, as it is based solely on the char-
acteristics of the clusters in the absence of ground truth. Therefore, we first describe the
clusters (see also Fig. 3) and only then label those with the most salient behavior.

– Cluster 1 (4451 unique users): Cluster members are inactive. They turn on the app
only sporadically. Thus, their recorded movement is episodic and erratic. Moreover,
users in Cluster 1 move slowly and stop frequently.

– Cluster 2 (3343 unique users): Cluster members are active, cover large distances and
visit many different locations in Australia.

– Cluster 3 (5861 unique users): Cluster members are highly active, but only roam in
relatively confined areas.

– Cluster 4 (1079 unique users): Similarly to Cluster 1, cluster members are inactive and
only use the app sporadically. However, in contrast to Cluster 1, they move fast and
stop only infrequently.

Figure 3 Some selected features for travelers (red) and locals (blue). Clusters 1, 4 and 5 (gray) are not
interpreted in detail (see text)
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– Cluster 5 (4372 unique users): Cluster members are active. On the one hand they
show a behavior that lies between that found in Cluster 2 and Cluster 3, for example
with respect to the distance travelled, the total area visited, or the compactness. On
the other hand, they behave similarly to Clusters 2 and 3, e.g. with respect to the
number of spatial clusterse (Cluster 2), and with respect to overlap (Cluster 3).

Users in Clusters 1 and 4 are only active during slightly more than the threshold of 5 days
(Fig. 3). The recorded movement is short and episodic and, therefore, difficult to interpret.
The clusters reflect how users engage with the app, rather than how they move. Users only
turn on the app in situations where they need guidance and turn it off afterwards. Clusters
2 and 3 show the most salient and contrasting behavioral pattern. We label users in Cluster
2 ‘travelers’, since they move between different locations in Australia covering large dis-
tances, and we label users in Cluster 3 ‘locals’, since they mainly roam in a restricted area
(for details see section below). Cluster 5 shows a non-salient behavior which is a mixture
of the behavior in Cluster 2 and Cluster 3.

We only label and interpret in detail the two most salient Clusters 2 and 3. We argue that
this is an important aspect of unsupervised learning: Although five clusters best capture
the variance in the spatio-temporal footprints, an analyst should not expect that all clusters
are semantically meaningful (Clusters 1 and 4) or that all clusters show salient behavior
that can be interpreted in a straight-forward way (Cluster 5). The following section gives
a detailed motivation and explanation for the labeling.

3.7.1 Travelers
Cluster 2 (3343 unique users) comprises of relatively active users, who run the app for 10
days on average. Their movement expands over a large area (1600 km2), implying a low
compactness (0.04). Users shift their daily centroid between consecutive days. This can be
concluded from a large daily centroid distance (150 km), a large distance between the daily
and the overall centroid (80 km) and a large maximum distance (480 km). Moreover, the
movement over consecutive days hardly ever overlaps (6%). The overall distance covered
(200 km) and the daily distance covered (20 km) are about average, which indicates steady
but not excessive motion. The users move at average speed, their step length is slightly
above average (480 m). They stop often (12 stops per trip) and head to numerous different
destinations, which results in many spatial clusters of significant locations (30).

We label users in Cluster 2 as travelers: they change their center of activity, visit many
different places and cover large parts of the country. Surprisingly, the total distance trav-
eled in the cluster is not particularly large. We have two possible interpretations for this
behavior:

– Users are familiar with some locations on their overall route, but not with all. Thus,
they turn on the navigation app only sporadically.

– Users visit different regions in Australia, which they reach by other means of
transport (e.g. planes). For these travels they do not need the navigation app. This
behavior could be typical for tourists (in particular, domestic tourists but also
business travelers). The large distances between major cities in Australia cause this to
be a typical tourist behavior.

3.7.2 Locals
Cluster 3 (5861 unique users) comprises users who are highly active and run the app on
median a total of 15 days (see also Fig. 3). The users have many spatial clusters (42) while
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roaming in a relatively small (median of 500 km2) and compact (0.2) area. Furthermore,
they are relatively stable with respect to their location: the daily overlap (20%) is high, the
daily centroid distance (12 km) and the distance to the centroid (15 km) are small, and so
is the maximum distance covered (60 km). Moreover, the users move slowly and in small
steps (420 m).

