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Abstract. In contrast to bound states, electronically metastable states or resonances still represent a major
challenge for quantum chemistry and molecular physics. The reason lies in the embedding continuum:
Bound states represent a many-body problem, while resonances represent a simultaneous scattering and
many-body problem. Here we focus on so-called L2-methods, which treat the continuum only implicitly, but
rather take the ‘decaying state’ perspective and emphasize electron correlation in the decaying state. These
methods represent a natural extension of quantum chemistry into the metastable domain and are suitable
for, say, modeling electron-induced reactions or resonant photo detachment. The three workhorse L2-
methods are complex absorbing potentials, the stabilization method, and regularized analytic continuation.
However, even for these three methods, making comparisons is less than straightforward as each method
works best with a unique blend of electronic structure methods and basis sets. Here we address this issue by
considering a model potential. For a model, we can establish a reliable reference resonance energy by using
the complex scaling method and a discrete variable representation. Then, we can study the performance
of the three workhorse methods as well as effects of more approximate Gaussian basis sets.

1 Introduction

Metastable electronic states—so-called resonances—are
states unstable with respect to electron autodetach-
ment. Resonances are characterized by their energy,
the resonance position, Er, and by their width, Γ,
which represents a first-order decay constant [1–4]. In
other words, a resonance posses a typical decay time
τ = �/Γ—referred to as its lifetime—that is inversely
proportional to its width. Resonance position and width
are normally combined to their Siegert energy [5]

Eres = Er + Ei = Er − i
Γ
2

which is central in many theoretical approaches. Note
that the Siegert energy and the associated Siegert state
represent solutions of the physical Hamiltonian with
respect to purely outgoing boundary conditions, in
other words, resonances are not part of the Hamilto-
nian’s Hermitian domain.

Examples for electronic resonances include tempo-
rary anions, small dianions in the gas phase, core-
ionized atoms and molecules decaying via the Auger
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process, the analogous Auger-like decay of inner-valence
ionized clusters, doubly excited states with energies
in excess of the ionization energy of the neutral, and
molecules subject to field ionization [4,6–10].

It is useful to group the available computational
approaches into two classes according to how the
embedding continuum is treated: Class one methods
solve the scattering problem explicitly, while class two
methods treat the continuum only implicitly and use L2

wavefunctions. Examples for class one methods include
the R-matrix and the complex Kohn method [11–13],
examples for L2 methods include complex absorbing
potentials (CAP) [4,14], the Hazi–Taylor stabilization
(HTS) method [15–17], and the regularized analytical
continuation (RAC) method [18,19].

Class one methods are the natural choice when com-
puting cross sections; class two methods represent a
more natural extension of quantum chemistry into the
continuum, and with the exception of certain thresh-
old processes [20,21], it is easier to compute potential
energy surfaces or investigate electron-induced reac-
tions. Here we will focus on class two methods: the
typical workhorse methods CAP, HTS, and RAC are
most frequently used in molecular physics and quan-
tum chemistry.

However, electronic resonances represent not only a
scattering, but also a many-body problem. In other
words, one needs to simultaneously address the elec-
tronic continuum and electron correlation, and any
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computational method for electronic resonances must
combine one of the continuum methods with an elec-
tronic structure method.

The combination character of any computational
method for resonances has two crucial implications.
First, regardless of the continuum approach, the per-
formance of a combination method will depend dras-
tically on how well the electronic structure method
describes correlation in the bound part of the resonance
and in the embedding continuum states. These state
mix, and two types of balance are required: balance
between calculations with different numbers of elec-
trons (size extensive methods) and an internal balance
of the calculation for the resonance [22]. For example,
all continuum methods are generally more successful to
describe shape resonances, while the results for Fesh-
bach and core-excited shape resonances are mixed. Note
that this is an issue of the electronic structure method
and possibly the Gaussian basis set—not of the contin-
uum method as such.

And that is not all. All three continuum methods,
CAP, HTS, and RAC, are not uniquely defined, but
there exist various different variants for each. Last,
every electronic structure method implies a basis set,
and as the different continuum methods require drasti-
cally different diffuse sets, it makes sense to distinguish
the valence set from the diffuse set. Together, all these
methods and variants lead to a bewildering magnitude
of options.

It is then hardly surprising that direct method com-
parisons are exceedingly rare. When first introduced,
any new combination is, of course, compared to the
available literature, but normally two results differ in at
least two aspects, say, continuum method and variant,
or continuum method and electronic structure method,
or continuum method and basis set. The authors are
aware of only two papers that aim at a fair compari-
son between different continuum methods keeping the
electronic structure method and basis set as similar as
possible: Reference [23] compares the CAP method with
analytical continuation of the coupling constant, an ear-
lier form of the RAC method, and Ref. [24] compares
the CAP method with the HTS method. At the same
time, these two papers serve as a stark reminder of the
large number of variants in the resonance field: Ref-
erences [23] and [24] use drastically different variants
of the CAP methods, only remotely related electronic
structure method, as well as different basis sets.

Here we address this issue by considering a model
potential; in other words, the L2 continuum methods
can be compared without choosing an electronic struc-
ture method. In addition, the model potential enables
us to compute a reliable reference resonance energy by
using the complex scaling (CS) method [25,26] and a
discrete variable representation (DVR) [27]. Then, the
three workhorse methods, CAP, HTS, and RAC as well
as effects of Gaussian basis sets can be studied both
independently and in conjunction.

The paper is structured as follows: In Sect. 2, we
describe our model potential and briefly review the CS,
CAP, HTS, and RAC methods emphasizing the com-

mon features of the four methods. Moreover, we empha-
size details specific to the employed variants and discuss
both the DVR and Gaussian basis sets used. The results
of our comparisons are presented in Sect. 3, and Sect. 4
concludes.

