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Abstract. The analysis of problems related to nonlocalized population transfer between quantum levels
requires nontraditional mathematical approaches. Here we study the processes of irremovable nonadiabatic
transitions in a (N −1)-dimensional system of completely degenerate so-called dark states, taking as a base
model multilevel N-pod systems. It is shown that quantum dynamics of the dark states due to the operator
of nonadiabatic coupling can be described in terms of the Riemannian parallel transport of their geometric
counterparts in the space of control parameters. The results of mathematical modeling of nonadiabatic
effects, presented in the paper for the case of four-level systems interacting with three laser fields (tripod
systems), demonstrate full agreement between the quantum and geometric approaches. These results are
of interest for experimental and laboratory plasma research and atomic and laser physics.

1 Introduction

Adiabatic processes play an important role in natu-
ral phenomena. In physical kinetics, for instance, they
largely determine the rates of reactions involving var-
ious elementary and compound particles [1], while in
quantum optics the adiabatic control of atomic ensem-
bles driven by laser fields results in a large number of
practically important interference effects [2,3] which,
in particular, make it possible to implement some basic
quantum gates [4]. Population transfer between energy
states in quantum systems with slowly (adiabatically)
changing parameters (i.e., internuclear distances R,
intensities I of external control fields, etc.) is tradition-
ally described within the formalism of the adiabatic [5]
or in the so-called quantum optics dressed [6] states. In
this formalism, the quantum dynamics of a system is
determined by the nonadiabatic coupling operator and
critically depends on the structural features of the adi-
abatic energy diagrams.
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a e-mail: arturs.cinins@lu.lv (corresponding author)

The simplest but at the same time practically impor-
tant case corresponds to the localization of nonadia-
batic transitions in the vicinity of the quasi-intersection
points R0 (Landau–Zener points) of two energy curves
(see Fig. 1). A theory, developed for calculating the
corresponding probabilities rates by Landau and Zener
[1,7] with its further improvement by Dykhne, Davis
and Pechukas [8,9], is widely used in the scientific litera-
ture for calculating collisional and radiation elementary
processes in the approximation of two-level quantum
systems (see Fig. 1a, b). The adiabatic criterion result-
ing in low collision rate constants is controlled by large
values of the adiabatic parameter (also called Massey
parameter) ξ [1]:

ξ =
ΔU

�

δR

v
=

ΔU

�
τ � 1, (1)

where ΔU = ΔU(R0) is the adiabatic splitting of the
energy curves at the Landau–Zener point R0, v is the
internuclear velocity at that point, while τ corresponds
to the characteristic time of the atomic transition under
study. Pay attention that the temporal dynamics of any
two-level system can be effectively described in geo-
metric terms associated with the parametrization of
the corresponding density matrices [10] as a polariza-
tion vector on the so-called unit two-dimensional Bloch
sphere [10,11].
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An increase in the dimension of quantum systems
leads to significantly more complicated analytical and
numerical description of their dynamic features. It par-
ticularly concerns the analysis of mixing between per-
manently degenerate adiabatic states (see Fig. 1c) that
requires studying the entire time interval of the process
under consideration, thus significantly complicating the
theoretical methods used.

In this article, implementing the situation presented
in Fig. 1c with an N-pod system [12] and focusing on
a tripod excitation scheme (see Fig. 2a), we show that
adiabatic evolution of such systems for a given sequence
of laser excitation pulses can be interpreted as Rieman-
nian parallel transport [13,14] of a tangent state vec-
tor along the surface of an (N − 1)-dimensional Bloch
sphere. This approach presents a convenient tool for
the analysis of adiabatic quantum processes involving
high-dimensional systems.

2 Structural features of N-pod systems

We are studying the following excitation scheme, in the
literature associated with N-pod atomic configuration
[12]: A single excited quantum state |2〉 is coupled with
N components |j〉 (j = 1, 3, 4, . . . , N +1) of the ground
state via N laser electrical fields Ej(t) cos (ωjt). The

Pump (P) and Stokes (S) lasers usually [4] drive the
level population transfer, while the other N − 2 lasers
(Q, . . . , N +1) play an auxiliary or control role, depend-
ing on the task to be performed [12]. As will be shown
below, all N-pod systems, regardless of their dimension,
share the structure of adiabatic states, enabling investi-
gation of their properties from a unified position. In this
section, on the basis of differential geometry methods
we offer a universal approach to describing the nonadi-
abatic quantum dynamics of such systems.