We argue that users in Cluster 3 are locals, potentially roaming in larger cities and poten-
tially using the app when commuting. The users stay in a relatively compact and small area
and revisit many of their locations. The distances between consecutive stops are small and
the average speed of the users is the lowest of all clusters. This is—potentially—indicative
of driving in an urban environment with dense traffic.

4 Spatio-temporal behavior of user types
In this section we show when and where the two user types—the travelers and the locals—
move in the cities of Sydney and Melbourne. First, we define significant locations (SL) for
each user. An SL is a point in space and time that is either a start or an end point of a user’s
movement, or the first point of a significant stop segment. We therefore defined a stop
segment as a series of GPS tuples with almost no movement (sum of covered distances
shorter than 10 m) in a window of at least five minutes.

We expect a significant location to have a special significance to the individual user, i.e. it
is a place that the user intends to visit rather than just passing by. However, we cannot fully
rule out the possibility that a SL is simply a point where the user turned off the navigation
app.

We now explore the distribution of significant locations in the cities of Sydney and Mel-
bourne, both in space and time for both travelers and locals as the most significant groups
of users identified.

4.1 Aggregated temporal patterns
The temporal behavior of travelers and locals in Sydney and Melbourne was analyzed for
daily and weekly temporal distribution and periodicity.

Four weeks of data (28 days) were aggregated into non-overlapping six-hour windows
(see Fig. 4). The absolute number of SL per user type was then standardized (yielding z-
scores) to obtain time series that show the same variance. This allows us to compare the
temporal trend of the two user types despite their different absolute number of SL (Fig. 4).

Table 2 shows the summary statistics for hourly and daily SL in Sydney and Mel-
bourne, for both travelers and locals. As expected, locals are on average more present
(Sydney: 1742 SL per hour/Melbourne: 1895 SL) than travelers (Sydney: 303 SL per
hour/Melbourne: 323 SL). The hourly coefficient of variation (CV) is about the same for
locals and travelers (∼0.6), whereas the daily CV is much higher for locals (0.12). In short,
local app users visit more locations than travelers. At the same time their presence varies
more from day to day.

We can further explore this pattern in Fig. 4. Travelers remain rather stable over the en-
tire week, with two peaks in the morning and afternoon and one trough during the night.
Locals have a behavior similar to that on weekdays (Monday to Friday). On weekends (Sat-
urday and Sunday), however, they show only one daily peak, which is also less pronounced.
For locals the two peaks during weekdays are of almost equal size, whereas for travelers
the afternoon peak is slightly higher. This is also reflected in the travelers’ slightly higher
daily CV (see Table 2).
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Figure 4 Standardized weekly distribution of
significant locations for travelers (red line) and locals
(blue line) in Sydney and Melbourne

Table 2 Summary statistics for hourly and daily SL in Sydney

Travelers Locals

Mean Std. dev. CV Mean Std. dev. CV

Sydney Hourly 303.06 202.30 0.67 1741.80 1035.43 0.59
Daily 3636.71 238.96 0.06 20,901.57 2607.68 0.12

Melbourne Hourly 323.35 227.23 0.70 1895.36 1089.02 0.57
Daily 3880.14 284.43 0.07 22,744.29 2792.68 0.12

4.2 Aggregated spatial patterns
In a second step, we analyze the spatial behavior of travelers and locals in Sydney and Mel-
bourne. We report their relative distribution, their location quotient, and their connectiv-
ity. We aggregated the significant locations per statistical area. We used the Statistical
Areas Level 2 (SA2) proposed by the Australian Statistical Geography Standard (ASGS).
SA2 areas are the second smallest statistical unit in Australia and represent “a community
that interacts together socially and economically” (Australian Bureau of Statistics [3]). Fur-
thermore, given that many travelers are potentially tourists, the spatial granularity of SA2
areas is roughly equal to typical ‘tourism precincts’ (Hayllar and Griffin [21]).