2 Methods

In this section, we first discuss our model potential.
Then, we describe the four continuum methods used,
CS, CAP, HTS, RAC focusing on the similarities of
the associated computational protocols, and the various
variants of each method. Last, we describe the wave-
function representations used, DVR and Gaussian basis
representations (GBRs).

2.1 Model potential

The model consists of a shifted harmonic potential
times a Gaussian that forces the potential to vanish
asymptotically plus an angular momentum term. In
atomic units, the model reads:

VM (r) =
(
ar2 − b

)
e−cr2

+
l(l + 1)

2r2
(1)

where a, b, and c are parameters with a = c = 0.028
and b = 1, and we consider an angular momentum of
l = 1. These parameters have been chosen so as to
model typical molecular π∗ resonances: VM features a
radial well at r ≈ 2.7 Bohr and a 4 eV barrier at r ≈
8.3 Bohr, and for l = 1, it supports one bound state with
a binding energy of −7.17 eV as well as one low-energy
resonance at about 3.2 eV.

As usual, we do not solve for the radial wavefunc-
tion R(r) associated with VM directly, but transform
the radial Schrödinger equation via the substitution
u(r) = rR(r). Then u(r) is expanded using either a
discrete variable representation (DVR) or a set of Gaus-
sian functions leading to a GBR.

As we aim at representing the bound and the
outgoing-wave part of a resonance state, we choose a
simple sine DVR [28] that guarantees a uniform point
density over the whole DVR grid. Specifically, we use a
grid density of 15 points-per-Bohr, and the grid extends
over the range [0, rmax] where rmax depends on the con-
tinuum method used (large for CAP, relatively small for
RAC).

The Gaussian basis sets, on the other hand, are
designed to mimic typical Gaussian basis sets used in
electronic structure theory. All basis functions are cen-
tered at the origin, and the number of functions is fairly
small: 10 primitive valence functions with even-scaled
exponents between 17 and 0.032 (even scaling factor 2)
that were chosen to represent the bound ground state
of VM reasonably accurately. In the spirit of atomic-
natural-orbital or correlation-consistent basis sets, the
eigenfunction of the bound state is then used to con-
tract the valence basis. In particular, we study the
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uncontracted primitive set (UN) as well as a double-
ζ-like (DZ) and a triple-ζ-like (TZ) set that are con-
structed by adding the smallest and the two smallest
exponents as uncontracted functions.

For the RAC method, these valence sets are used
without further augmentation; for CS, CAP, and HTS,
the three basis sets are augmented with four diffuse
functions, where the exponents are obtained by contin-
uing the valence set with an even scaling factor of 1.5.

2.2 Continuum methods

We focus on four commonly used continuum meth-
ods and their mainstream variants. For the theoreti-
cal background and many more methods, the reader is
referred to the book [26]. Here, we take a more practi-
cal approach and emphasize the computational protocol
shared by all four L2 continuum methods.

To start out, the physical Hamiltonian is parametrized
in one way or another:

H → H(λ)

where λ is the parameter. Then, the actual computa-
tions consist of three major steps.

Step 1. Compute n energies for m values of λ: Ej(λi),
the so-called λ-trajectories of the energies.

Step 2. Identify the trajectory or trajectories associ-
ated with the resonances.

Step 3. Analyze one or two selected λ-trajectories to
find Eres.

The major difference between the L2-methods involves
the parametrization step 1, while the variants of each
method differ mostly in the analysis step 3. The RAC
method is a bit of an exception, in that many differ-
ent step 1 parametrization variants exist. But despite
these differences between the L2-methods, the overall
workflow is very similar.

In an electronic structure context, step 1 takes the
lion’s share of the computational cost, while for a
model, step 3 is often more expensive than step 1. Step
2 is often a sore spot. As a rule, identifying the ‘right’
trajectories requires at least some user input. While
with DVR-quality data, step 2 is normally trivial and
pattern recognition software will be reliable, in the con-
text GBRs typically used in electronic structure theory,
distinguishing resonances from artifacts is challenging
and requires either prior knowledge or deeper analysis.

2.2.1 Complex scaling

While CAPs, the HTS method, and the RAC method
are the focus of this study, CS is used to establish a reli-
able reference result. That is possible as—outside errors
related to the basis set representation—CS is an exact
theory. Complex scaling can be understood as a simi-
larity transformation of the Hamiltonian that changes
the boundary condition of Siegert states from purely

outgoing wave to L2 so that resonance wavefunctions
can be expanded in finite basis sets [25,26].

However, instead of a similarity transformation, com-
plex scaling is most naturally written as:

r → eiθr (2)

in other words, the variable describing the outgoing
particle is multiplied by a phase. The complex-scaled
Hamiltonian

Hθ = H(eiθr) (3)

is no longer Hermitian, but complex-symmetric, and the
continuum of the physical Hamiltonian is discretized
and rotated by an angle of 2θ into the fourth quadrant
of the complex energy plane [25,26]. This formulation
is not only most straightforward, but also most con-
venient in the context of models and light atoms. In
contrast, for electronic resonances of molecules, other
formulations such as complex basis functions or exterior
scaling are needed [26]; however, for molecules, CAPs,
which can be understood as drastically approximated
complex-scaling [26], remain the more popular choice.

