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Abstract. In this paper, the determination of composition of certified samples of austenitic steel alloys
was done by combining laser-induced breakdown spectroscopy (LIBS) technique with machine learning
algorithms. Isolation forest algorithm was applied to the MinMax scaled LIBS spectra in the spectral
range form (200-500) nm to detect and eject possible outliers. Training dataset was then fitted with random
forest regressor (RFR) and Gini importance criterion was used to identify the features that contribute the
most to the final prediction. Optimal model parameters were found by using grid search cross-validation
algorithm. This was followed by final RFR training. Results of RFR model were compared to the results
obtained from linear regression with £2 norm and deep neural network (DNN) by means of R? metrics
and root-mean-square error. DNN showed the best predictive power, whereas random forest had good
prediction results in the case of Cr, Mn and Ni, but in the case of Mo, it showed limited performance.

1 Introduction

The structural materials of fusion reactors are sub-
jected to thermal, mechanical, chemical, and radia-
tion loads. Due to their excellent manufacturability,
good mechanical properties, welding ability, and cor-
rosion resistance, austenitic stainless steels were chosen
as structural reference material for ITER [1]. In addi-
tion, entire vacuum vessel of LHD stellarator in Japan
is made of austenitic steel [2], and to diagnose the com-
position of the deposits on the fusion reactor’s first
wall, test targets made of austenitic steel (AISI 316 L)
were settled at ten positions on the first wall [3]. Laser-
induced breakdown spectroscopy (LIBS) is one of the
emerging analytical technique that is non-destructive,
easy to use and requires little to no preparation of the
sample [4]. Therefore, it represents a great tool for the
analysis of the composition of austenitic steel samples.
There are two main approaches to the LIBS analysis,
namely standard calibration method and calibration—
free method [5]. In the method where calibration curve
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is constructed, a connection between one integrated line
intensity and known concentrations is established, thus
enabling the determination of unknown concentration.
This method is by far the most used one. Alterna-
tively, one can assume local thermodynamic equilib-
rium (LTE) in plasma and use Saha-Boltzmann equa-
tion to obtain plasma temperature and density, and
from this the unknown concentrations regardless of the
matrix effect. Machine learning algorithms have been
successfully applied in analysis of Raman spectra, NIR,
and THz spectroscopy, vibrational spectroscopy, fusion
plasma spectroscopy, etc., just to name a few [6-10].
In recent years, to speed up the analysis of LIBS spec-
tra, machine learning methods are being used inten-
sively [11-14]. These methods involve the usage of
principal component analysis (PCA) for dimensionality
reduction, support vector machine (SVM) for classifica-
tion purposes and partial least squares regression (PLS)
for multivariate regression problems [15]. Also, for clas-
sification or regression problems, many authors applied
back propagation neural networks (BPNN) or convolu-
tional neural networks (CNN) to the LIBS spectra in
order to perform quantitative analysis of different sam-
ples [16-20]. Other regression algorithms, like random
forest regression (RFR), have also been widely used [21—
24]. Random Forest was constructed and reported by
Breiman [25], and it is based on the ensemble of decis-
sion threes, where the decision or prediction is made
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by the majority prediction. This algorithm was pre-
viously applied on steel spectra by Zhang et al. [26]
where they showed that this regression could be applied
for the determination of composition of steel alloys.
Later, Zhang with his collaborators used BPNN com-
bined with SelectKBest algorithm for feature selection
to trace minor elements in steel samples [27]. Liu and
his coworkers also used random forest, combined with
permutation importance feature selection to train and
predict the composition of steel alloys [28]. Gini impor-
tance criteria was also used previously in combination
with random forest on classification problems [29,30],
but here we are applying it to regression problem.