For a given temporal sequence of laser pulses, accu-
rate analysis of our system requires finding the evolu-
tion of the state wave vector ψ(t) from the Schrödinger
equation. In the framework of rotating wave approxi-
mation (RWA) [6,11], the latter reads:

i�
d
dt

ψ = ̂HRW ψ; ̂HRW = ε |2〉 〈2| + ̂V + ̂V †; (2)

̂V (t) =
�

2

∑

j=1,3,..,N+1

Ωj(t) |j〉 〈2| ;

Ωj(t) = (2/�) 〈j| ̂V (t) |2〉 (3)

The Rabi frequencies Ωj(t) describe the lasers/atom
interaction and depend on the fields amplitudes Ej(t)
and dipole matrix elements d2j of the correspond-
ing optical transitions: Ωj(t) = Ej(t) · d2j [6]. Here

Fig. 1 Energy level diagrams for a few typical situations with localized (frames a, b) and delocalized (frame c) atomic
transitions. In the case of frames (a, b), transitions are localized in the neighborhood δR of quasi-crossing points R0, while
frame (b) corresponds to irremovable and permanent nonadiabatic transitions between degenerate sublevels with energy
εD

Fig. 2 Linkage diagram (a) and diabatic states (b) in tripod (N-pod) systems. a Three lasers P, S, Q couple the sublevels
|1〉 , |3〉 , |4〉 of the ground subspace Λg to the excited state |2〉. The parameter Δ denotes the single-photon detuning. b
Morris–Shore reduction of the excitation scheme (a) to a set of decoupled (dark) adiabatic states |D〉1,2(,...,N−1) and a single

coupled (bright) diabatic state |Br〉. Dashed lines represent the additional ground sublevels |j〉 , j > 4 for N-pod systems
with N > 3
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we assume all the lasers have the same single-photon
detuning Δ that determines the following structure of
the first diagonal atomic operator in the Hamiltonian
̂HRW of the N-pod system (2): (i) all the diabatic (or
“bare” in the terminology of quantum optics) ground
sublevels |j〉 are mutually degenerate, and with appro-
priate choice of the RWA reference energy level, their
energies are equal to zero; (ii) accordingly, the energy
ε of the upper bare state |2〉 has to be equal to the
single-photon detuning, ε = �Δ. The second and third
interaction operators ̂V (t), ̂V (t)† (2) in the Hamiltonian
̂HRW are responsible for mixing the excited and ground
atomic levels due to the laser fields with slowly vary-
ing Rabi frequencies Ωj(t) (3). Importantly, the oper-
ator ̂V (t) maps the excited state |2〉 onto the ground
sublevels |j〉 and vice versa for its conjugated operator
̂V (t)†. We further assume as well that all the laser Rabi
frequencies are real-valued.

2.1 Adiabatic states in a system of two degenerate
states

An important theoretical tool in the study of adia-
batic processes is a formalism operating with a com-
plete set of adiabatic states (or laser dressed states
[4]) ψm. These states are the full set of eigenfunctions
̂HRW (t)ψm(t) = εm(t) · ψm(t), (m = 1, . . . , N + 1) of
the Hamiltonian ̂HRW (2). Their corresponding eigen-
values spectrum εk determines the structure of the
energy level diagram. A remarkable property of the
N-pod configuration is the capability to partition the
(N + 1) adiabatic states into two universal submani-
folds ΛBr and ΛD. The first submanifold ΛBr is two-
dimensional and consists of two orthogonal wave func-
tions |e,Br〉 , |g,Br〉 arising from interaction with the
control laser fields and is therefore termed “bright.” The
second (N − 1)-dimensional submanifold ΛD is com-
prised of (N − 1) wave functions |D〉k in the ground
state, which are decoupled from the external interac-
tion (see Fig. 2b) and are called “dark” in the literature
on quantum optics [4,15].

