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Abstract. We have investigated the relativistic quantum dynamics of a scalar field in an anisotropic back-
ground governed by the Lorentz symmetry violation. This analysis is done through a non-minimal coupling
in the Klein–Gordon equation, which is inspired by the CPT-odd gauge sector of the standard model exten-
sion. From the elaboration of a vector and electromagnetic field configuration as a possible Lorentz break
scenario, we induced an electric field which influences the scalar field. In this scenario, we show that it is
possible to determine two energy profiles for the system, that is, a description of the relativistic quantum
dynamics of the scalar field in the xy-plane and in all space-time.

1 Introduction

Although the standard model (SM) is the best theory
available to date to describe fundamental interactions,
with the exception of gravitational interaction, there
are some contradictions or lack of explanations about
the phenomena described by the SM. For example,
there is observational evidence that the fine-structure
constant is slowly changing [1,2], a constant that is
provided by the interaction between matter and light
well described by quantum electrodynamics [3], one of
the pillars of SM, there is evidence that neutrinos have
mass [4], which is contrary to what the SM describes.
In addition, more recent experimental data, in the con-
text of particle physics, intensify more questions about
the need for SM extensions, that is, recently, a muon is
used instead of an electron orbiting the atomic nucleus
of the hydrogen atom, pointing out that the proton
radius is little different from the theoretical predictions
[5]. Another question is the evidence that some parti-
cles detected in the Antarctic, despised as anomalies
because they do not fit into theories, are real and must
be taken into account [6,7].

Based on these pertinent questions about the SM,
there is a need for complementary or alternative theo-
ries to the SM. In this perspective, one of the theories
that has attracted a lot of attention from the scientific
community is the Lorentz symmetry violation (LSV),
whose main characteristic is the presence of anisotropies
in space-time governed by background fields of a vec-
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tor and tensorial nature [8,9]. With the vast study on
LSV [10–15] and its extensive applicability in theoret-
ical physics [16–25], the field theory that describes the
fundamental particles in an anisotropic background has
come to be known as the standard model extension
(SME) [26,27].

In the SME, there are several sectors corresponding
to the nature of the interaction particles [26,27]. For
example, there is the gauge sector, which is divided into
even and odd CPT sectors. This terminology is associ-
ated with CPT symmetry. In the even case, this means
that the Lorentz symmetry is broken, however, the CPT
symmetry is preserved; in the odd case, it means that
both symmetries are violated [28]. These two sectors
have been extensively analyzed in the context of rela-
tivistic quantum dynamics. In the case of the CPT-even
gauge sector, there are studies on a scalar field subject
to induced central potentials [29–32] and on the Klein–
Gordon oscillator [33,34]. On the other hand, the CPT-
odd gauge sector has been extensively analyzed in the
relativistic quantum dynamics of the Dirac field, for
example, on the Dirac oscillator [35] and on a Landau-
type quantization induced by the LSV [36]. Recently,
the relativistic quantum dynamics of a scalar field has
been analyzed only in Ref. [37], although the analysis is
incomplete, as the authors disregarded quadratic terms
from the non-minimum coupling, thus causing the loss
of possible effects of LSV on the quantum system in
the particular field configuration scenario considered.
Given this, our aim is to analyze the non-minimal cou-
pling of the CPT-odd gauge sector [28] in its complete
form in the Klein–Gordon equation and, from this theo-
retical point of view, address numerous possible scenar-
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ios of vector and electromagnetic field configurations in
an anisotropic space-time characterizing the breaking
of Lorentz symmetry.

In the present analysis, we have investigated the
effects of a central harmonic-type potential induced by
the LSV through a background vector and electromag-
netic field configuration, which correspond to a vec-
tor field of azimuth nature and an electric field that
varies linearly with the axial distance, respectively, from
which we determine the relativistic energy profile of this
anisotropic quantum system. We complement our anal-
ysis with the presence of a hard-wall confining potential.

The structure of this paper is as follows: in Sect. 2, we
have done the complete analysis of the Klein–Gordon
equation modified by the non-minimum coupling of the
CPT-odd gauge sector; in Sect. 3 we have analyzed a
possible LSV scenario through a choice of vector and
electromagnetic field configuration from which, in plane
(3.1) we induce a harmonic-type potential and thereby
determine the relativistic energy profile. This analysis is
also carried out in the presence of a rigid wall potential;
in Sect. 3.2, we investigated the effects of the harmonic-
type potential induced by LSV on a scalar field for k �= 0
from which we determine the lowest energy state of the
system; in Sect. 4, we present our conclusions.

