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Abstract. The relative performance of three- and four-body perturbation methods is evaluated for one-
electron transfer in proton–helium collisions in a large interval of impact energies from 10 to 11000 keV.
The four-body boundary-corrected continuum intermediate state (BCIS-4B) method and the three-body
continuum distorted wave (CDW-3B) method are used to compute the state-selective and state-summed
total cross sections for the first four principal quantum number levels of the formed atomic hydrogen.
Detailed comparisons of the obtained results with the corresponding experimental data are exploited to
establish the lowest energy limit of applicability of the perturbation theories. As is well known, the CDW-
3B method strongly departs from the experimental data below about 80 keV. On the other hand, the
BCIS-4B method is presently found to successfully describe the measured cross sections at 20–10500 keV.
Moreover, in sharp contrast to the CDW-3B method, in all the considered cases, the BCIS-4B method
systematically predicts the experimentally observed Massey peaks at the expected positions of matching
of the incident velocity and the electron orbital velocity.

1 Introduction

Rearranging ion-atom collisions at intermediate and
high impact energies received tremendous attention by
theoreticians and experimentalists alike [1–17]. One of
such frequently studied encounters is single-electron
transfer from hydrogenlike and heliumlike targets by
heavy nuclei. This problem area is of notable fundamen-
tal interest in atomic physics due to the need to gain
a fuller comprehension of few-body collisional dynam-
ics. Among the results customarily provided by this
research area, highly ranked are theoretical and mea-
sured total cross sections. The validity and overall use-
fulness of theoretical modelings for these collisions rest
upon their performance in comparisons with the asso-
ciated experimental data. Of especial relevance to all
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applications are the perturbative theories because they
are by far more manageable in numerical computations
than any of the various variants of the close-coupling
methods.

The practical importance of the electron capture
total cross section data bases is enhanced by their
extensive usage in numerous and ever lasting applica-
tions within the versatile fields of heavy ion transport
physics. These include plasma physics [18–21], ther-
monuclear fusion research [18–23], astrophysics [24,25]
and medical physics [26–35]. Herein, the most impor-
tant are estimates of energy losses of heavy ions dur-
ing their passage through matter. To this end, due to
the complexity of the traversed media, the conventional
procedures are based on various Monte Carlo simula-
tions [36,37]. Their reliability depends critically on the
accuracy of the main input data, the atomic total cross
sections for charge exchange, ionization and excitation.

There is an interplay between the capture and ion-
ization channels depending on the impact energy. For
slower projectiles, capture dominates. Ionization pre-
vails for faster projectiles. Thus, while traversing the
given medium, an initially fast projectile will lose its
energy mainly through the ionization channel. How-
ever, at the end of its range, near the Bragg peak, an
exhausted projectile will slow down so that the capture
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channel opens up and begins to yield the main contri-
bution to the heavy ion energy losses.

The line shape of the Bragg peak is sharp and nar-
row. It usually covers a small size of about 1 mm for a
typical pencil beam. The location of such a Bragg peak,
for the given medium (tissue in radiotherapy), depends
only on the type of the applied ion beam and on its
initial energy. Thus, if a wider area of the deposited
energy in the medium should be covered (as in tumor
therapy by ions), the initial energy of the beam should
be varied (tuned, modulated). Then, a sequence of the
resulting Bragg peaks produced by several ion beams
of different initial energies lines up next to each other.
Their superposition produces a relatively flat energy
deposition profile within the preassigned area (which
can be a few centimeters for tumors irradiated by ions).
Thus, the tumor should be scanned by several beams
of different energies to have a relatively flat dose profile
within the tumor borders. Such a line shape, which con-
forms with the given size of the treated tumor, is called
the spread out Bragg peak (SOBP). In this way, the
deposited dose is maximized in the tumor itself with
practically no spillover beyond the range for protons
(for heavier ions, there appears a fragmentation tail
after the SOBP). Prior to the tumor, the entry doses
from the multiple beams of varying initial energies are
added together. Thus, while the SOBP profile signifies
deposition of an optimal (maximum) dose in the tumor,
it also enhances the dose level prior to the tumor [32–
34].

The fact that ionization dominates over capture
at high energies cannot be overstated. The reason is
that the capture probability itself could be augmented
if ionization is included as an intermediate channel.
Such an anticipation is indeed materialized in com-
putations when at least some of the continuum inter-
mediate states of the active electron are taken into
account in either one or both channels. This possibil-
ity has been explored in a number of distorted wave
methods within their three- and four-body formalisms.
Among these, the present main focus is on the four-
body boundary-corrected continuum intermediate state
(BCIS-4B) method applied specifically to single charge
exchange in proton–helium collisions at intermediate
and high energies (10–11000 keV).

To contextualize and expand the framework of this
subject, also of practical interest (for atomic physics
and beyond) is to see whether there is an energy region
of the potential merit/advantage for using a four-body
method instead of some of the three-body counterparts.
In this regard, to expose the BCIS-4B method to a sig-
nificant challenge, it is essential to juxtapose it to a
theoretically well-founded theory, which is reasonably
successful relative to measurements. Such a challenger
is currently opted to be the three-body continuum dis-
torted wave (CDW-3B) method [38], which has abun-
dantly been documented as reliable at intermediate and
high energies [1,2,6,38–43].

In their three- or four-body versions, the main dif-
ference between the CDW and BCIS methods is in
the manner in which the continuum intermediate states

are included [1,2,6,38–48]. In the CDW method, these
states are incorporated both initially (entrance chan-
nel) and finally (exit channel), whereas in the BCIS
method they appear only in one channel (entrance or
exit). As emphasized, the electronic continuum inter-
mediate states are important at higher energies. Never-
theless, if over-accounted, they could impact adversely
on the capture probability at the lower part of the inter-
mediate energies.

Such an over-account may arise from the interfer-
ence effects of the two multiplied full Coulomb wave
functions in the transition amplitude of, e.g., the CDW
method. The BCIS method alleviates this over-account
since its transition amplitude contains only one full
Coulomb wave function for single charge exchange.
Moreover, in the presently used prior cross sections
from the BCIS method, the initial wave function of
the whole system is normalized at all distances, while
in the CDW method this is true only at the asymp-
totic inter-particle separations. However, the transition
amplitudes in any distorted wave theory are given by
some multi-dimensional integrals carried out over all
the inter-particle distances and not just their asymp-
totic values.