In the case of a laser-coupled two-level system with
degenerate sublevels (Ng sublevels in the ground mani-
fold Λg and Ne sublevels (Ne < Ng) in the excited man-
ifold Λe), Morris and Shore in their work [16] have sug-
gested a universal method for finding all the adiabatic
(dressed) states (for use case in a realistic multistate
quantum system, see [17]). According to the Morris–
Shore method, the eigenfunctions

̂V †
̂V |e,Br〉i =Γ2

i · |e,Br〉i ; Γ2
i = 〈e,Br| ̂V †

̂V |e,Br〉i

(4)

of the positive Hermitian operator ̂V (t)†
̂V (t) provide

in the subspace Λe a normalized set of orthogonal Ne

“bright” (Br) diabatic (also “bare” [4]) wave vectors

|e,Br〉i (i = 1, .., Ne). Their Ne images

|g,Br〉i =
1
Γi

̂V |e,Br〉i (5)

form in the ground subspace Λg the orthogonal subset
of “bright” wave vectors |g,Br〉i, each coupled to its
pre-image |e,Br〉i by the interaction operator ̂V † (as
shown in Fig. 2b where Ne = 1 and |e,Br〉1 = |2〉).
Noteworthy, the eigenvalues Γ2

i satisfy the conventional
relation (4) [5,7].

Any vector |g,D〉 of the ground subspace that is
orthogonal to all bright vectors, i.e.,

〈g,D||g,Br〉i = 〈g,D| ̂V |e,Br〉i /Γi = 0, (6)

turns out, as seen from Eq. (5), to be decoupled from
the excited state and therefore belongs to the dark lin-
ear manifold ΛD of dimension Ng −Ne. The union of all
the orthogonal vectors |g,Br〉i with the full set |g,D〉k
(k = 1, . . . , Ng − Ne) of basis vectors from the manifold
ΛD produces in the ground subspace Λg the so-called
Morris–Shore (MS) basis. The latter, thus, consists of a
set of coupled “bright” states (BS) and entirely decou-
pled “dark” states (DS).

2.2 The Morris–Shore basis for N-pod systems

The N-pod configuration depicted in Fig. 2 corresponds
to a nondegenerate excited state (Ne = 1) with one BS
|e,Br〉1 ≡ |2〉. The bright basis in the ground subspace,
therefore, contains a single vector |g,Br〉i=1 ≡ |Br〉.
The expressions (4), (5) provide an explicit analytical
representation of that normalized BS |Br〉:

|Br〉 =
1
2

∑

j �=2

Ωj |j〉 /Γ; Γ =
1
2

√

∑

j �=2

Ω2
j (7)

in the initial basis of the ground components |j〉. Here
the interaction operator ̂V (3) is defined via Rabi fre-
quencies of the applied lasers. Note that a straightfor-
ward calculation yields

〈2| ̂HRW |Br〉 ≡ 1
2
Ωeff =

1
�

〈2| ̂V |Br〉 = Γ, (8)

i.e., the BS |Br〉 is strongly coupled to the excited state,
with the linkage parameter Ωeff playing the role of the
effective Rabi frequency (see Fig. 2b).

A condition (6) that some wave vector

|D〉 =
∑

j �=2

C
(D)
j |j〉 (9)
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belongs to the dark manifold ΛD implies orthogonality
between the vectors |D〉 (8) and |Br〉 (7), or

〈Br| ̂V |D〉 =
1
2Γ

∑

j �=2

ΩjC
(D)
j = 0. (10)

Noteworthy, upon altering the Rabi frequencies Ωj(t),
both the BS (7) and the dark manifold ΛD become
time-dependent. The N-pod Hamiltonian ̂HRW (2),
however, acts in the subspace of dark states as a zero
operator ̂HRW |D〉 = 0, i.e., all |D〉 are mutually degen-
erate adiabatic states with zero energy εD ≡ 0, regard-
less of the laser coupling strengths (see Fig. 2b). On
the other hand, the relation (8) determines ̂HRW as a
two-dimensional operator in the manifold ΛBr of bright
vectors. Diagonalization of ̂H in ΛBr results in the for-
mation of two adiabatic (dressed) states |±〉 as superpo-
sitions of vectors |Br〉 and |2〉 with repulsive adiabatic
energies [4,17]

ε±(t) =
�

2
Δ ± �

2

√

Δ2 + Ωeff(t)2, (11)

schematically shown in Fig. 1c.