In CS, resonances are identified as follows: As soon
as rotation of the pole string uncovers the resonance
energy Eres in the complex plane, the resonance tra-
jectory will approach Eres and remain in its vicinity
for a range of θ values. The details—how fast can a tra-
jectory approach Eres, for which θ range does it remain
close, at what θ does it depart—depend on the finite
basis set used to represent Hθ. For a given basis set
representation, the best resonance energy is obtained
for:

min
∣
∣
∣
∣
dE

dθ

∣
∣
∣
∣ (4)

2.2.2 Complex absorbing potentials

In the CAP method, the physical Hamiltonian is
parametrized by adding a complex one-particle poten-
tial −iηW yielding a complex-symmetric effective
Hamiltonian

H(η) = H − iηW (5)

where η is the so-called CAP strength, and the potential
W must fulfill the following conditions:

Re {W (r)} ≥ 0 and Re {W (r)} → ∞ for r → ∞
(6)

In general, W can be complex, in which case it must ful-
fill yet more conditions [14], but normally it is chosen as
a real function that vanishes at the system, switches on
smoothly, and then grows to infinity. A typical example
is
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W (r) =
{

0 : r < rcut

(r − rcut)2 : r ≥ rcut
(7)

CAPs are best understood in the time-dependent pic-
ture: The real part of W appears as imaginary con-
tribution to the effective Hamiltonian and therefore
absorbs the outgoing particle in the region beyond rcut

[29,30]. In time-independent calculations, CAPs are
closely related to CS: The continuous spectrum of the
physical Hamiltonian is transformed into a purely dis-
crete spectrum with L2 eigenfunctions [14]. In the com-
plete basis set limit and in the limit η → 0+, the contin-
uum eigenvalues are rotated on a string that depends
on the functional form of W and—if uncovered by the
rotation—the exact Siegert energy Eres of the reso-
nance is recovered as an isolated pole.

With finite basis sets, some minimal CAP strength
is needed to absorb the outgoing particle within the
spatial and momentum space confinements of the basis
set. Larger CAP strength should be avoided as larger η
values lead to artificial reflections at the CAP boundary
and by the CAP itself and therefore to a perturbation of
the resonance wave function in the inner region [14,31].

The best trade-off is found by analysis of the reso-
nance trajectories, which can be identified by its small
η-velocity or the small r and W expectation values of
the associated wavefunction.

In contrast to CS, one has two options: First, one
can either analyze the raw trajectory or correct the
raw trajectory for CAP artifacts. Second, one can ana-
lyze the complex trajectory [14,30] or consider its real
and imaginary parts as real functions [32]. Hence, the
CAP method has four variants, complex, uncorrected
(C0), complex, first-order corrected (C1), real, uncor-
rected (R0), and real, first-order corrected (R1). For
each of the four variants, the optimal CAP strength
ηopt is determined by a minimum of the logarithmic
speed of the considered trajectory (see refs. [14,30,32]
for details).

Let us mention that the first-order correction

E(1) = E(0) + iη (W ) = E(0) − η
dE

dη
(8)

can either be obtained from (W ), the c-expectation
value of the CAP, or from the logarithmic speed of
the η-trajectory, and that it corrects for CAP arti-
facts in first-order perturbation theory [14,30]. Higher-
order corrections have been derived but turn out to
be impracticable as at the same time as CAP artifacts
are explicitly corrected, basis set artifacts are implicitly
enhanced [14].

2.2.3 Stabilization method

In the HTS method, the physical system is enclosed in
a confining potential so that the continuum of the origi-
nal Hamiltonian is discretized. The confinement can be
imposed explicitly through box-boundary conditions or
implicitly via a basis set.

Fig. 1 Stabilization graph obtained for VM using a DVR.
The energy of all states is plotted vs. α = 1/L2, where
L is the grid extent. Discretized continuum states increase
approximately linearly with α, while the resonance state
remains unaffected and creates a series of avoided crossings
(orange) and stabilization plateaus (purple)

In the HTS method the proverbial box-size L takes
the role of the parameter to be scanned in data-
collection step 1, but any measure of the extent of the
confinement will do. For DVR grids, the box size L is
given by the grid length, and one implementation use—
at fixed grid density—longer and longer grids. Alterna-
tive, one large grid can be combined with an explicit
finite-depth box potential that may be smooth. How-
ever, the softer the potential and the smaller its depth,
the smaller the dependency of the discretized contin-
uum states on the box size, and the more washed out
the stabilization plateaus and avoided crossings (see
below).

With a GBR, the confinement and its size is less
well-defined. One possible choice for a size parameter
is 1/

√
α, where α is the smallest exponent in the Gaus-

sian basis set, another is the largest eigenvalue of the
position operator.

Plotting the result of the scan yields a so-called sta-
bilization graph: En(L) vs. 1/L2 shown in Fig. 1. The
resonance reveals itself as a series of avoided cross-
ings of a ‘stable’ state, whose energy is independent of
1/L2, with discretized continuum states, whose energy
is roughly proportional to 1/L2 or α. Plotting En(L)
directly vs. L reveals the same picture, but the dis-
cretized continuum energies decrease roughly propor-
tionally to 1/L2 and are strongly curved.

A first-order estimate of the resonance position can
be directly obtained from the inflection points defining
the centers of the plateaus. Similarly, the width can be
estimated from the smallest gap of the avoided crossings
corrected for the local density of states (see Refs. [33–
35] and, for a thorough discussion of the history of this
field, Ref. [17]).
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More robust methods use stabilization graph data to
establish an analytical model E(z) for continuing the
energy into the complex plane, where z is the complex
continued variable α or L. First, an analytical model
E(z) is fit to the stabilization graph data En(Lj). Then,
the resonance energy Eres is identified from stationary
points of E(z):

∣
∣
∣
∣
dE(z)

dz

∣
∣
∣
∣ = 0 (9)

Here we investigate three models: First, general Padé
approximants (GPA)

E2P (z) + EQ(z) + R(z) = 0 (10)

where P , Q, and R are polynomials in z fit to data from
both branches of a crossing [16,36]. Specifically, orders
of 2, 3, and 4 are used for P , Q, and R [37]. Second, a
2-by-2 model Hamiltonian H is fitted to data from both
branches of a crossing [38]. And third, a standard Padé
approximant is fitted to data from a plateau [17,39]. In
the plateau method, we increased the Padé-order sys-
tematically, and at least in the context of our model, it
turned out that [4,4]-approximants represent the most
robust choice as the resonance energy is practically con-
verged and higher Padé-orders start to show occasional
numerical instabilities.