The present applications of the BCIS-4B method
exploits an analytical calculation of seven out of nine
integrals in the transition amplitude Tif . Here, we are
concerned with the state-selective and state-summed
total cross sections for single-electron capture by pro-
tons from helium targets. Capture into a number of
excited states of the newly formed hydrogen atom
H(nlm) with 1 ≤ n ≤ 4 is considered, including
all the lm sub-levels. This is a new feature, which
advantageously complements the earlier investigations
in the BCIS-4B method [49,50] that were restricted
to formation of atomic hydrogen solely in the ground
state, H(1s). Various state-resolved and state-summed
cross sections are frequently needed in versatile appli-
cations within plasma physics [18–21], thermonuclear
fusion program [18–23], astrophysics [24,25] and med-
ical physics [26–31]. This is a further motivation to
report the results of our investigations in the present
article.

Atomic units will be used throughout unless stated
otherwise.

2 Theory

For heavy scattering aggregates under study, a general
type of single-electron capture by a bare nucleus from
a heliumlike atomic target is schematized as:

ZP + (ZT; e1, e2)1s2 −→ (ZP, e1)nlm + (ZT, e2)1s, (1)

where P and T are the projectile and target nuclei
of charges ZP,T and masses MP,T � 1, respectively.
Electrons e1,2 in process (1) are in their bound states
symbolized by the parentheses. Therein, the subscripts
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Fig. 1 Geometry for process (1) with all the relevant posi-
tion vectors

indicate the usual quantum numbers nlm or the spec-
troscopic notation of the states {1s2, 1s}.

The target system (ZT; e1, e2)1s2 is in the ground
state, 1s2. The newly formed hydrogenlike system
(ZP, e1)nlm is in any fixed nlm state. The target
remainder (ZT, e2)1s is in the ground state, 1s. The sys-
tem (ZT, e2)n′l′m′ , with an arbitrary set n′l′m′ can also
be formed by one-electron capture from (ZT; e1, e2)1s2

by ZP. This is not examined here since the total con-
tribution of such a pathway to capture of electron e1

in process (1) does not surpass 5% [2,51–53]. If elec-
tron e2 is captured, indices 1 and 2 should exchange
their places. Either of the two target electrons can be
captured with the same probability. Therefore, the final
cross sections for capture of, e.g., electron e1 should be
multiplied by 2.

The following nomenclature for process (1) is adopted
(see Fig. 1). For electrons, �xk and �sk are the position
vectors of ek (k = 1, 2) relative to ZT and ZP, respec-
tively. For nuclei, �R is the vector directed from ZT to
ZP. In the entrance channel, �ri is the position vector
of ZP relative to (ZT; e1, e2)1s2 . Likewise, in the exit
channel, �rf is the position vector of (ZT, e2)1s rela-
tive to (ZP, e1)nlm. The sets {ϕi(�x1, �x2), Ei} (entrance
channel, i = 1 s2) and {ϕnlm(�s1), En; ϕ1 s(�x2), E′

1 s}
(exit channel) represent the bound states and bind-
ing energies, respectively, where En = −Z2

P/(2n2) and
E′

1s = −Z2
T/2.

Taking the target to be at rest, the incident veloc-
ity vector �v is directed along the Z-axis in an arbitrary
Galilean reference system XOYZ of coordinates. In this
case, �R can be decomposed as �R = �ρ + �Z, where �ρ

is the vectorial projection of �R in the scattering XOY-
plane, so that �ρ ·�v = 0. Vector �ρ should not be confused
with the impact parameter from the semi-classical for-
malism. We are using the purely quantum-mechanical
description of all the four particles (light and heavy) in
process (1).

For a heavy particle collision, such as process (1),
using the mass limits 1/MP,T � 1, the prior transition
amplitude Tif in the BCIS-4B method is defined by the
matrix element [49,50]:

Tif (�η ) = ZPN�
T

×
∫ ∫ ∫

d�s1d�s2d�R (ρv)2iνiϕ∗
nlm(�s1)ϕ∗

1s(�x2)

×
(

2
R

− 1
s1

− 1
s2

)
ϕi(x1, x2) eiα·s1+iβ·x1

× 1F1(iνT, 1, ivx1 + iv · x1)(vR + v · R)iξ,
(2)

�α = �η − γ+�v, �β = −�η − γ−�v,

γ± =
1
2

∓ ΔE

v2
, ΔE = Ei − (En + E′

1s), (3)

where νi = ZP(ZT−2)/v, ξ = ZP/v, and �η is the trans-
verse momentum transfer (�η · �v = 0). Here, NT is the
normalization constant of the customary full Coulomb
wave function, NT = eπνT/2Γ(1 + iνT), with the Som-
merfeld parameter νT = (ZT − 1)/v. Symbols Γ and
1F1 refer, respectively, to the standard gamma func-
tion and the Gauss confluent hypergeometric function
(also known as the Kummer function).

For computations of total cross sections, the phase
(ρv)2iνi gives no contribution [2] and it will hereafter
be dropped from Eq. (2). As such, using a power-
ful method originally devised by Belkić in Ref. [3],
seven out of nine integrals in Tif from Eq. (2) are
calculated analytically in a closed form. The remain-
ing two Feynman parametrization integrals are over
the real variables in the intervals running from 0 to 1.
Both remaining integrals are computed by the Gauss–
Legendre numerical quadratures. The final expression
for Tif (�η ) does not depend on the angle of vector �η, so
that Tif (�η ) = Tif (η ).

The calculation of Tif (�η ) is carried out using the two-
parameter target wave function ϕi(�x1, �x2) of Silverman
et al. [54] which includes about 95% of radial electronic
correlations:

ϕi(�x1, �x2) = N(e−α1x1−α2x2 + e−α2x1−α1x2), (4)

where α1 = 2.183171, α2 = 1.18853, Ei = −2.8756614,
and N is the normalization constant N = [(α1α2)−3 +
(α1/2 + α2/2)−6]−1/2/(π

√
2).