3 Nonadiabatic transitions as Riemannian
parallel transport

Since the dark manifold is energetically degenerate, the
nonadiabatic coupling operator causes permanent tran-
sitions between dark states. The efficiency of nonadia-
batic mixing does not depend on the timescales of the
atomic system evolution [4], and as noted in the physi-
cal literature [18], the most relevant tool for describing
nonadiabatic quantum processes in the subspace of dark
states is the theory of gauge (or Yang–Mills) fields [19].
On the other hand, there is an interpretation of the
Yang–Mills field as a curvature in the so-called charge
space, which for N-pod systems corresponds to the dark
manifold (see paragraph 2 of chapter 1 in handbook
[19]). Deriving from this interpretation, we provide an
approach for solving problems of nonadiabatic dynam-
ics in terms of differential and Riemannian geometries
[13,14]; namely, we interpret the effect of nonadiabatic
coupling as a result of the Riemannian parallel trans-
port of dark manifold vectors.

3.1 Geometric analogs of the Morris–Shore basis

Assuming all the Rabi frequencies are real, it is pos-
sible to associate the set of Ωj that define the bright
wave vector |Br〉 (7) with components of a Rabi vector
R = (ΩP ,ΩS ,ΩQ,Ω5, . . . ,ΩN+1) in Euclidean parame-
ter space �N :

R = ΩP eP + ΩSeS + ΩQeQ

Fig. 3 Geometric representations of bright and dark quan-
tum states of the tripod system (N = 1) as a unit vector er

(a counterpart of |Br〉) and a tangent d-vector Dϕ (a geo-
metrical counterpart of |D〉) on the Bloch sphere. For con-
venience, all normalized to unity tangent vectors are shown
reduced in length, and the bottom half of the sphere is not
shown

+
∑

j=5,...,N+1

Ωjej ; er =
R

|R| . (12)

As the Rabi frequencies change, the Rabi vector R(t)
(12) moves along some curve �R in the above parameter
space �N . At the same time, the corresponding counter-
part er(t) (12) of the unit bright vector |Br〉 (7) draws
a Rabi path �1 = ̂ΞR→1�R, which is the radial projec-
tion of the curve �R, on the (N − 1)-dimensional unit
sphere (a generalization of the Bloch sphere) embedded
in the parameter space �N (see Fig. 3).

We can also associate the probability amplitudes Cj

of a dark state vector |D〉 (9) with the components of
an Euclidean vector D ∼ (CP , CS , CQ, . . . , CN ) in �N ,

D = CP eP + CSeS + CQeQ +
∑

j=5,...,N+1

Cjej .

(13)

In this case, the scalar product of wave vectors turns
into the conventional dot product of Euclidean vectors:
〈Br||D〉 = (RD). Since the subspace of dark states
is orthogonal to the bright state at time t, all the dark
state geometrical counterparts (d-vectors) (13) must lie
in a plane ΠD(t) tangent to the unit sphere at the point
er(t).

3.2 Parallel transport of dark vectors

In what follows, we consider adiabatic processes meet-
ing the Massey criterion (1) that prevents population
transfer between dark and bright states. Thus, the state
vector ψ(t) (2), if initially prepared as a dark state,

123



Eur. Phys. J. D (2023) 77 :87 Page 5 of 9 87

must always remain in the dark subspace. In accordance
with [18,19], the temporal dynamics of dark states due
to the nonadiabatic coupling operator is reduced to a
group UN−1 of unitary transformations in the mani-
fold ΛD. In geometrical terms, these dynamics equal
the parallel transport of the tangent d-vectors along
the Rabi path �1 = ̂ΞR→1�R.

As applied to tripod systems, Fig. 3 illustrates the
Riemannian parallel transport [14] of the initial tangent
d-vector D0 along the circular path Υλ lying on the
two-dimensional Bloch sphere. The circle Υλ with lati-
tude λ is situated in a plane parallel to the coordinate
plane (Q,S). The momentary tangent plane ΠD(ϕ) is
spanned by the two natural basis vectors eϕ(ϕ),eθ(ϕ),
related to the azimuthal ϕ and polar θ coordinate
angles, respectively. The angle ϕ plays the role of a
time variable t. An explicit relationship between t and
ϕ is provided in the next section.