2 General background

Despite the great success in explaining the origin of
fundamental particles by quantized fields, we need to
extend the standard model in order to achieve a more
fundamental theory. The search for manifestations of
primordial fields that may arise from manifestations of
anisotropies in space is our objective in this section.
Such proposal can be realized through non-minimal
couplings with background fields that can be felt by
local physical systems. Based on Ref. [38], recently
Vitória and Belich [37] proposed the non-minimal cou-
pling

∂μ → ∂μ − igF̃μνvν (1)

into Klein–Gordon equation in order to describe the rel-
ativistic quantum dynamics of a scalar particle in possi-
ble scenarios of Lorentz symmetry breaking, where g is
a coupling constant, F̃μν = 1

2εμναβFαβ is the dual elec-
tromagnetic tensor, with Fμν = ∂μAν −∂νAμ, and vμ is
vector field that governs the LSV. However, this modifi-
cation in the Klein–Gordon equation was not complete,
as the authors disregarded the quadratic terms from
the non-minimal coupling, causing a likely loss of phys-
ical effects which may be important in the final results.
Therefore, let us consider the Klein–Gordon equation
for a massive free scalar field φ (c = � = 1)

�φ − m2φ = 0, (2)

where m is rest mass of the scalar field and � ≡ ∂μ∂μ.
By considering the Minkowski space-time with cylindri-
cal symmetry described by the metric

ds2 = −dt2 + dρ2 + ρ2dϕ2 + dz2, (3)

with ρ = (x + y)1/2, Eq. (2) is rewritten as follows

−∂2
t φ + ∂2

ρ φ +
1

ρ
∂ρφ +

1

ρ2
∂2

ϕφ + ∂2
z φ − m2φ = 0, (4)

which describes the relativistic quantum dynamics of
free scalar field in the Minkowski space-time.

Then, by substituting Eq. (1) into Eq. (2) we obtain

(∂μ − igF̃μαvν)(∂μ − igF̃μβvβ) − m2φ = 0, (5)

or

�φ − 2ig(∂μφ)F̃μαvα − ig(∂μF̃μα)vαφ

− g2vαvαF̃μαF̃μαφ − m2φ = 0. (6)

We can go further with Eq. (6), because the term ∂μF̃μα

are the homogenous Maxwell equations. Thus, Eq. (6)
becomes

�φ − 2ig(∂μφ)F̃μαvα − g2vαvαF̃μαF̃μαφ − m2φ = 0.
(7)

As mentioned before, in Ref. [37] the third term of
Eq. (7) is disregarded, which makes the analysis incom-
plete. From now on, our analysis will take into account
the effects of this once neglected term. We can write
Eq. (7) in terms of the electric and magnetic field in
explicit form, that is,

�φ + 2ig(v.B)∂0φ + 2igv0(B.∇)φ − 2ig(v ×E).∇φ

+ g2v2
0B

2φ − g2(v.B)2φ − g2[(v2
2 + v2

3)E
2
1 + (v2

1 + v2
3)E

2
2

+ (v2
1 + v2

2)E
2
3 ]φ − m2φ = 0. (8)

We can note that, by considering all terms from
the non-minimal coupling of the Klein–Gordon equa-
tion, the equation is drastically modified, mainly with
the presence of the quadratic terms of the electric
and magnetic fields, which can provide quite interest-
ing physical effects in the scope of symmetry break-
ing of Lorentz. In addition, Eq. (8) represents a gen-
eral case which can be analyzed in particular scenar-
ios through less complex vector and electromagnetic
field configurations; by comparing Eq. (8) with Eq. (07)
of Ref. [37], we can see the extra term coming from
the consideration of the quadratic term of the LSV,
−g2[(v2

2 + v2
3)E

2
1 + (v2

1 + v2
3)E

2
2 + (v2

1 + v2
2)E

2
3 ]. From

now on, we will analyze one of these possible anisotropic
scenarios governed by a vector field associated with the
SME CPT-odd sector.
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3 Effects of a harmonic-type potential
induced by the LSV on a scalar field