Let us note that all three variants as used here assume
that the resonance separates from other resonances and
is sufficiently narrow to yield reasonably isolated stabi-
lization plateaus and two-state crossings. If two reso-
nances interact, or resonances are so broad that the
crossings and plateaus affect each other, the models
need to be extended by higher-order terms. To the best
of our knowledge, the theoretical background has been
developed for the GPA method only [16], but three-
state or even higher-order models are almost never used
in practice as the number of fit parameters and the
number of nonphysical roots quickly increase. At least
in case of broad resonances, one alternate strategy is to
employ explicit box potentials. While the appeal of sim-
plicity of exponent scaling is lost, one gains more control
over the slopes of the discretized continuum states and
therefore over the stabilization graph.

All three HTS variants need input data, and the
results will vary somewhat with the α or L ranges cho-
sen, in other words, with how specifically a ‘crossing
region’ or a ‘plateau region’ is defined. To the best of
our knowledge, the only systematic approach address-
ing this issue is the clustering technique introduced in
Ref. [39]. Briefly, an extended data set sampling the
selected plateau—or crossing—is chosen. Then, a large
number of smaller data sets are created by eliminating
data points at the right, the left, of both ends of the
data range. For each subset, the corresponding model is
fit, and stationary energies (Eq. 9) are identified. When
plotted in the complex plane, these energies form a clus-
ter at the predicted resonance energy, and after elimi-

nating outliers, a statistical analysis of the cluster can
be performed.

For each of the three methods, two data-selection
variants were considered. A naive choice, where only
a single data set based on curvature cutoffs, is used:
The center of a crossing region is defined by the maxi-
mal and minimal curvatures of the two crossing curves,
while the center of a plateau is defined by the vanish-
ing curvature of the single stable curve. The two regions
are separated at the average curvature points, that is,
where the extreme curvatures drop to half their values
(c.f. Fig. 1).

A multi-data-set clustering variant that uses the 30%
and 70% curvature extrema drop-off points results in
extended ranges and overlapping crossing and plateau
regions: Starting from these extended data ranges a
clustering analysis similar to Ref. [39] is performed;
however, we always keep the center of the structure,
that is, while data points are systematically eliminated
from the right and left of the data range, the central
point is always kept.

Complex stationary points (see Eq. 9) can be identi-
fied by various means. For the 2-by-2 model Hamilto-
nian, these points can be found analytically [38], while
for the GPA and plateau methods numerical methods
are required (see, e.g. [16,17]). Here we employ New-
ton’s method, and in the interest of replicability, let us
mention a few details of our computational protocol.

• To enhance numerical stability, as a first step, the
actual α or z-range is rescaled to [0, 1] (c.f. Fig. 1).

• Newton searches are started on a 10-by-10 search
grid loosely defined by the z-range of the investi-
gated plateau or crossing region as defined above.
In practice, we double the naive z-range on the real
axis and search a square area starting on the real
axis and extending down into the fourth quadrant.

• Newton searches converging in 10 steps or less to
points in the fourth quadrant are accepted, and a
list of unique stationary points is established.

• Applying this algorithm to our model typically
yields a single stationary point for the standard [4,4]
Padé approximants of the plateau method, and two
or three stationary points for [2,3,4]-GPAs. For the
naive variant, these two or three GPA energies are
averaged [37].

• For the clustering variants, all stationary energies
associated with all data subsets are kept. For the
model potential, the cluster is easily identified by
averaging, and typically only one discard-outliers,
recompute-the-average iteration is needed [39].

2.2.4 Regularized analytical continuation

In the RAC method, an artificial attractive potential U
is added to the physical Hamiltonian

Hλ = H + λU (11)
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where λ is the strength parameter varied in data-
collection step 1 (see refs. [18,40,41] as well as chapter
5 of Ref. [42]). However, it is also possible to scale the
attractive part of the physical potential.

In principle, U must be a short-range potential [1]; in
particular, Coulomb potentials disrupt the connection
between resonances and bound states [43]. Nonethe-
less, in practical electronic structure calculations, scal-
ing the nuclear charges has turned out to work well
[18,40,41,44,45] presumably because representation of
the Coulomb potential in the compact Gaussian basis
sets suppresses the long-range part of the interaction.
In fact, in a Gaussian basis set, attractive Coulomb
potentials and explicitly attenuated Coulomb potentials
behave effectively identically [46,47].

Here, we use three different stabilizing potentials:

1. Instead of adding an explicit potential U1, the attrac-
tive part of of VM (Eq. 1) is increased: b → (1 + λ)b
(b-scaling). As part of the physical potential itself is
scaled, this approach is loosely analogous with scal-
ing nuclear charges in electronic structure theory.

2. As motivated by electronic structure calculations, an
attractive Coulomb potential, U2 = −1/r, is added
to H.

3. A finite-depth confining potential U3 = exp(−(2d)2/
r2)− 1 (soft-box) is added to H, a choice new in the
RAC context. U3 forms an amazingly flat region of
depth −1 localized at the origin. Its soft wall starts
to climb at about d, and the half depth is reached at
about 2.4d. For VM , we use d = 3 Bohr.

For each Uk, λ is then increased until the resonance
crosses the threshold and becomes a bound state and
then further increased until the resulting bound state
exhibits an energy of at least −7Er. Clearly, this step
requires either prior knowledge of the resonance posi-
tion, say, from a calculation with a smaller basis set or
a larger step size in λ. However, this concern is valid
only in the electronic structure context where step 1—
collecting data—is costly. Here, all steps are computa-
tional inexpensive, and iterating the procedure once is
unproblematic.