Our aim is to obtain an explicit analytical expres-
sion for the transported d-vector D(ϕ), provided its
initial value D0 at the angle ϕ = 0. Three components
CQ,S,P (ϕ) of D(ϕ) correspond to the state vector ψ(ϕ)

ψ(ϕ) = CQ |4〉 + CS |3〉 + CP |1〉 ⇔ D(ϕ)
= CQeQ + CSeS + CP eP , (14)

which should be the solution of the Schrödinger equa-
tion (2). In the next section, we compare the dynam-
ics of the wave vector ψ obtained using the geometrical
approach (see Eqs. (19)–(21)) with the results of numer-
ical simulations of the quantum equation (2).

In the case of a tripod configuration with two-
dimensional tangent plane, a parallel transport of the d-
vector D along the circle Υλ results in rotation of D(ϕ)
by angle βϕ in the tangent plane ΠD(ϕ) (see Fig. 3),
i.e.,

D(ϕ) = cos βϕ · eθ(ϕ) + sinβϕ · eϕ(ϕ) (15)

Because of the obvious rotation symmetry of the prob-
lem under study, the corresponding accumulated angle
βϕ, shown in Fig. 3, has a linear dependence on the
“parametric time” ϕ:

βϕ = ς · ϕ; ς = sin λ (16)

The value of the coefficient ς can be found from the
well-known Riemann theorem [13,14], which states that
after a full revolution along the circle Υλ the rotation
angle β2π is equal to the area of the surface subtended
on the Bloch sphere by the circle: β2π = 2π sin λ.

In accordance with Fig. 3, the basis vectors in plane
ΠD(ϕ) read

eϕ(ϕ) = − sin ϕ · eQ + cos ϕ · eS ; (17)
eθ(ϕ) = cos λ · eP − sin λ · (cos ϕ · eQ + sin ϕ · eS)

(18)

A combination of Eqs. (14)-(18) yields the following
evolution of the dark state ψ(ϕ) (14) upon changing

the parametric time ϕ:

C4 = CQ = − cos βϕ sin λ cos ϕ − sin βϕ sin ϕ (19)
C3 = CS = − cos βϕ sin λ sin ϕ + sin βϕ cos ϕ (20)
C1 = CP = cos βϕ cos λ (21)

At the same time, the vector er(t) (12)

er(ϕ) = cos λ cos ϕ · eQ + cos λ sin ϕ · eS + sin λ · eP

(22)

determines the required parametric time dependence of
periodic laser pulses Ωj :

ΩQ

Ωeff
= cos λ cos ϕ;

ΩS

Ωeff
= cos λ sin ϕ;

ΩP

Ωeff
= sin λ.

(23)

Here, in accordance with Eqs. (7), (8) and Fig. 2, the
parameter Ωeff is the effective Rabi frequency.

4 Numerical experiment for tripod system
and discussion

Under a real experimental situation, one should deal
with its specific timescale. In the analytical representa-
tions of the Rabi frequencies (23) and the corresponding
geometric evolution (19)-(21) of the dark state vector,
it is convenient to set a linear relationship between the
dimensionless time parameter ϕ and the actual time t,
namely

ϕ = 2πt/T ; ξ =
1
2
TΩeff , (24)

where T is the period of laser pulses, while ξ (with refer-
ence to definition (1), Eq. (11), and Fig. 1) is the Massey
parameter. In the following subsections, we consider the
single-photon detuning Δ to be zero.

4.1 Collation of numerical simulation with the
geometric approach

In this subsection, we compare the geometrical descrip-
tion (19)–(21) of the state vector ψ (14) evolution in
a tripod system with explicit numerical solutions of
the Schrödinger equation (2) for several typical exam-
ples of trigonometrical control laser pulses (23). It
will be shown, in particular, how perfect adiabatic-
ity improves the fidelity of our geometric approach as
the Massey parameter (24) increases. Noteworthy, our
model problems are parameterized with although geo-
metrical, but somewhat formal parameter λ. The rota-
tion angle β2π = 2π · sin λ (16) of the dark state vector
Dϕ during a full cycle of laser pulses (see Fig. 3) has a
more physical interpretation.
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Fig. 4 Sequence of laser Rabi frequencies ΩP,S,Q(t) (frame
a) and the corresponding numerical solutions (bold lines) of
Schrödinger equation (2) for probability amplitudes C1,3,4