With the help of Tif (�η ) from Eq. (2), leaving out the
phase (ρv)2iνi as indicated, the total cross section Qif

for process (1) is given by:

Qif (πa2
0) =

1
2π2v2

∞∫

0

ηdη |Tif (η )|2, (5)

where a0 is the Bohr radius and πa2
0 = 8.797 ×

10−17 cm2. The integration over η is scaled to an inter-
val from 0 to 1 to take advantage of the dominant con-
tribution stemming from the forward direction of scat-
tering of heavy particles [5]. The three remaining inte-
grals in Qif , two of which are due Tif (�η), are performed
by means of the Gauss–Legendre quadrature rule. The
same optimal number of integration points for each of
the three axes is chosen to secure the accuracy within
the stabilized two decimal places in all the computed
cross sections Qif .
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Fig. 2 Total cross sections Q1s,2s,2p (cm2) as a function of impact energy E(keV) for formation of atomic hydrogen in
one-electron capture by protons from He(1s2). Theoretical methods: BCIS-4B, present results (full curve), CDW-3B [40]
(dashed curve). Experimental data for Q2s: � Hughes et al. [55], ◦ Cline et al. [56]. Experimental data for Q2p: � Hughes
et al. [55], ◦ Cline et al. [56], � Hippler et al. [57], � Hippler et al. [58]

3 Results and discussion

Here, the general process (1) is specified by considering
one-electron capture by protons from the ground state
of helium targets:

H+ + He(1s2) −→ H(nlm) + He+(1s), (6)
H+ + He(1s2) −→ H(nl) + He+(1s), (7)
H+ + He(1s2) −→ H(n) + He+(1s), (8)
H+ + He(1s2) −→ H(Σ) + He+(1s). (9)

Total cross sections for these processes are available
from many measurements performed over a long period
of time lasting for several decades [55–77]. The major-

ity of the measured cross sections in these studies are
in reasonably good mutual agreement. Such a circum-
stance represents a favorable testing ground for vari-
ous theoretical methods. These experimental data are
employed to evaluate the reliability of the BCIS-4B
method. Also included in the comparisons are the asso-
ciated results from the CDW-3B method [40].

The main part of the computations encompasses the
state-selective cross sections Qnlm for 1 ≤ n ≤ 4 includ-
ing all the lm sub-levels. From the obtained results for
Qnlm, the state-summed cross sections Qnl and Qn are
deduced:

Qnl =
l∑

m=−l

Qnlm, Qn =
n−1∑
l=0

Qnl. (10)

123



Eur. Phys. J. D (2023) 77 :81 Page 5 of 14 81

Fig. 3 Total cross sections Q3s,3p,3d (cm2) as a function of impact energy E(keV) for formation of atomic hydrogen in
one-electron capture by protons from He(1s2). Theoretical methods: BCIS-4B present results (full curve), CDW-3B [40]
(dashed curve). Experimental data for Q3s: ◦ Ford et al. [59], � Conrads et al. [60], � Brower and Pipkin [61], � Cline et
al. [56]. Experimental data for Q3p: � Ford et al. [59], � Brower and Pipkin [61], ◦ Cline et al. [62]. Experimental data for
Q3d: � Ford et al. [59], � Brower and Pipkin [61], ◦ Cline et al. [62], � Edwards and Thomas [63]

The cross sections QΣ summed over Qn (n ≤ 3) are
extracted by utilizing the Oppenheimer n−3 scaling rule
[4,78]:

QΣ = Q1 + Q2 + 2.081Q3. (11)

It was found that the Oppenheimer rule, coupled with
the higher n-levels of H(n), does not appreciably change
QΣ from the related values given by Eq. (11). We
checked that, e.g., above 4000 keV, the cross sections
QΣ = 1.202Q1, QΣ = Q1 + 1.616Q2 and QΣ =
Q1 + Q2 + 2.081Q3 are graphically indistinguishable
from each other.

The detailed results covering Qnl, Qn and QΣ for
processes (7)–(9) in the BCIS-4B and CDW-3B meth-
ods are listed in Tables 1 and 2 at proton energies
10 keV ≤ E ≤ 4000 keV. Further, in Figs. 2, 3, 4

and 5 for processes (7)–(9), the available experimen-
tal data are compared with the BCIS-4B (full curves)
and CDW-3B (dashed curves) methods. Cross sections
Q1s,2s,2p are on Fig. 2, Q3s,3p,3d on Fig. 3, Q4s,4p,4d,4f

on Fig. 4 and Q2,3,4,Σ on Fig. 5.
Regarding the spherically symmetric s-states (l =

0) in process (7), cross sections Q1s (Fig. 2a), Q2s

(Fig. 2b), Q3s (Fig. 3a) and Q4s (Fig. 4a) in the BCIS-
4B and CDW-3B methods are seen to be in excel-
lent mutual agreements above about 70 keV. Below
70 keV, there are considerable discrepancies between
these two theories. Thus, cross sections Qns in the
BCIS-4B method exhibit the well-delineated Massey
peaks. Instead of this maximum, Qns from the CDW-
3B method continues to rise with the decrease in
impact energy. Importantly, accord between the BCIS-
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Fig. 4 Total cross sections Q4s,4p,4d,4f (cm2) as a function of impact energy E(keV) for formation of atomic hydrogen in
one-electron capture by protons from He(1 s2). Theoretical methods: BCIS-4B present results (full curve), CDW-3B [40]
(dashed curve). Experimental data: ◦ Hughes et al. [64], � Doughty et al. [65], � Brower and Pipkin [61]

4B method and the experimental data on Qns above
about 50 keV is very good for Q2s (Fig. 2b) as well as
for Q3s (Fig. 3a) and nearly perfect for Q4s (Fig. 4a).

As to the spherically asymmetric states (l ≥ 1) in
process (7), the comparisons of the BCIS-4B method
with the experimental data show a high level of compat-
ibility for Q2p (Fig. 2c), Q3p (Fig. 3b) and Q3d (Fig. 3c)
at energies as low as 10 or 25 keV, depending on the
value of the angular momentum quantum number l.
The single datum at 240 keV [59] is an outlier since it is
at variance with all the other measured cross sections
for Q3d. Here too, the Massey peaks are seen in both
the BCIS-4B method and measurements, but not in the
CDW-3B method.