In the following visualizations, we highlight four special SA2s in the Greater Sydney
Area and four SA2s in the Greater Melbourne Area, respectively. For Sydney, these are the
Airport (A), the City Center (C, including “The Rocks” and the central business district)
and two of Sydney’s most famous beaches: Bondi Beach (B) and Manly Beach (M). For
Melbourne, these are the Airport (A), the City Center (C) and the most famous beach
area, St Kilda (S). These locations have also been identified as major tourism precincts in
related empirical studies (Edwards et al. [15]).

4.2.1 Relative spatial distribution
For each user type we compute the percentage of significant locations per SA2, with a
lower bound threshold of ≥12 SL/SA2 (a natural break in the distribution of SLs per area).
This yields the relative distribution of travelers and locals in the two cities (Sydney: Fig. 5;
Melbourne: Fig. 6).

As would be expected, locals are the most represented group in all areas of both cities.
In Sydney, they especially dominate in the south and west of the city center, whereas in
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Figure 5 Percentage of significant locations per SA2 in Sydney

Figure 6 Percentage of significant locations per SA2 in Melbourne

Melbourne, the areas west, north, and east of the city center are dominated by the locals.
In both cities, travelers are most present in the airports, the city centers and the beaches
(Manly and Bondi Beach in Sydney, St Kilda in Melbourne; >30%). Conversely, these are
the SA2s with relatively least locals (<45%). Locals and travelers exhibit a similar variation
over space. The standard deviation is around 5% for both groups.

4.2.2 Location quotient
In a next step we compute the location quotient (LQ) to identify SA2s with a non-standard
visiting pattern. The location quotient compares the local density of a phenomenon in an
area (one specific SA2) to the overall density of that phenomenon in a reference area (the
whole Greater Area of Sydney/Melbourne) (Reades et al. [42], Jiang et al. [25]). A user type
has a high LQ in an area where it is relatively overrepresented, and a low LQ where it is
underrepresented. For each SA2 and each user type we compute the LQ as the relative
difference between the SL observed for a particular SA2 and the expected SL, where the
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Figure 7 Location quotients for each SA2 per user type in Sydney (top) and histograms of location quotients
(bottom)

latter is the mean of all SL over the entire Greater Sydney Area or Greater Melbourne
Area, respectively.

LQ =
observed SL – expected SL

observed SL
∗ 100.

For example, if the expected SL of travelers in Greater Sydney is 30%, but 50% of all ob-
served SL in Manly Beach belong to travelers, the LQ for travelers in Manly Beach is +40%.
Hence, travelers are relatively overrepresented in Manly Beach. In other words, when a
user type is over- or underrepresented they may not be the most frequent originator of
SLs in an area, but their SL frequency deviates the most from the expected mean value.

Figure 7 (Sydney) and Fig. 8 (Melbourne) show that travelers are overrepresented in
the city centers, the airports and the areas around the beaches. Conversely, locals are un-
derrepresented in these areas. In Sydney, locals have a high LQ for parts of western and
southern Sydney, whereas in Melbourne, locals have a high LQ in the northwestern and
southeastern areas. Travelers have more areas in both cities where they are either under-
or overrepresented (maximum: 49% and 52%; minimum: –128% and –180%) compared
to locals (maximum: 24% and 26%; minimum –37% and –42%).

4.2.3 Connectivity
Finally, we compute the connectivity between individual SA2s for both travelers and locals.
Connectivity is defined here as the number of trips between an origin (Oi) and a destina-
tion (Dj), which in our case are two distinct SA2s in the Greater Sydney Area or Greater
Melbourne Area, respectively. A trip is generated by a user traveling from Oi to Dj, which
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Figure 8 Location quotients for each SA2 per user type in Melbourne (top) and histograms of location
quotients (bottom)

implies that the user has a first significant location in Oi and a consecutive one in Dj. We
compute the OD matrix for all pairs of SA2s. If the trip is not entirely within the Greater
Sydney Area or Greater Melbourne Area, respectively, it is not considered. Moreover, we
only count one distinct trip between each pair of SA2s per user. This removes the potential
bias of very active users who might, for example, commute daily between two areas.