(frame b) for the ground subspace Λg and iC2 (frame c)
for the excited state |2〉. The case of β2π = π/2 and the
Massey parameter (24) ξ=10 is considered. Highlighted
areas in frame (b) represent deviation from the geometri-
cally obtained analytical solutions (19–21), and the dashed
line in frame (c) represents the analytical solution for iC2

(28)

The data on probability amplitudes C1,3,4 and iC2

shown in Figs. 4, 5, 6 and marked with bold lines
were obtained numerically (solutions to the Schrödinger
equation (2)). The corresponding geometric solutions
are shown with thin or dashed lines. Where distinguish-
able, the deviations of numerical data from the analyti-
cal results are highlighted with rectangular mesh of thin
lines (see frame (b) in Fig. 4).

4.2 Discussion

For the model N-pod system, we have identified a map-
ping of the singular bright (Br) and (N −1)-fold degen-
erate dark dressed states to the Euclidean parameter
space of N Rabi frequencies Ωj . The Br state is mapped
onto the unit sphere (Bloch sphere) of the paramet-
ric space, while the geometric counterparts of the dark
states lie on the (N − 1)-dimensional plane tangent to
the Bloch sphere at the point counterpart of the Br
state (see Fig. 3). A complete cycle of pulsed laser exci-
tations on the system results in the Br state drawing a
closed loop �1 (circle Υλ in Fig. 3) on the Bloch sphere.
The quantum dynamics of the subsystem of dark states
translates into the procedure of Riemannian parallel
transport of tangent planes along the �1 loop.

Fig. 5 Same situation as in Fig. 4 for β2π = π/2 but
with increased Massey parameter value ξ=40. The larger ξ-
value corresponds to improved adiabaticity, and the numer-
ical solutions very closely follow the geometrical solutions
(19–21). It is shown the sequence of laser Rabi frequen-
cies ΩP,S,Q(t) (frame a) and the corresponding geomet-
rical (dashed lines) or numerical (bold lines) solutions of
Schrödinger equation (2) for probability amplitudes C1,3,4

(frame b) related to the ground subspace Λg, along with
iC2 one (frame c) for the excited state |2〉

Fig. 6 Same situation as in Fig. 4 but with β2π = 3π/2
and increased Massey parameter value ξ=40. It is shown the
sequence of laser Rabi frequencies ΩP,S,Q(t) (frame a) and
the corresponding geometrical (dashed lines) or numerical
(bold lines) solutions of Schrödinger equation (2) for prob-
ability amplitudes C1,3,4 (frame b) related to the ground
subspace Λg, along with iC2 one (frame c) for the excited
state |2〉
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Our numerical data obtained for the case of tripod
system and presented in Fig. 4 show some discrepancy
between the numerical and analytical results in the case
of a relatively small value of the Massey parameter
ξ = 10. This discrepancy is caused by the nonadiabatic
coupling between dark and bright states and the conse-
quential excitation of the upper state |2〉, evident from
the Rabi oscillations in iC2 (see panel (c) in Figs. 4, 5,
6). The nonadiabatic effects are reduced by increasing
the value of Massey parameter, blocking the population
outflow from the dark subspace into the bright states.
This in turn improves the accuracy of the geometric
results, which is clearly shown in Figs. 5 and 6, where
the Massey parameter value is set to ξ = 40. One of the
advantages of our analytical description (19)–(21) for
the state vector (14) is connected with the possibility
of giving accurate enough assessment for the nonadi-
abatic effects in the limit of large Massey parameter
ξ, when the above-mentioned outflow does not have a
noticeable effect on the dynamics of the dark state vec-
tor (14).