In this paper, we will consider three algorithms, ran-
dom forest, linear regression with £2 norm and deep
neural network (DNN) to predict steel samples com-
position. Instead of making our own database, we will
use the dataset published at the LIBS 2022 conference
site [31] and record our own test dataset under similar
conditions to check how much these small differences
affect the final model performance. Idea to use RF algo-
rithm is twofold. On the one end, it is able to catch non-
linear phenomena in the data, on the other end to see
to what extent we can use already implemented Gini
importance criteria within RF to make good regression
model. Although simple neural networks have yielded
good analytical prediction in the past, in general, they
are hard to train (better said, it is not easy to find most
favorable architecture), so we wanted to see how close
RF predictions are going to be with respect to DNN.

The paper is organized as follows: In the first section,
a brief introduction and overview of previous results
is given. In Sect. 2, the experimental setup and sam-
ple preparation is described. Section 3 gives the detail
description of applied methodology and data prepro-
cessing, while the results are given in Sect. 4. Finally,
we gave the conclusion of this work in Sect. 5.

2 Experimental setup and sample
preparation

Experimental setup is shown in Fig. 1.

The setup is a classical LIBS setup consisting of
Quantel Q switched neodymium-doped yttrium alu-
minum garnet (Nd:YAG) laser having pulse width of
6 ns, repetition rate of 10 Hz, pulse energy of 96 mJ
and operated at fundamental wavelength A = 1064 nm.
Laser beam was reflected from 45° angle mirror M and
focused via lens L onto a target mounted on a z—y
micrometric moving stage by a lens of focal length f =
11 cm. Light emitted from plasma was collected using a
fiber optic cable with collimator having a focal length
of ffe = 4.4cm and directed onto the 50 pm width
entrance slit of Mechelle 5000 spectrograph that can
record spectra from 200 to 950 nm. As a detector, we
used Andor iStar ICCD camera (model DH734, 1024
x 1024 pixels) cooled to —15 °C. Camera was trig-
gered with a photodiode and gated by usage of Stan-
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ford Research digital delay unit (model DG535). Delay
from laser pulse was set to 0.6 pus and the gate width
was set to 50 ws.

Steel samples used in this work were AISI steels with
certified composition from National Bureau of Stan-
dards (NBS, today NIST), whose elemental composi-
tion is given in Table 1.

Sample mentioned above, austenitic steel AISI 316 L
lies in between these tested models (concentrations of
main elements: Cr 17%, Ni 12%, Mo 2% and Mn 2%).
Fach sample was firstly polished by sandpaper 200, fol-
lowed by polishing it with sandpaper 600. In front of
laser beam, external shutter was placed, coupled with
laser pulse counter. Counter was set to 16 counts, as it
is a binary counter, and after 16 pulses, the shutter is
closed for another 16 pulses. This represents one acqui-
sition of the spectra. For each sample, we recorded 22
spectra from different places on the target, and each
spectra is a result of averaging 20 acquisitions on the
same place (this gives 320 individual laser shots per
place on the target). To further improve and increase
signal, electrical gain of the camera was set to 80 (on
the scale of 0-255).

3 Methodology and data preprocessing

Database used in this paper was downloaded from LIBS
2022 website [31]. This database consists of a spectra
of 42 different steel samples, and for each sample, a
50 single-shot spectra were taken. This gives in total a
database of 2100 spectra samples divided into 40,002

Fig. 1 Experimental setup. Laser (Quantel, A = 1064 nm,
pulse width 6 ns, peak energy 96 mJ) was focused via lens L
onto the movable target and plasma spectrum was recorded
by Andor iStar iCCD camera mounted on Echelle spectro-
graph. Camera gating was done by Stanford Research Dig-
ital Delay Generator (DDG, model 535) and triggered by
photodiode (PD). Mirror M and lens L are integrated within
a laser head, which was not drawn on this figure
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Table 1 Steel alloy certified composition
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Steel number Steel type Cr Mn Mo Ni
443 Cr18.5-Ni9.5 18.5 3.38 0.12 9.4
445 AISI 410 13.31 0.77 0.92 0.28
446 AIST 321 18.35 0.53 0.43 9.11
447 ATSI 309 23.72 0.23 0.053 13.26
In the spectra normalization step, two normalizations
were tried to later adopt the best one, and those were
Raw Data

Data
preprocessing
Feature
selection
( odel tralnlng}

\ 4

Model
verification

Fig. 2 Flowchart of procedures taken in this work

columns (each column corresponds to one wavelength).
The flow diagram of our methodology is given in Fig. 2.
For machine learning part of this work, we used python
public repository scikit-learn.