In RAC calculations, step 2—identifying the reso-
nance trajectory—tends to be simple as the resonance
state is normally associated with the most compact
wavefunction and therefore with the λ-trajectory that
shows the largest downward slope. In practical RAC
calculations, compact basis sets are used and only the
ground state is computed, which gives RAC special sta-
tus among the continuum methods. On the one hand,
RAC is designed to work only for resonances with non-
vanishing angular momentum and only for ‘low-energy’
resonances as the threshold behavior at the crossing
from bound to unbound state is analytically contin-
ued [42]. On the other hand, RAC needs only ground
state input data enabling combinations with a much
wider variety of electronic structure method than CAP
or HTS.

In step 3, the bound energies are fit to an inverse Padé
approximant tailor-made for describing the threshold
behavior of resonances in the complex momentum plane
[18,19]. The most widely used approach is the [3,1]-
Padé approximant [18,44,45,48]

λ(κ) = λ0

(
κ2 + 2α2κ + α4 + β2

) (
1 + δ2κ

)

α4 + β2 + κ (2α2 + δ2 (α4 + β2))
(12)

Here, κ2 = −E (bound energies are negative), α, β, δ,
and λ0 are positive fit parameters, and λ is the strength
parameter from Eq. (11). Note that, instead of κ(λ), the
inverse function λ(κ) is fit.

Higher-order approximations exist; however, only
certain orders fulfill the correct threshold conditions
[19], and for higher orders, the nonlinear fits become
quickly numerical unstable [44]. We note that [3,2]-Padé
approximants have been recommended for singular sta-
bilization potentials such as Coulomb [19]. The [3,2]-
Padé ansatz is almost identical to Eq. (12); however,
the denominator is extended with an ε2κ2 term where ε
is a fifth parameter. For the Coulomb potential U2, we
show both RAC[3,1] and RAC[3,2] results.

Regardless of the Padé-order used, after the param-
eters have been fit to the data, the resonance energy is
directly obtained from α and β:

Er = β2 − α4 Γ = 4α2β (13)

Similar to the HTS variants, RAC results depend on
the input data range. To minimize the influence of any
avoided crossings close to threshold, relatively compact
DVR and GBR representations are used and input ener-
gies bound by less than −0.5 eV are discarded. (See the
analysis of Fig. 2 in Ref. [18].) Moreover, we perform
the following averaging procedure.

• A fairly precise estimate, E
(0)
r , is obtained by fitting

to all available energies below −0.5 eV.
• The fitting procedure is repeated for all data

ranges from [−0.5,−4E
(0)
r ] to [−0.5,−7E

(0)
r ], and

the results are averaged using the quality of the
respective fit, χ2, as weights. For DVR and UN,
the standard deviations of this procedure are quite
small (less than ±1% for Er, a bit larger for Γ). For
TZ and DZ, the standard deviations of Er are still
acceptable (±2%); however, as the width is much
smaller than the position, the relative deviation of
Ei becomes significant (±30%) for these basis sets.

3 Results

In this section, we investigate the 3.2 eV resonance
of the model potential with the three workhorse con-
tinuum methods CAP, HTS, and RAC. Moreover, we
study the progression DVR, uncontracted GBR, GBRs
of triple and double-ζ quality. We start with establish-
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Fig. 2 CAP resonance energies of VM . Each panel shows
results obtained with the indicated analysis method, and
the colors code the basis set: DVR, in blue; UN, TZ, and
DZ in purple, orange, and yellow. The CS reference energy
is indicated by a black cross

Table 1 Complex scaling results for the model potential
VM . Energies in eV and angles in degrees

Er Γ/2 θopt

∣
∣ dE

dθ

∣
∣

DVRa 3.172963 −0.1608477 41 1.4 10−6

DVRb 3.172956 −0.1608490 34 1.4 10−6

DVRc 3.172944 −0.1608467 26 1.4 10−6

UC 3.169 −0.144 11.0 0.0049
TZ 3.099 −0.068 4.6 0.0026
DZ 3.102 −0.051 2.2 0.024

a Grid length 25 Bohr.
b Grid length 30 Bohr.
c Grid length 35 Bohr

ing a reference value with CS/DVR and briefly consider
basis-set effects in the context of CS.

The CS/DVR combination is expected to yield highly
reliable resonance energies, and the results for the
model potential in Table 1 demonstrate that the res-
onance trajectory essentially slows to a halt as the
derivative of the energy with respect to the rota-
tion angle becomes insignificant. Moreover, grid extent
impacts only the optimal rotation angle, but has vir-
tually no effect on the resonance energy. Accordingly,
the CS reference resonance energy can be stated with
six significant digits: Eres = 3.17295 eV−0.160847i eV,
where the observed variation in the last digits is in the
order of 2.

In addition to providing a reference value, CS can be
used as testing ground for GBR (Table 1). For all Gaus-
sian basis sets, the magnitude of the derivative dE

dθ at
θopt is substantially larger than for DVR: at best three
orders of magnitude, for the DZ set even four orders of

magnitude. Correspondingly, the resonance energies are
less well converged, and only the UC resonance energy
is close to the DVR reference value. This is expected:
Straightforward CS—as opposed to exterior scaling—
requires a flexible basis set at all distances, and con-
tracted GBR are simply unsuitable for straightforward
CS.

3.1 Complex absorbing potentials

Results for the model potential in Eq. (1) obtained with
a CAP combined with DVR or GBR and analyzed with
the four different variants are displayed in Fig. 2. The
data allow us to analyze a number of different trends.

1. Combined with a DVR, a CAP performs exceedingly
well. In particular, the C0 energy is on top of the CS
reference marker; however, both C1 and R0 are tight
runners up, and one has to pay close attention to see
that the CS marker is not quite dead center on the
respective CAP/DVR points. The only odd one out
is the R1 analysis: The predicted width is too small.