Moreover, the CDW-3B method for Qnp largely over-
estimates the experimental data throughout with the
exception of merely three energies 150 keV for Q2p

(Fig. 2c), 300 keV for Q3p (Fig. 3b) and 240 keV for
Q3d (Fig. 3c). Only the theoretical results are depicted
for Q4p (Fig. 4b), Q4d (Fig. 4c) and Q4f (Fig. 4d)
since the related experimental data are unavailable. The
CDW-3B method shows an increased extent of depar-
tures from the BCIS-4B method when passing from
Q2p (Fig. 2c) to Q3p,3d (Fig. 3b,c) as well as from Q4p

(Fig. 4b) to Q4d (Fig. 4c) and Q4f (Fig. 4d).
For process (8), agreement between the BCIS-4B

method and the experimental data is remarkably good
for Q2 (Fig. 5a), Q3 (Fig. 5b) and Q4 (Fig. 5c) down
to 10 or 20 keV, depending on the value of the prin-
cipal quantum number n. On panels a–c of Fig. 5, the
Massey peaks clearly emerge in the BCIS-4B method
and measurements. Therein, however, there is no hint
about this essential structure in the CDW-3B method.
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Fig. 5 Total cross sections Qn=2,3,4 and QΣ (cm2) as a function of impact energy E(keV) for formation of atomic hydrogen
in one-electron capture by protons from He(1s2). Theoretical methods: BCIS-4B present results (black full curve), CDW-3B
[40] (dashed curve), TDDFT (�, [14], blue full curve [15]), SDLA-Sic (�, [16]), BGM [11] (red full curve). Experimental
data for Qn=2: ◦ Andreev et al. [66], • Il’in et al. [67]. Experimental data for Qn=3: • Il’in et al. [67], � Lenormand
[68], � Bobashev et al. [69]. Experimental data for Qn=4: • Il’in et al. [67], � Lenormand [68], � Bobashev et al. [69].
Experimental data for QΣ: � Berkner et al. [70], � Welsh et al. [71], � Scryber [72], ◦ Williams [73], � Martin et al. [74],
� Horsdal-Pedersen et al. [75], • Shah and Gilbody [76], ♦ Shah et al. [77]

At impact energies above 70 keV, the BCIS-4B and
CDW-3B methods are highly concordant.

Finally, Fig. 5d shows the cross sections for elec-
tron capture by protons from helium into any atomic
hydrogen state H(Σ), as in process (9). Herein, above
about 80 keV, the BCIS-4B and CDW-3B methods
cohere very well with each other. Moreover, the BCIS-
4B method is in perfect agreement with all the exper-
imental data from about 20 keV to the highest energy
(10500 keV) considered in the measurement from
Ref. [70]. This is gratifying since QΣ is seen in Fig. 5d
to vary over some 11 orders of magnitude across a wide
energy range which covers 3 orders of magnitude. Note

that for QΣ, the Massey peak is present in the BCIS-4B
method, but absent from the CDW-3B method.

Also plotted in Fig. 5d are the results of the
three non-perturbative formalisms, the ‘basis genera-
tor method’ (BGM) [11] at 10–6000 keV, the ‘time-
dependent density functional theory’ (TDDFT) at 40–
500 keV [14] as well as at 10–1000 keV [15] and the
spin-dependent ‘local density approximation with the
self-interaction correction’ (SLDA-Sic) [16]. At E ≤
300 keV, the two sets of the TDDFT results from
Refs. [14,15] agree very well with each other as well as
with the BCIS-4B method. Moreover, at E ≤ 50 keV,
the TDDFT results [14,15] are also in a very good
accord with the SLDA-Sic findings [16]. However, the
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situation is notably changed at higher energies. Thus,
above 400 and 1500 keV, the BGM [11] and TDDFT
[15], respectively, deviate completely from the BCIS-4B
method and, by implication, also from the experimen-
tal data. Divergence of the BGM [11] and TDDFT [15]
at higher energies is caused by inaccurate computations
of scattering integrals that oscillate heavily due to the
presence of the electronic translation factors.

Besides the SDLA-Sic, also of interest is to con-
sider the two related spin-independent variants with
and without the self-interaction correction, the LDA-
Sic [16] and LDA [17], respectively. According to Ref.
[16], the results from the SLDA-Sic [16] lie between
those from the LDA and LDA-Sic. As has been shown
in Ref. [16], at 1–10 keV, the LDA and LDA-Sic pre-
dictions significantly differ from each other by a factor
ranging from about 4 to 100, but they merge smoothly
together at 30 and 50 keV. Among these three methods,
the SLDA-Sic was found [16] to perform best in com-
parisons with the experimental data. The implication
is that, within the LDA-based formalisms used at lower
energies (E ≤ 10 keV), it is advantageous to simulta-
neously include both the spin statistics and the self-
interaction corrections.

The physical origin of the Massey peaks for cross
sections Qnl, Qn and QΣ at energies around about
30 keV is in the resonance nature of the electron capture
process. Resonance, leading to the cross section maxi-
mum, occurs when the incident velocity v matches the
orbital velocity ve of the electron to be captured from
the target by the projectile, v > ave. Constant a > 1
is usually assessed empirically by comparing the given
theory with measurements. For electron capture by a
nucleus of charge ZP from a hydrogenlike atomic target
of nuclear charge ZT, we have ve = ZT/n.

Thus, the mentioned matching can be expressed
as E(keV/amu) > 25(aZT/n)2, or equivalently, by
E(keV/amu) > 50a2|Ej | (j = i, f). In the CDW-3B
method, the scaling factor a has been found empir-
ically to be a ≈ 1.6, according to which the low-
est validity limit of this theory is E(keV/amu) ≈
80max{|Ei|, |Ef |} [2]. However, as the analyzed cross
sections demonstrate, the lowest impact energy at
which the BCIS-4B method is valid is at E(keV/amu) ≈
20b max{|Ei|, |Ef |}, where constant b is either 1 or 1/2,
depending on the nl-state in the formed atomic hydro-
gen H(nl).