3.1 Data preprocessing

Firstly, we restricted our dataset to the spectral range
between 200 and 500 nm, as this is the spectral area
where the most emission lines of metals of interest
can be found. It is worth mentioning that all training
dataset spectra were not intensity corrected. Therefore,
no intensity correction was done on the test dataset.

total spectral area normalization, and standard nor-
mal variate (SNV) normalization. First one is clear,
whereas SNV normalization represents a spectral nor-
malization tool that mean centers the spectra and then
divide each mean-centered intensity with its standard
deviation [32]:

Io - Imean
Inew == ldf (1)

where ey is the new intensity, I,1q is the intensity that
is being mean centered, I ean is the mean intensity and
o is standard deviation of intensities. Besides these two,
MinMax data scaling was also tried. MinMax scaling
represents procedure where for each feature, we scale
the values according to the formula below, so we have
feature values between zero and one:

I— Imin
Iscaled = 17

2
max Imin ( )

Proceeding further, we detected and ejected outliers
with the help of Isolation Forest algorithm implemented
in sci-kit learn. After the outliers have been removed,
we fitted Random Forest regressor with aim to find fea-
tures that give the most contribution to the final result.
To achieve this, we actually trained four random forest
models, one for each element, to have features that con-
tribute to the each element prediction separately. Fea-
ture importances were calculated within random forest
algorithm by usage of Gini importance. The higher the
value, the more valuable this feature is to the final pre-
diction.

3.2 Hyperparameters tuning and model selection

To find the optimal parameters of the model, we
performed GridSearch cross-validation. This validation
technique takes the given model parameters and initial-
izes the model of interest with these parameters, splits
provided dataset into training and test datasets, fits the
model and reports the accuracy of the model through
R? coefficient. This procedure is done five times in a
row for each set of model parameters, where, at the
end, for each model algorithm reports the best perfor-
mance and with which parameters they were obtained.
Used metrics to assess the predictive performance of the
models were coefficient of determination R? and root-
mean-square error (RMSE). With optimal parameters
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Fig. 3 Results for feature importance analysis for Cr and Mn (a, b) and Mo and Ni (c, d)

found, we proceeded to final model training and finally
the prediction of steel samples composition.

4 Results

The results of feature importance analysis is given in
Fig. 3. It is evident that the algorithm successfully rec-
ognized and selected persistent line of Mo II at 281.61
nm (see Fig. 3c¢)). Also in Fig. 3d), lines of Ni II at
239.45 nm and 241.6 nm were successfully identified.
Great importance was also given for Cr II lines around
285, 286, 287, 313 nm, as well as to Cr II line at 336 nm
(see Fig. 3a)). Unimportant features have value of zero
or close to zero, so the condition threshold was set to
1074,2x 107% and 5 x 10™%, while the best results were
obtained for threshold 2 x 10~%. Hence, the final dimen-
sionality of dataset used to train the final model is given
in Table 2.