Now we will establish a scenario for measuring fields
that generate anisotropies through non-minimum cou-
plings. Let us consider a background determined by the
vector vμ and electromagnetic field Fμν configuration in
the space-time described by the line element given in
Eq. (3)

vμ = (0, 0, vϕ, 0);
−→
E =

ϑρ

2
ρ̂;

−→
B = 0, (9)

where vϕ is a constant and ϑ is a constant associated
with a volumetric distribution of electric charges. This
electric field configuration has been studied in induced
electric dipole moment systems [39–42] and in LSV pos-
sible scenarios [28,43]. It is noteworthy that the field
configuration given in Eq. (9) differs from the config-
uration given in Ref. [37]. This difference only occurs
in the distribution of electrical charge; in Ref. (37) we
consider a Coulomb-type electric field. Then, for this
possible scenario given in Eq. (9), Eq. (8) becomes

− ∂2
t φ + ∂2

ρφ +
1
ρ
∂ρφ +

1
ρ2

∂2
ϕφ

+ ∂2
zφ + igvϕϑρ∂zφ − g2v2

ϕϑ2

4
ρ2φ − m2φ = 0.

(10)

In order to solve Eq. (10), let us consider the general
solution in terms of the eigenvalues l = 0,±1,±2, . . .
and −∞ < k < ∞, that is, angular momentum L̂z =
−i∂ϕ and linear momentum p̂z = −i∂z, respectively,
given in the form

φ(t, ρ, ϕ, z) = R(ρ)e−i(Et−lϕ−kz). (11)

By substituting Eq. (11) into Eq. (10), we have the
radial wave equation

d2R

dρ2
+

1
ρ

dR

dρ
− l2

ρ2
R − gvϕϑkρR

− g2v2
ϕϑ2

4
ρ2R + (E2 − m2 − k2)R = 0. (12)

Differential equation (12) describes the relativistic
quantum dynamics of a massive scalar field subjected to
an electric field that linearly varies with axial distance
which is induced by LSV governed by a vector field.
We can note that, in Eq. (12), we have a liner potential
term (fourth term) and a harmonic-type potential term
(fifth term). The presence this two terms, both induced
by LSV, gives us two cases to be analyzed: the quantum
system in the plane, by taking k = 0, and the general

case for k �= 0. From now on, we will analyze these two
cases.

3.1 Particular case: k = 0

3.1.1 Harmonic-type potential

Let us consider the case k = 0. In this particular case,
the relativistic quantum system is restricted in xy-plane
and Eq. (12) becomes

d2R

dρ2
+

1
ρ

dR

dρ
− l2

ρ2
R − g2v2

ϕϑ2

4
ρ2R + (E2 − m2)R = 0.

(13)

Equation (13) is radial wave equation that describes
the quantum motion of massive scalar field in xy-plane
under effects of an electric field that linearly varies
with axial coordinate in an anisotropic space-time gov-
erned by a constant vector field. In this case, we have a
harmonic-type potential in Eq. (13) which is induced by
LSV. This type of potential is extremely important, as
it is an ideal model for the description of systems char-
acterized by vibration around a reference point. This
feature has wide applicability in solids, condensed mat-
ter and molecular atomic physics [44]. In addition, the
harmonic-type potential has been extensively investi-
gated in several scenarios, for example, thermodynamic
properties [45], in a global monopole space-time [46], in
the cosmic string space-time [47] and in the presence of
a cosmic screw dislocation [48].

Now, we proceed with a change of variables given by
ξ = gvϕϑ

2 ρ2, and thus, we rewrite Eq. (13) in the form

d2R

dξ2
+

1
ξ

dR

dξ
− l2

4ξ2
R +

α

ξ
R − 1

4
R = 0, (14)

where we define the parameter

α =
E2 − m2

2gvϕϑ
. (15)

By imposing that radial wave function R(ξ) → 0
when ξ → 0 and ξ → ∞, we have that R(ξ) can be
written as follows:

R(ξ) = ξ
|l|
2 e− ξ

2 f(ξ). (16)