4 Conclusions

This study is on single-electron capture from heliumlike
atomic targets by heavy nuclei at intermediate and high
impact energies with the illustrations on the H+ + He
colliding system. For such rearrangement collisions, the
distorted wave formalism of scattering theory is flexi-
ble as it offers a multitude of choices of distorted waves
and distorting potentials. In this framework, a distorted
wave is conceived as the product of an unperturbed
channel state and a distorting factor. The distorting fac-

tor is usually the product of the two full Coulomb con-
tinuum wave functions, one for the active electron and
the other for the heavy nuclei. The given electronic full
Coulomb wave is placed on the nuclear charge around
which the active electron is not in a bound state.

Thus, e.g., in the exit channel, the captured electron
is bound to the scattered projectile nucleus, while the
full Coulomb wave function of the same electron cor-
responds to the field of the target nucleus. This is the
essence of a typical distorted wave methodology sig-
nifying that the active electron simultaneously resides
in two Coulomb centers, the projectile and the tar-
get nuclei. For instance, the three-body continuum dis-
torted wave (CDW-3B) method employs two electronic
full Coulomb waves, one in the entrance and the other
in the exit channels. The four-body boundary-corrected
continuum intermediate state (BCIS-4B) method uses
one electronic full Coulomb wave in either the entrance
channel (for the post form) or in the exit channel (for
the prior form of the perturbation interactions).

Both methods satisfy the correct boundary condi-
tions in the entrance and exit channels. Regarding the
Coulomb waves for the relative motion of heavy nuclei
in the BCIS-4B and CDW-3B methods, they appear in
both the entrance and exit channels, but their product
does not contribute to any total cross section computed
in the heavy mass limit. Overall, in this type of dis-
torted wave methods, capture takes place in two steps.
An electron is first ionized from the target and contin-
ues to move in the Coulomb field of the scattered pro-
jectile nucleus. Subsequently, capture of that electron
occurs from its continuum intermediate states in either
the target or projectile nucleus, depending on whether
the prior or post form of the perturbation interaction
potential is employed.

Such an intermediate ionization channel is very
important for capture processes at high energies. The
reason is that ionization dominates over capture pre-
cisely at high energies. Therefore, description of cap-
ture is expected to be substantially improved by inclu-
sion of some of the intermediate ionization channels.
This is indeed abundantly confirmed in the past liter-
ature by comparing the second-order perturbation the-
ories with measurements. On the other hand, the com-
putationally by far more demanding non-perturbative
atomic basis set expansion methods either exclude
altogether the genuine continuum intermediate states
[9] or replace them by certain quasi-continuum (dis-
cretized positive-energy pseudostates) [10,12]. These
close-coupling methods have been applied to the H+

+He one-electron transfer problem at impact energies
that did not exceed 1 MeV and, as such, unlike the
BCIS-4B methods [46], were not reported to predict the
Thomas peaks. For this particular collision, regarding,
e.g., the state-summed total cross sections QΣ, some
among the non-perturbative formalisms, notably the
BGM [11] and the TDDFT [15], have been found to
strikingly deviate from the experimental data already
above 1500 and 400 keV, respectively. By comparison,
the BCIS-4B method is presently demonstrated to agree
perfectly with the measured cross sections QΣ at the
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Table 1 Cross sections for single-electron capture from a ground-state helium atom by an energetic proton

Energy (keV/amu)