We start by finding the geometrical counterpart for
the matrix element

MDB ≡ i� 〈ψ(ϕ)| ∂

∂t
|Br(ϕ)〉

= i�
dϕ

dt
〈ψ(ϕ)| ∂

∂ϕ
|Br(ϕ)〉 (25)

of the nonadiabatic coupling operator [5,18] between
the dark |ψ〉 and bright states |Br〉. As it follows from
the notation in Fig. 2, upon parallel transport along the
circle Υλ, one has

∂

∂ϕ
|Br(ϕ)〉 =

∂

∂ϕ
er(ϕ) = rλeϕ; (Dϕeϕ) = sin βϕ;

(26)

therefore, the matrix element can be expressed as

MDB = i�rλ
2π

T
sin βϕ; rλ = cos λ. (27)

Here βϕ is the current rotation angle (16), rλ is the
radius of the circle Υλ, and the dependence ϕ(t) is given
by Eq. (24).

Importantly, in the first adiabatic approximation, the
manifold of dark states shown in Fig. 2b can be replaced
by a single state vector ψ(t). The corresponding link-
age diagram becomes identical to the simple Λ-scheme
with |Br〉 as an intermediate state coupled to |2〉 and
ψ(t) levels by Ωeff and 2MDB/� Rabi frequencies con-
sequently. The Massey criterion of adiabaticity ξ � 1
allows to apply the procedure of adiabatic elimina-
tion [11,20] for that Λ-scheme resulting in the follow-
ing dynamics of probability amplitudes for the strongly
coupled pair:

C2(ϕ) ∼= −2MDB

�Ωeff
= −i

2π

ξ
cos λ · sin (sinλ · ϕ);

CBr
∼= 0. (28)

In other words, in the limit of strong adiabaticity, the
amplitude C2 instantly follows a relatively slow change
in the corresponding nonadiabaticity matrix element
MDB (27) and turns out to be weakly subject to fast
Rabi oscillations of frequency Ωeff between amplitudes
of bright |Br〉 and excited |2〉 states (see Fig. 2b).
Frames (c) in Figs. 5 and 6 illustrate well the fidelity of
our theoretical findings for iC2.

5 Conclusion

In the physics of inelastic collision processes, the
Landau–Zener theory is the main theoretical tool for
assessing the probabilities of various localized transi-
tions between quantum states. Significant delocaliza-
tion of the quantum transitions due to, for example,
the energy degeneration of the levels in question leads
to a noticeable complication of the mathematical appa-
ratus necessary for the situation analysis. This article
proposes a novel purely geometric approach to studying
nonadiabatic dynamics in multilevel systems based on
the Riemannian concept of parallel transport of tangent
vectors on curvilinear surfaces.

Adequacy of the geometric approach is demonstrated
on a model N-pod atomic system (see Fig. 2a), which,
regardless of the number of control lasers, has a univer-
sal structure of bright and dark adiabatic states (see
Fig. 2b). The N laser Rabi frequencies Ωj play the
role of control parameters. Their instantaneous values
determine the composition of the adiabatic states, and
changing the Rabi frequencies triggers nonadiabatic
transitions, which is the primary mechanism driving
dynamics of the (N −1)-fold degenerate dark manifold.
We have demonstrated a natural mapping of quantum
wave vectors to the N-dimensional Euclidean parameter
space {Ωj}, where quantum dynamics of the dark sub-
space translates into Riemannian parallel transport of a
tangent plane along a path �1 on the surface of the unit
sphere (Bloch sphere). Comparison between quantum
(solutions of the Schrödinger equation) and geometric
(parallel transport) calculations of the state vector ψ(t)
dynamics in a tripod (N=3) system has revealed the
absolute identity of the solutions, provided the situa-
tion meets the adiabaticity criterion of large Massey
parameter values ξ (1).

In addition to academic interest, the N-pod sys-
tems have attracted attention as promising physical
objects for quantum information processing [4,12] and
for solving other modern physical problems. Tripod sys-
tems (N = 3) are already being widely used in quan-
tum memory formation [21], quantum computing with
one qubit [4], quantum simulations of gauge potentials
[22,23], etc. In [24], the geometric approach described
here was used to construct highly efficient rotation
quantum gates based on a tripod system. In higher-
dimensional (N > 3) systems, it enables research on
multidimensional generalizations of the qubit (so-called
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qudit), which was demonstrated in [12] for example of
constructing generalized quantum Householder reflec-
tions of dimension (N−1). We believe that the approach
of merging the adiabatic formalism with conventional
group theory methods will promote development of
novel, efficient algorithms for emerging quantum tech-
nologies.
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