In GridSearch cross-validation, parameters for ran-
dom forest that were supplied to the algorithm were
number of estimators (number of threes in forest) which
was changed from 200 to 350 in the step of 50, and maxi-
mal depth of the individual three which was varied from
none to 4. None here means that the three is going to
expand until all leaves are pure. In the case of linear
regression, the only parameter that could be changed
is £2 norm penalization coefficient o, and we have cho-
sen the values of 0.5, 0.8 and 1. For DNN, considered
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architectures were ones with one, two and three hid-
den layers [(100), (100, 100) and (100, 150, 50)]. Num-
bers in parentheses represent number of neurons in each
hidden layer. Activation function was ReLU (Rectified
Linear Unit). Best results reported for all models were
ones with MinMax scaling. For RF, best results were
the ones where number of threes was equal to 350 and
maximum depth that was set to none. Best results with
linear regression were reached for the a parameter equal
to 0.8. Finally, for DNN, architecture with three hidden
layers showed best performance. After dimensionality
reduction via Gini importance, resulting dataset was
divided into training and test datasets, keeping 20%
of the data for testing. Validation of the models was
done by using R? metrics and RMSE, and it is given in
Table 3.

With model training finished, judging by the R?
score, best overall performance is showed by deep neu-
ral network. The prediction precision for each element
goes above 0.9, whereas the predicted values in the case
of RF are little less. Results for linear regression are not
given, since they are significantly worse than these, thus
they were omitted. Prediction on recorded test dataset
was done with RF as well as with DNN, and the pre-
dicted results are summed in Fig. 4. From Fig. 4a—d,
it can be seen that DNN showed good performance on
all elements, while the predictions made using RF are
quite good for the case of Cr, Mn and Ni, but it showed
bad overall performance regarding the prediction of Mo,
see Fig. 4d. There was no difference when we tried to
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Table 2 Dimensionality and number of samples in training dataset used for model training

Element Number features Number of samples
Cr 273 1608
Mn 129 1608
Mo 317 1608
Ni 120 1608

All useful information is contained in these selected features

predict Mo concentration with all features, where unim-
portant features were not removed.

5 Conclusion and future development

In this paper, the prediction of austenitic steel alloy
samples was done using the random forest algorithm
and deep neural network. Data preprocessing consisted
of applying MinMax scaler on the raw data, followed by
outliers removal with isolation forest algorithm. Feature
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selection was performed by Gini importance criterion
within random forest algorithm. It successfully isolated
most important features, thus enabling the dimension-
ality reduction while keeping all the necessary infor-
mation. This was preceded by final training of three
models: random forest, linear regression with £2 norm
and deep neural network. Random forest and neural
network showed better predictive power than linear
regression; hence, they were used as selected models
for prediction of the steel alloy composition. Trained
random forest model showed good predictive power for

Ni

443 445 446 447

BRF mCertified ®NN

Mo
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Fig. 4 RFR and DNN predicted results (denoted with RF and NN on the figure) and comparison with certified values.
Numbers on x-axis denote the steel sample number given in Table 1. The figure indicates that the models learned and
yielded good results in the case of Cr (a), Mn (c) and Ni (b), but on the other hand, RFR had rather poor performance in

the case of Mo (d)

@ Springer



30 Page 6 of 7

Eur. Phys. J. D (2023) 77:30

Table 3 R? and RMSE values for validation dataset

Element Rirr Rixn RMSERr RMSExn
Cr 0.88 0.97 3.68 1.84

Mn 0.89 0.93 0.397 0.313

Mo 0.85 0.96 0.511 0.263

Ni 0.97 0.98 1.77 1.21

Cr, Ni and Mn, but rather poor performance in the
case of Mo. On the other hand, neural network showed
good overall predictive power. Nevertheless, random
forest algorithm, combined with the data preprocess-
ing techniques, shows a good potential for application
in austenitic steel alloy composition prediction, which
was also confirmed by results from other authors. For
future work, we tend to write a better feature extraction
software that should improve the feature selection and
hence the predictive power of a used regressor. Also,
good overall results are obtained, although the train-
ing and test datasets were not intensity corrected. This
work shows how useful it can be, to build a unique steel
dataset for later usage by different authors, as they not
need to every time record their own datasets. These
results can be further improved, if one performs cali-
bration transfer, as these spectra were recorded on dif-
ferent instruments. Here, this was not performed as we
have not had any identical standard that was used on
primary instrument.
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