2. Similar to CS, GBR results are generally less accu-
rate than DVR resonance energies. Still, CAP/GBR
widths are significantly more reliable than their
CS/GBR counterparts, and while CAPs are by no
means perfect, they seems far more robust to basis
set deficiencies than CS.

3. The small differences between the UN and TZ results
show that CAPs work well without extra flexibil-
ity in the valence region. However, the off-target DZ
results show that some flexibility in the outer valence
region is needed.

4. In particular, the C0/C1 difference shows that
correcting for CAP artifacts does not necessarily
improve the resonance energy. In fact, regardless of
basis set, C0 is superior to C1 if only slightly so (for
DVR).

5. While C0, C1, and for the most part R0 behave in
predictable systematic manner, R1 does not follow
this trend. Currently, we have not got any explana-
tion for this behavior.

The data in Fig. 2 have been obtained with fixed cut-
off radii of the CAP, rcut = 15 Bohr for DVR and
rcut = 7 Bohr for GBR. While for both DVR and
GBR the rcut-dependence of the resonance energy has
been investigated previously [31,49–51] trends have nei-
ther been compared across different analysis schemes,
nor have GBR results been compared to reliable refer-
ence data. Of course, this question is most relevant for
GBRs; unless DVR grids are chosen too short or with
too low grid density, the exact position is rather unim-
portant. (The optimal position depends on the kinetic
energy of the outgoing particle anyway.) In contrast,
molecule-centered GBRs are at best able to describe a
few oscillations of an outgoing wave, and the placement
of the CAP is critical.

The resonance energy obtained with different cutoff
radii and all four CAP analysis schemes are indicated
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Fig. 3 CAP resonance energies of VM computed with the
UN Gaussian basis set and different CAP cutoff radii rcut =
5−10 Bohr in steps of 1 Bohr. For all analysis methods, the
smallest cutoff radius, rcut = 5 Bohr, is associated with the
most negative Ei or largest width. Reducing rcut reduces the
predicted width as well as the difference between the zeroth
and first-order predictions for Eres. The CS reference result
is indicated by a black cross

as rcut-trajectories in Fig. 3. Smaller rcut values imply
stronger interactions with the CAP and correspond for
each rcut-trajectory to the most negative imaginary
parts. The smallest cutoff radius is rcut = 5 Bohr is
‘dangerously’ small as the CAP penetrates well into the
inner region—the classical turning point at Er is essen-
tially 7 Bohr—and the analysis schemes start to show
numerical instabilities. Moreover, small rcut values lead
to large first-order corrections indicating increasingly
unreliable CAP results.

Larger rcut values in the order of 10 Bohr, on the
other hand, are associated with numerically stable anal-
ysis schemes and small first-order corrections. These
advantages, however, are deceptive, as the predicted
widths are far too small, most likely owing to the inabil-
ity of the GBR to describe the oscillations of an out-
going wave into the CAP region: At the very mini-
mum, one full oscillation in the CAP region is needed
to absorb an outgoing wave, and for practical CAPs the
number is larger [14,31]. The 3.2 eV resonances show a
wavelength of roughly 2 Bohr. GBRs modeling realis-
tic electronic structure sets are obviously incapable of
describing multiple oscillations to reach the CAP and
then additional oscillations in the CAP region itself.

While this is a clear shortcoming of the GBR—not
of the CAP method as such—there seems to be unfor-
tunately no obvious method to locate a good trade-off
between a CAP that penetrates too far into the inte-
rior region and a CAP that is located too far out for the
GBR at hand. Indeed, it seems as if the ‘best’ results
are obtained with rcut values that balance the analysis
methods at the brink of numerical instability, but that

Fig. 4 HTS resonance energies of VM . Each panel collects
results from the analysis method indicated, and a clustering
analysis was used for all methods. The colors code the basis
set: DVR, in blue; UN, TZ, and DZ in purple, orange, and
yellow. The CS reference energy is indicated by a black cross

hardly translates into a well-defined criterion. In elec-
tronic structure calculations, rcut is normally chosen in
the order of typical van der Waals radii or even explic-
itly set to the radial extent of the parent wavefunction
[51,52].

3.2 Stabilization method

Results from analyzing stabilization graph (c.f. Fig. 1)
for our model potential are collected in Fig. 4 and in
the supplementary material, Fig. S1.

We begin with the DVR results. The DVR stabiliza-
tion plot (Fig. 1) shows two complete plateaus and three
complete crossings. Accordingly, the GPA and 2-by-2
model Hamiltonian panels of Fig. 4 show three DVR
points, while the plateau panel shows only two. For
the GPA method, these three data points cluster very
closely around the CS reference value demonstrating
the flexibility of a [2,3,4]-GPA in performing the ana-
lytical continuation. In contrast, fitting a 2-by-2 model
Hamiltonian to the same data set yields only satis-
factory agreement: At least for VM , the 2-by-2 model
Hamiltonian predicts too small resonance positions and
too large widths. Last, the plateau method predicts
excellent resonance positions, but somewhat too small
widths.

Turning to GBRs, as expected, the performance of
all three analysis methods tends to decline. Yet, this
trend is anything but uniform. As the DZ set turns
out to introduce too many artifacts, let’s focus ini-
tially on the UN and TZ sets. For the GPA/UN and
GPA/TZ combinations, one of the available crossings
yields acceptable results, while the width from the other
crossing is somewhat too large. This trend is much
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more pronounced for naive data selection (see supple-
mentary material, Fig. S1), and at least for our stabi-
lization plots, the ‘better’ crossing is associated with
the higher curvatures and accordingly the smaller α or
larger L values. For the 2-by-2 model Hamiltonian, both
UN crossings yield results close to the DVR results,
while both TZ crossings show substantial differences.
Thus, it seems that the 2-by-2 model Hamiltonian is
more sensitive to the overall basis set quality than to
the crossing itself. Last, for the plateau method, all
UN and TZ results cluster closely around the DVR
results.