Final state 10 30 50 80 100 200

n l m

1 0 0 1.82E−16 2.03E−16 9.39E−17 3.24E−17 1.78E−17 1.99E−18
3.94E−15 6.38E−16 1.95E−16 5.43E−17 2.77E−17 2.59E−18

2 7.06E−18 1.87E−17 1.39E−17 5.95E−18 3.36E−18 3.58E-19
3.37E−16 8.45E−17 3.13E−17 9.76E−18 5.10E−18 4.69E−19

2 0 0 4.62E−18 1.30E−17 9.93E−18 4.38E−18 2.53E−18 2.90E−19
5.89E−17 5.88E−17 2.43E−17 7.75E−18 4.08E−18 3.86E−19

2 1 2.44E−18 5.73E−18 4.00E−18 1.57E−18 8.37E−19 6.80E−20
2.78E−16 2.57E−17 7.01E−18 2.00E−18 1.02E−18 8.26E−20

2 1 0 2.20E−18 4.63E−18 3.14E−18 1.23E−18 6.57E−19 5.37E−20
6.13E−17 1.66E−17 4.76E−18 1.38E−18 6.98E−19 5.44E−20

2 1 1 1.24E−19 5.50E−19 4.29E−19 1.69E−19 8.99E−20 7.13E−21
1.08E−16 4.52E−18 1.13E−18 3.13E−19 1.60E−19 1.41E−20

3 1.84E−18 5.06E−18 4.12E−18 1.86E−18 1.07E−18 1.13E−19
1.34E−16 2.95E−17 1.03E−17 3.21E−18 1.68E−18 1.54E−19

3 0 0 1.12E−18 3.29E−18 2.77E−18 1.30E−18 7.62E−19 8.83E−20
1.84E−17 1.56E−17 7.05E−18 2.34E−18 1.24E−18 1.18E−19

3 1 6.79E−19 1.67E−18 1.26E−18 5.32E−19 2.90E−19 2.41E−20
8.30E−17 8.51E−18 2.28E−18 6.78E−19 3.51E−19 2.94E−20

3 1 0 6.11E−19 1.38E−18 1.00E−18 4.21E−19 2.29E−19 1.91E−20
1.89E−17 5.38E−18 1.48E−18 4.49E−19 2.33E−19 1.89E−20

3 1 1 3.41E−20 1.45E−19 1.30E−19 5.56E−20 3.02E−20 2.48E−21
3.20E−17 1.57E−18 3.97E−19 1.15E−19 5.92E−20 5.24E−21

3 2 3.65E−20 1.07E−19 8.10E−20 3.14E−20 1.59E−20 9.51E−22
3.24E−17 5.34E−18 9.95E−19 1.91E−19 8.50E−20 5.88E−21

3 2 0 2.84E−20 7.58E−20 5.14E−20 1.95E−20 9.86E−21 5.93E−22
7.63E−18 9.06E−19 1.87E−19 4.70E−20 2.17E−20 1.22E−21

3 2 1 3.88E−21 1.38E−20 1.33E−20 5.39E−21 2.74E−21 1.62E−22
9.28E−18 1.49E−18 3.11E−19 5.49E−20 2.33E−20 1.51E−21

3 2 2 1.98E−22 1.64E−21 1.51E−21 5.89E−22 2.96E−22 1.68E−23
3.13E−18 7.29E−19 9.33E−20 1.73E−20 8.33E−21 8.20E−22

4 7.42E−19 2.07E−18 1.73E−18 8.01E−19 4.61E−19 4.89E−20
6.31E−17 1.41E−17 4.65E−18 1.43E−18 7.46E−19 6.82E−20

4 0 0 4.44E−19 1.31E−18 1.14E−18 5.49E−19 3.23E−19 3.76E−20
8.01E−18 6.33E−18 2.95E−18 9.92E−19 5.29E−19 5.05E−20

4 1 2.79E−19 6.96E−19 5.42E−19 2.34E−19 1.28E−19 1.07E−20
3.51E−17 3.76E−18 9.88E−19 2.98E−19 1.55E−19 1.31E−20

4 1 0 2.51E−19 5.80E−19 4.32E−19 1.85E−19 1.02E−19 8.54E−21
8.40E−18 2.36E−18 6.38E−19 1.95E−19 1.02E−19 8.42E−21

4 1 1 1.40E−20 5.84E−20 5.48E−20 2.42E−20 1.32E−20 1.10E−21
1.33E−17 7.01E−19 1.75E−19 5.14E−20 2.67E−20 2.36E−21

4 2 1.97E−20 5.89E−20 4.59E−20 1.83E−20 9.39E−21 5.69E−22
1.79E−17 2.67E−18 5.05E−19 1.00E−19 4.49E−20 3.07E−21

4 2 0 1.53E−20 4.26E−20 2.94E−20 1.14E−20 5.84E−21 3.56E−22
4.35E−18 4.58E−19 1.07E−19 2.71E−20 1.24E−20 6.72E−22

4 2 1 2.11E−21 7.32E−21 7.41E−21 3.12E−21 1.60E−21 9.66E−23
5.18E−18 7.18E−19 1.44E−19 2.57E−20 1.11E−20 7.58E−22

4 2 2 1.06E−22 8.54E−22 8.35E−22 3.38E−22 1.72E−22 9.92E−24
1.59E−18 3.89E−19 5.50E−20 1.08E−20 5.09E−21 4.42E−22

4 3 2.96E−22 1.20E−21 9.98E−22 3.74E−22 1.79E−22 7.69E−24
2.10E−18 1.32E−18 2.10E−19 3.73E−20 1.68E−20 1.47E−21

4 3 0 1.97E−22 7.55E−22 5.23E−22 1.86E−22 8.82E−23 3.80E−24
5.66E−19 1.93E−19 5.55E−20 8.27E−21 3.36E−21 2.76E−22

4 3 1 4.47E−23 1.78E−22 1.91E−22 7.61E−23 3.67E−23 1.59E−24
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Table 1 continued

Energy (keV/amu)

Final state 10 30 50 80 100 200

n l m

5.06E−19 2.06E−19 1.48E−20 3.99E−21 1.93E−21 1.03E−22
4 3 2 4.62E−24 3.93E−23 4.29E−23 1.64E−23 7.80E−24 3.26E−25

2.24E−19 1.65E−19 4.54E−20 7.73E−21 3.29E−21 3.01E−22
4 3 3 2.45E−25 3.99E−24 4.00E−24 1.47E−24 6.93E−25 2.78E−26

3.47E−20 1.90E−19 1.71E−20 2.79E−21 1.49E−21 1.92E−22
Σ 1.92E−16 2.32E−16 1.16E−16 4.23E−17 2.34E−17 2.58E−18

4.57E−15 7.88E−16 2.48E−16 7.09E−17 3.64E−17 3.39E−18

For a given set of quantum numbers nlm, the first row represents the BCIS-4B results, while the second represents the
CDW-3B results

Table 2 Cross sections for single-electron capture from a ground-state helium atom by an energetic proton

Energy (keV/amu)