Our results show that the two user types not only exhibit a distinct spatial and temporal
pattern, but their trips also connect different areas in and around the two cities studied.
In Fig. 9 (Sydney) and Fig. 11 (Melbourne), respectively, locals have a fine web of con-
nections between many different areas, whereas travelers have a sparser web and move
along fewer, distinct axes. These axes run along the main routes, mostly leading to the city
center. Although locals also use these axes, these are less pronounced. Note the legend in
Fig. 9 (also Fig. 10 and Fig. 11), which accounts for the different number of total trips for
travelers and locals. The histograms at the bottom of Fig. 9 and Fig. 11 confirms this pat-
tern. Travelers do not make trips between many of the SA2 pairs, hence the sparse web.
There are a few positive outliers—the main axes, which can also be found for the locals.
However, the locals’ trips are less skewed towards low values, which implies a dense web
of connections.

Figure 10 shows an enlarged view of Fig. 9 for the city center of Sydney. Along the main
axes (city center, airport, Bondi and Manly Beach) both user types have a high number of
trips. Apart from these, travelers have fewer connections and a sparser web.
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Figure 9 Top: The connectivity of SA2s in Sydney, the line width corresponds to the number of trips between
the areas. Blue color indicates the airport, the city center, Bondi Beach, and Manly Beach. Bottom: Respective
histograms of trips

Figure 10 The connectivity of SA2s in Sydney, zoomed-in to the city center. Blue color indicates the airport,
the city center, Bondi Beach, and Manly Beach

5 Conclusion
As EHMD become increasingly available, possibilities to extract meaningful information
about human behavior emerge. Yet, the lack of ground truth data limits the applicability
of EHMD to support decision making, governance and policy. Here, we presented an ap-
proach that enables to cross-reference independent features of recorded movement data
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Figure 11 Top: The connectivity of SA2s in Melbourne, the line width corresponds to the number of trips
between the areas. Blue color indicates the airport, the city center, and St Kilda. Bottom: Respective
histograms of trips

to extract information about subgroups of a moving population in the absence of ground
truth data and rigid experimental data collection protocols. We showed that location-
independent behavioral features describing individuals’ movement can be used to char-
acterize distinct groups of users with distinct, and meaningful spatio-temporal move-
ment characteristics. Using an extensive EHMD dataset tracking users in Sydney and
Melbourne, we show how users with the movement characteristics of travelers and locals
can be isolated with a large degree of confidence in an unlabeled dataset. We note that the
features have been computed for the users in the entire dataset, while the spatio-temporal
verification of the two user groups has been undertaken on a subset of the trajectories
in the two cities individually. As such, the features have been totally separated from their
spatial context (i.e. their absolute spatial position) and only relative position was used.

This study does not rely on additional semantic features, known to have high correlation
with specific (tourist) behavior (Lew and McKercher [31]), but remaining hard to collect
due to variable map data coverage. Thus, this study shows both the strengths and poten-
tial, as well as the weaknesses of using EHMD. On the one hand, mining such data has the
advantage of being able to cover very large samples, or potentially even entire populations,
rather than the typically small samples that are used in well-designed studies (Edwards et
al. [15], Shoval and Ahas [45]). On the other hand, studies such as those reported in Ed-
wards et al. [15] or Shoval and Ahas [45] will, apart from the tracking data, also include
rich demographic data as well as qualitative data collected through interviews or question-
naires. On the one hand, as shown in the preceding section, by mining EHMD it is possible
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to answer questions regarding flows between tourism precincts (Kelly [28], Hayllar et al.
[22]) and there is also the potential to provide answers to other important questions of
tourism studies, such as those relating to typical itineraries of tourists between precincts,
or potential interactions between tourists and locals (Hayllar et al. [22]). On the other
hand, since EHMD has no ground truth or demographic information attached, assump-
tions have to be made that are plausible but might still be wrong, such as the assumption
that most travelers are indeed tourists.

While the methodology can be ported to other kinds of datasets, it remains to be seen
whether a model learned from one kind of dataset can be transferred to another. The eval-
uation of the portability of features characterizing individual clusters to other geographi-
cal contexts (countries), or datasets with different sampling rates (e.g., Call Detail Record
data) needs to be undertaken. Our method may provide means to further nuance recent
efforts to predict future movements of people, as recently discussed by Cuttone et al. [10].
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