In contrast to the UN and TZ sets, the DZ set seems
to be too inflexible to yield a stabilization plot of suf-
ficient quality. While one of the crossings still predicts
results within the ranges of Fig. 4, other DZ results are
wildly scattered with real parts as high as 4 eV and
imaginary parts as low as 0.05 eV. To represent the res-
onance and the discretized continuum in a quantitative
manner, a GBR clearly needs more than DZ flexibility
in the ’outer valence region’.

Last, let us comment on three more technical aspects
of the stabilization method, the results of a naive data
set selection and the clustering analysis. Figure S1 in
the supplementary material compares the naive and
the clustering variants. The following trends can be
observed:

• DVR resonances are almost unaffected. In other
words, for good basis sets, the curvature-determined
range defines a plateau or crossing region well.

• For GBRs the impact of a clustering analysis is
method dependent. GPA resonances energies are
significantly improved for low-curvature crossings
and TZ basis sets. No large effect is seen for the
2-by-2 model Hamiltonian. Plateau resonance ener-
gies are significantly improved. In other words, for
both the GPA and the plateau method a clustering
analysis is well-worth undertaking.

The second comment pertains to the ‘clusters’ of sta-
tionary energies produced by the different input data
subsets. Plots can be found in the supplementary mate-
rial, Figs. S2, S3, S4, and S5, and we analyze these clus-
ters using two color codings. In all four figures, the ener-
gies in the left panel are color coded according to the
number of eliminated points when creating input sets,
where dark colors indicate larger and light colors indi-
cate smaller subsets. Higher data to parameter ratios—
more over-defined fits—are expected to lead to higher-
quality fits as noise and over-fitting are less of an issue,
and the dark points show indeed a smaller scatter, in
particular, for the plateau method.

The stationary energies in the left panel are color
coded. Dark colors indicate that the number of points
eliminated from the right and the left is equal or similar;
light color indicates very unsymmetrical eliminations.
Again, there is a clear trend: Symmetrical sets scatter
less than unsymmetrical ones.

We are aware that this is just one example and a
model potential at that, however, provided these trends
turn out to be more general, an improved protocol may
either select only sufficiently over-defined reasonably
symmetric data sets or introduce a weighted averaging
procedure that emphasizes over-defined and symmetric
data sets.

The last comment about the clustering method per-
tains specifically to the GPA method. Figures S2 and
S5 in the supplementary material show that the results
presented in Fig. 4 do not reflect a typical stationary
energy. Quite the opposite, each individual station-
ary energy is quite far from the CS reference energy
(see Figure S2). However, normally each selected data
set contributes two stationary energies, which—as the
naive variant shows—average to an energy close to the
reference result. In other words, each input data subset
produces a pair of stationary states that connect across
the correct result.

3.3 Regularized analytic continuation

For the RAC method, the focus shifts from the anal-
ysis step 3 to the data-collection step 1. The analysis
is straightforward (Sect. 2.2.4), the only quirk being the
RAC[3,1] vs RAC[3,2] comparison for the Coulomb sta-
bilization. The main comparison, on the other hand,
involves different stabilizing potentials Uk used in step
1.

The RAC resonance energies for b-scaling, Coulomb,
and soft-box stabilizing potentials Uk are displayed in
Fig. 5. Since the scales are different in every panel, dis-
cussing Fig. 5 is less straightforward than for the corre-
sponding CAP or HTS figures (Figs. 2 and 4 ).

We start with b-scaling. The DVR and UN results
cluster at approximately 3.3 − 0.33i eV, in other words,
b-scaling predicts about 5% too high positions and 50%
too high widths. Combining a TZ with b-scaling yields
unacceptably large errors in the position, and DZ basis
sets predict vanishing width.

For the Coulomb potential, the quality depends crit-
ically on the Padé approximation; however, none of
the Coulomb results are convincingly close to the ref-
erence value (see the scales in the second panel of
Fig. 5). RAC[3,1] combined with DVR or UN pre-
dicts far too small positions (below 3 eV) and far
too large half widths (above 0.5 eV). For TZ or DZ,
RAC[3,1] predicts vanishing width. As recommended
in Ref. [19], RAC[3,2] performs significantly better.
For DVR and UN, the resonance position is accept-
able, yet the widths are either significantly too large
or too small. Realistic basis sets of TZ or DZ qual-
ity yield results with unacceptably large errors or even
vanishing widths. Let us note that the dramatic dif-
ference between RAC[3,1] and RAC[3,2] is likely con-
text dependent. For example, Ref. [18] as well as our
own experience suggests only minor differences between
RAC[3,1] and RAC[3,2] in typical electronic structure
calculations.
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Fig. 5 RAC resonance energies of VM . From the top, the
panels collect results for each stabilizing potential: U1, b-
scaling; U2, Coulomb; U3, soft-box. The circles represent
RAC[3,1] results; for the Coulomb potential RAC[3,2] is also
shown (squares). Color codes refer to different basis set rep-
resentations: DVR, rmax = 12 and 20 Bohr in dark and light
blue; UN, TZ, and DZ in purple, orange, and yellow. The
CS reference energy is indicated by a black cross. Note the
different scales of each panel

The last panel of Fig. 5 collects the soft-box results.
Again, the DVR and UN resonance energies ‘clus-
ter,’ yet this time the imaginary parts of the more
compact representations are very close to the refer-
ence result. In contrast, the predicted real parts are
significantly too high. Again, the RAC/TZ resonance
energy is far off target, and RAC/DZ predicts a zero
width.

In summary, out of the three stabilizing potentials
investigated, two combinations predict acceptable reso-
nance energies: RAC[3,2] with a Coulomb stabilization,
and RAC[3,1] with a soft-box stabilization. Moreover,
both combinations perform satisfactorily only if DVRs
or high-quality GBRs are employed. RAC results from
TZ basis sets are qualitatively correct, but less useful
for quantitative purposes.