Final state 300 500 800 1000 2000 4000

n l m

1 0 0 4.56E−19 5.87E−20 7.31E−21 2.55E−21 7.74E−23 1.84E−24
5.33E−19 6.08E−20 7.07E−21 2.43E−21 7.56E−23 1.92E−24

2 7.67E−20 9.10E−21 1.07E−21 3.63E−22 1.04E−23 2.39E−25
9.26E−20 9.93E−21 1.10E−21 3.70E−22 1.10E−23 2.71E−25

2 0 0 6.50E−20 8.11E−21 9.85E−22 3.40E−22 1.00E−23 2.35E−25
7.79E−20 8.57E−21 9.68E−22 3.29E−22 9.94E−24 2.49E−25

2 1 1.17E−20 9.90E−22 8.04E−23 2.27E−23 3.48E−25 4.12E−27
1.47E−20 1.36E−21 1.30E−22 4.12E−23 1.02E−24 2.29E−26

2 1 0 9.31E−21 7.96E−22 6.53E−23 1.85E−23 2.87E−25 3.40E−27
9.26E−21 7.93E−22 6.97E−23 2.10E−23 4.43E−25 4.36E−26

2 1 1 1.20E−21 9.67E−23 7.53E−24 2.09E−24 3.08E−26 3.57E−28
2.72E−21 2.82E−22 3.03E−23 1.01E−23 2.90E−25 3.40E−26

3 2.40E−20 2.81E−21 3.25E−22 1.10E−22 3.13E−24 7.12E−26
3.01E−20 3.20E−21 3.52E−22 1.18E−22 3.48E−24 8.60E−26

3 0 0 1.97E−20 2.45E−21 2.96E−22 1.02E−22 3.00E−24 6.97E−26
2.38E−20 2.60E−21 2.92E−22 9.90E−23 2.97E−24 7.41E−26

3 1 4.15E−21 3.51E−22 2.85E−23 8.03E−24 1.23E−25 1.45E−27
5.24E−21 4.82E−22 4.58E−23 1.44E−23 3.50E−25 7.74E−27

3 1 0 3.32E−21 2.83E−22 2.32E−23 6.56E−24 1.01E−25 1.20E−27
3.25E−21 2.79E−22 2.44E−23 7.33E−24 1.52E−25 1.49E−26

3 1 1 4.19E−22 3.40E−23 2.65E−24 7.35E−25 1.08E−26 1.26E−28
9.98E−22 1.02E−22 1.07E−23 3.53E−24 9.89E−26 1.15E−26

3 2 1.26E−22 7.24E−24 3.92E−25 9.03E−26 7.12E−28 4.21E−30
1.11E−21 1.23E−22 1.43E−23 4.94E−24 1.57E−25 4.20E−27

3 2 0 7.94E−23 4.61E−24 2.53E−25 5.85E−26 4.66E−28 2.76E−30
1.71E−22 1.17E−23 8.71E−25 2.48E−25 4.81E−27 4.79E−28

3 2 1 2.13E−23 1.20E−24 6.41E−26 1.46E−26 1.14E−28 6.69E−31
2.89E−22 3.26E−23 3.89E−24 1.35E−24 4.38E−25 5.35E−27

3 2 2 2.11E−24 1.12E−25 5.61E−27 1.25E−27 9.24E−30 5.31E−32
1.82E−22 2.28E−23 2.82E−24 9.92E−25 3.25E−26 3.99E−27

4 1.03E−20 1.20E−21 1.38E−22 4.68E−23 1.33E−24 3.01E−26
1.34E−20 1.42E−21 1.56E−22 5.25E−23 1.54E−24 3.83E−26

4 0 0 8.39E−21 1.04E−21 1.25E−22 4.32E−23 1.27E−24 2.95E−26
1.01E−20 1.11E−21 1.24E−22 4.20E−23 1.26E−24 3.13E−26

4 1 1.86E−21 1.57E−22 1.27E−23 3.59E−24 5.48E−26 6.46E−28
2.35E−21 2.15E−22 2.04E−23 6.42E−24 1.59E−25 3.40E−27
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Table 2 continued

Energy (keV/amu)

Final state 300 500 800 1000 2000 4000

n l m

4 1 0 1.48E−21 1.27E−22 1.04E−23 2.93E−24 4.52E−26 5.34E−28
1.45E−21 1.24E−22 1.09E−23 3.26E−24 6.80E−26 6.60E−27

4 1 1 1.86E−22 1.51E−23 1.18E−24 3.28E−25 4.83E−27 5.59E−29
4.49E−22 4.56E−23 4.79E−24 1.58E−24 4.56E−26 5.06E−27

4 2 7.57E−23 4.35E−24 2.36E−25 5.43E−26 4.28E−28 2.53E−30
5.64E−22 5.96E−23 6.72E−24 2.29E−24 6.73E−26 1.90E−27

4 2 0 4.77E−23 2.77E−24 1.52E−25 3.52E−26 2.81E−28 1.66E−30
9.20E−23 6.09E−24 4.38E−25 1.22E−25 2.08E−27 2.23E−28

4 2 1 1.28E−23 7.21E−25 3.85E−26 8.79E−27 6.84E−29 4.02E−31
1.44E−22 1.58E−23 1.83E−24 6.29E−25 1.89E−26 2.43E−27

4 2 2 1.26E−24 6.67E−26 3.36E−27 7.51E−28 5.55E−30 3.19E−32
9.25E−23 1.10E−23 1.31E−24 4.55E−25 1.37E−26 1.81E−27

4 3 7.86E−25 3.07E−26 1.12E−27 2.12E−28 8.69E−31 2.58E−33
3.35E−22 4.12E−23 5.19E−24 1.84E−24 6.28E−26 1.65E−27

4 3 0 3.91E−25 1.55E−26 5.75E−28 1.09E−28 4.55E−31 1.36E−33
6.28E−23 8.06E−24 1.01E−24 3.59E−25 1.22E−26 1.45E−27

4 3 1 1.62E−25 6.31E−27 2.29E−28 4.31E−29 1.75E−31 5.19E−34
1.36E−23 9.29E−25 7.70E−26 2.37E−26 6.20E−28 7.18E−29

4 3 2 3.22E−26 1.19E−27 4.15E−29 7.66E−30 2.99E−32 8.71E−35
7.24E−23 9.88E−24 1.29E−24 4.65E−25 1.62E−26 1.95E−27

4 3 3 2.64E−27 9.17E−29 3.02E−30 5.45E−31 2.03E−33 5.81E−36
4.51E−23 5.76E−24 7.16E−25 2.52E−25 8.48E−27 1.00E−27

Σ 5.83E−19 7.37E−20 9.05E−21 3.14E−21 9.43E−23 2.22E−24
6.90E−19 7.76E−20 8.92E−21 3.05E−21 9.40E−23 2.38E−24

For a given set of quantum numbers nlm, the first row represents the BCIS-4B results, while the second represents the
CDW-3B results

widest available interval of impact energies, 20–10500
MeV.

The present work deals with the three- and four-body
formalisms implemented in the CDW-3B and BCIS-
4B methods, respectively. Concerning various practical
applications, comparisons between these two methods
are important and useful. This is motivated by at least
two reasons: (i) to evaluate the effect of the Coulomb
wave distortions through two centers (in two channels)
versus one center (in one channel) and (ii) to assess the
potential advantages of the four-body over the three-
body treatments of the same electron capture problem.
For a systematic reliability assessment of the theoreti-
cal methods, these comparisons should be validated by
the existing experimental data, whenever available.

The specific illustrative example is chosen to be
single-electron capture by protons from helium targets
at 10–11000 keV. The computations include the state-
selective Qnlm and state-summed total cross sections
Qnl (sum of Qnlm over m), Qn (sum of Qnl over l)
and QΣ (sum of Qn over n). The principal quantum
number n covers the range 1 ≤ n ≤ 4 with all the sub-
levels (−l ≤ m ≤ l, 0 ≤ l ≤ n − 1). Cross sections
for formation of atomic hydrogen in any bound state,
H(Σ), are computed using the obtained values of Qn

and the accompanying Oppenheimer n−3 scaling rule
for the higher excited states.

The comprehensive cross sections from the BCIS-4B
and CDW-3B methods are given in Tables 1 and 2 and
four figures with 3 or 4 panels. Above about 70 keV,
the BCIS-4B and CDW-3B methods are in a very tight
proximity of the measured cross sections for forma-
tion of H(2s, 3s, 4s) and H(Σ). However, as to forming
H(2p, 3p, 3d), the CDW-3B method is found to largely
overestimate both the BCIS-4B method and the experi-
mental data, particularly around the Massey peaks and
at higher energies. For instance, the cross sections from
the CDW-3B method incessantly increase with decrease
in impact energy showing no indication whatsoever
about the existence of the Massey peaks. In sharp con-
trast, the BCIS-4B method always predicts the Massey
peaks at their theoretically expected and experimen-
tally observed locations (about 30 keV/amu).

Crucially, the presented results for all the inves-
tigated total cross sections systematically show that
the BCIS-4B method for formation of Q2s,2p,3s,3p,3d,4s,
Q2,3,4 and QΣ is in excellent agreement with the associ-
ated experimental data at intermediate and high ener-
gies (above about 10 or 20 keV/amu). Thus far, no mea-
surements have been reported on Q4p,4d,4f . It is remark-
able that this perturbation theory successfully covers
also the lower part of intermediate energies that are
usually viewed as the prime applicability domain of the
non-perturbative close-coupling-type methods.
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Overall, within the perturbative theories, the exp-
ounded analysis establishes a definite superiority of
the BCIS-4B method over the CDW-3B method, espe-
cially for formation of H(np, nd). Most importantly, the
BCIS-4B method is demonstrated to be a very reli-
able theory capable of accurately describing the mea-
sured cross sections for electron capture by protons
from helium targets. This method is valid in a wide
domain from the lowest edge (20 keV) of intermediate
up to very high energies, including the highest energy
10.5 MeV for which the experimental data exist. Such
features are expected to find the most useful applica-
tions in plasma physics, thermonuclear fusion, astro-
physics and medical physics.

Acknowledgements N. Milojević, I. Mančev and D. Del-
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29. Dž. Belkić, Adv. Quantum Chem. 84, 267 (2021).
https://doi.org/10.1016/bs.aiq.2021.03.001

123

https://doi.org/10.1016/0370-1573(79)90035-8
https://doi.org/10.1103/PhysRevA.35.1991
https://doi.org/10.1103/PhysRevA.36.1601
https://doi.org/10.1103/PhysRevA.37.55
https://doi.org/10.1103/PhysRevA.37.55
https://doi.org/10.1103/RevModPhys.80.249
https://doi.org/10.1103/RevModPhys.80.249
https://doi.org/10.1016/bs.aiq.2022.07.003
https://doi.org/10.1088/0953-4075/24/17/002
https://doi.org/10.1088/0953-4075/24/17/002
https://doi.org/10.1103/PhysRevA.44.4353
https://doi.org/10.1103/PhysRevA.44.4353
https://doi.org/10.1103/PhysRevA.77.012720
https://doi.org/10.1103/PhysRevA.77.012720
https://doi.org/10.1103/PhysRevA.100.062708
https://doi.org/10.1088/1402-4896/acbb41
https://doi.org/10.1007/s00214-012-1289-5
https://doi.org/10.1007/s00214-012-1289-5
https://doi.org/10.1103/PhysRevA.93.012502
https://doi.org/10.1021/acs.jpca.2c08213
https://doi.org/10.1021/acs.jpca.2c08213
https://doi.org/10.1016/J.PHYSLETA.2014.11.008
https://doi.org/10.1016/J.PHYSLETA.2014.11.008
https://doi.org/10.1088/0741-3335/36/2/001
https://doi.org/10.1063/1.3699235
https://doi.org/10.1088/0741-3335/42/7/304
https://doi.org/10.1088/0741-3335/42/7/304
https://doi.org/10.1088/0953-4075/41/2/021003
https://doi.org/10.1088/0953-4075/41/2/021003
https://doi.org/10.1088/0029-5515/49/4/045006
https://doi.org/10.1088/0029-5515/49/4/045006
https://doi.org/10.1088/0031-8949/89/11/114010
https://doi.org/10.1088/0031-8949/89/11/114010
https://doi.org/10.1126/science.1070001
https://doi.org/10.1126/science.1070001
https://doi.org/10.1051/0004-6361:20078906
https://doi.org/10.1007/s10910-010-9663-9
https://doi.org/10.1007/s10910-010-9663-9
https://doi.org/10.1016/j.zemedi.2020.07.003
https://doi.org/10.1016/j.zemedi.2020.07.003
https://doi.org/10.1016/bs.aiq.2021.03.001


Eur. Phys. J. D (2023) 77 :81 Page 13 of 14 81
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sions, Belkić, Dž., Bray, I., Kadyrov, A.S. (Eds.), World
Scientific Publishing, Singapore (2019)

34. W.P. Levin, H. Kooy, J.S. Loeffler, T.F. DeLaney, Br. J.
Cancer 91, 849 (2005). https://doi.org/10.1038/sj.bjc.
6602754

35. H. Suit, T. DeLaney, S. Goldberg, H. Paganetti, B.
Clasie, L. Gerweck, A. Niemierko, E. Hall, J. Flanz, J.
Hallman, A. Trofimov, Radiother. Oncol. 95, 3 (2010).
https://doi.org/10.1016/j.radonc.2010.01.015

36. I. Ziaeian, K. Tökési, Sci. Rep. 11, 20164 (2021).
https://doi.org/10.1038/s41598-021-99759-y

37. I. Ziaeian, K. Tökési, At. Data Nucl. Data Tables
146, 101509 (2022). https://doi.org/10.1016/j.adt.2022.
101509

38. I.M. Cheshire, Proc. Phys. Soc. 84, 89 (1964). https://
doi.org/10.1088/0370-1328/84/1/313
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52. H.K. Kim, M.S. Schöffler, S. Houamer, O. Chuluun-
baatar, J.N. Titze, L. Ph, H. Schmidt, T. Jahnke, H.
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