4 Summary and conclusions

Using a spherical model potential, the three workhorse
L2-methods for resonance states have been compared
in detail. In contrast to electronic structure theory, for
the model potential, a reliable reference value is readily
available, and the three methods with their multiple
variants can be compared using near perfect as well as
less than perfect L2-basis sets: DVRs and GBRs.

Of course, strictly speaking all conclusions are valid
only in the context of our model potential, and it is
presently unclear to what extent generalizations to elec-
tronic structure theory or other contexts are possible.
However, the authors do have considerable experience
with CAP, HTS, and RAC calculations in quantum
chemistry, and at least by-eye, the GBR η-trajectories,
stabilization plots, and λ-trajectories observed for the
model look deceptively similar to their electronic struc-
ture analogous.

Within a certain spatial range, DVRs provide a
highly accurate description of the resonance and its
embedding discretized continuum, and basis set errors
can be neglected in comparison with other approxima-
tions. If such a representation is used, three CAP vari-
ants as well as the GPA variant of the HTS method
predict resonance energies in close agreement with the
CS reference value, and the plateau variant of the HTS
method is a very a close runner up. The forth CAP
variant as well as the 2-by-2 model Hamiltonian analy-
sis of the HTS shows satisfactory agreement—for both
the relative deviation of the imaginary part is larger
than 20%.

In contrast, RAC resonance energies agree only qual-
itatively with the CS reference value. To be fair, for the
RAC method, instead of comparing analysis variants,
we varied the stabilization potentials used in the data
accumulation step. It may well be that other stabilizing
potentials will give better agreement with the CS reso-
nance energy. Moreover, contrary to the trend observed
for electronic structure and GBRs [18], RAC resonance
energies for the model potential depend strongly on the
extent of the DVR grid. We conclude that at least for
this example the RAC method is sensitive to the spe-
cific conditions: the combination of the grid extent and
the stabilizing potential.

Turning to GBRs, the performance of all methods
and all variants must deteriorate as the used GBRs
were specifically designed to mimic typical basis sets
in electronic structure theory. Thus, GBRs lead to far
more compact representations (in the sense of matrix
dimensions) but also to a low-quality discretized contin-
uum (representable number of oscillations of an outgo-
ing waves). The key message here is that some method
variants fare considerably better than others: They are
more robust with respect to basis set deficiencies.

The best performance in this respect is shown by the
plateau variant of the HTS method. Close competitors
are the two uncorrected CAP variants as well as the
GPA variant, but only for certain crossings. Two trends
are worth noting: First, correcting CAP calculations for
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CAP artifacts as frequently done in electronic structure
theory might not always be a good idea. At least for the
present model potential, the trade-off between correct-
ing for the CAP artifacts at the cost of enhancing the
basis set error (c.f. [14]) is not worth it. Second, aug-
mented DZ basis sets yield at best qualitatively correct
resonance energies. This conclusion is method and vari-
ant independent—the single outer-valence function of a
DZ sets seems to be too inflexible to properly connect
the valance and the diffuse sets to a quantitatively use-
ful discretized continuum basis.

Let us briefly comment on generalizing our findings
to electronic structure theory, where a ‘method’ has
three ingredients: an L2 continuum method, an elec-
tronic structure method, and a basis set. From our
model potential, it is immediately obvious that simply
stating an L2-method is insufficient; at the very least,
the variant must be specified. But to guarantee that
other researchers can replicate a calculations, it is even
necessary to specify the exact computational protocol
in the L2-method data-analysis step. The simple reason
behind this need is that L2-methods lack the standard-
ization of electronic structure methods and basis sets.
Computational studies of resonances are replicable if all
three ingredients are well defined.
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8. P. Kolorenč, V. Averbukh, Fano-adc(2,2) method for
electronic decay rates. J. Chem. Phys. 152, 214107
(2020)

9. A. Ghosh, N. Vaval, Geometry-dependent lifetime of
interatomic coulombic decay using equation-of-motion
coupled cluster method. J. Chem. Phys. 141, 234108–1
(2014)

10. P. Hoerner, W. Li, H.B. Schlegel, Angular depen-
dence of strong field ionization of 2-phenylethyl-n, n-
dimethylamine (penna) using time-dependent configu-
ration interaction with an absorbing potential. J. Phys.
Chem. A 124, 4777 (2020)

11. C.W. McCurdy, T.N. Rescigno, B.I. Schneider, Inter-
relation between variational principles for scattering
amplitudes and generalized R-matrix method. Phys.
Rev. A 36, 2061 (1987)

12. C. Winstead, V. McKoy, A.A. Noyes, Electron scat-
tering by small molecules. Adv. Chem. Phys. 96, 103
(1996)

13. P.G. Burke, In Many-body Atomic Physics, edited by
M. Baer and G. D. Billing (Cambridge University Press,
NewYork, 1998) pp. 376–401, pp. 305–324

14. U.V. Riss, H.-D. Meyer, Calculation of resonance ener-
gies and widths using the complex absorbing potential
method. J. Phys. B 26, 4503 (1993)

15. A.U. Hazi, H.S. Taylor, Stabilization method of calcu-
lating resonance energies: Model problem. Phys. Rev. A
1, 1109 (1970)

16. J.S.-Y. Chao, M.F. Falcetta, K.D. Jordan, Applica-
tion of the stabilization method to the N−

2 (12Πg) and
Mg−(12P ) temporary anion states. J. Chem. Phys. 93,
1125 (1990)

17. A. Landau, I. Haritan, P.R. Kaprálová-Ždánská, N. Moi-
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18. J. Horáček, I. Paidarová, R. Čuŕık, On a simple
way to calculate electronic resonances for polyatomic
molecules. J. Chem. Phys. 143, 184102–1 (2015)
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