Then, by substituting Eq. (16) into Eq. (14), we obtain

ξ
d2f

dξ2
+ (|l| + 1 − ξ)

df

dξ
+

(
α − |l|

2
− 1

2

)
f = 0,

(17)

which is known as confluent hypergeometric equation
[49] and f(ξ) is the confluent hypergeometric function:
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f(ξ) =1 F1(A,B; ξ), with

A =
1
2

+
|l|
2

− α; B = |l| + 1. (18)

It is well known that the confluent hypergeometric
series becomes a polynomial of degree n = 0, 1, 2, . . .,
when the condition A = −n is satisfied [49]. Then, this
equality we obtain the expression

El,n = ±
√

m2 + 2mω

(
n +

|l|
2

+
1
2

)
, (19)

where

ω =
gvϕϑ

m
. (20)

Equation (19) represents the relativistic energy levels
of massive scalar field restricted in xy-plane and sub-
jected to an electric field that linearly varies with axial
coordinate in a LSV background governed by a constant
vector field. We can note the relativistic energy pro-
file (19) is produced by the harmonic-type interaction,
which is induced by a possible LSV scenario, which is
governed by a constant background vector field. In addi-
tion, we can also note that relativistic energy spectrum
is analogous to the energy levels calculated in Ref. [30].
However, there is a difference between these results, as
our result comes from the CPT-odd coupling inspired
by the SME gauge sector, while in Ref. [30] is used the
non-minimum CPT-even coupling inspired by the SME
gauge sector.

It is important to note that the relativistic energy
profile determined in Eq. (19) was only possible to
determine due to the consideration of quadratic terms
in Eq. (8). Since we are investigating a particular case
(k = 0) of the relativistic quantum dynamics of a scalar
particle in the xy-plane, the disregard of the quadratic
terms in Eq. (8), as it occurs in Ref. [37], would result
in the self-functions in terms of the Bessel cylindrical
harmonics [50].

3.1.2 Harmonic-type potential plus a hard-wall confining
potential

Now, let us consider the presence of a rigid wall poten-
tial in the scenario described in the previous section,
that is, a scalar field in the xy-plane subject to an LSV-
induced harmonic potential plus a potential described
by the following boundary condition:

R(ρ0) = 0, (21)

where ρ0 = const. From the mathematical point of
view, the boundary condition given in Eq. (21) is the
Dirichlet boundary condition; from the physical point
of view, Eq. (21) represents the presence of a hard-wall

potential in the system, that is, the radial wave func-
tion vanishes at a fixed radius ρ0. This type of poten-
tial has been analyzed on some relativistic quantum
systems, for example, on a scalar field under effects of
the relativistic Landau quantization and of the Klein–
Gordon oscillator in the space-time with torsion [51],
on the Dirac and Klein–Gordon oscillators in the global
monopole space-time [52] and in LSV scenarios [50,53].
The hard-wall confining potential is important because
it is a very good approximation to consider when dis-
cussing the quantum properties of a gas molecule sys-
tem and other particles, which are necessarily confined
in a box of certain dimensions. In addition to the fixed
radius ρ0, let us consider α � 1 and fixed angular
momentum eigenvalues l. In this conditions, the con-
fluent hypergeometric function 1F1(A,B; ξ0) becomes
[54]

1F1(A,B; ξ0) ≈ cos
(√

2Bξ0 − 4Aξ0 − B

2
π +

π

4

)
.

(22)

Thereby, by substituting Eqs. (16) and (22) into Eq.
(21), we obtain the expression

El,n = ±
√

m2 +
π2

ρ20

(
n +

|l|
2

+
1
2

)2

, (23)

which represents the relativistic energy profile of a mas-
sive scalar field under effects of a harmonic-type poten-
tial induced by the LSV plus a hard-wall potential in
xy-plane. We can note that, in this case, the scalar field
isn’t influenced by the harmonic-type central potential
induced by the LSV scenario, that is, the scalar field
is only influenced by the hard-wall confining potential;
the hard-wall potential inhibits the anisotropic effects
of LSV. By taking ρ0 → ∞, we recover the rest energy
of scalar field.

3.2 General case: k �= 0

In this section, we analyze the general case character-
ized by the definition k �= 0. In this case, in addition
to the presence of the harmonic-type potential, there is
also the presence of a central linear potential into Eq.
(12), both induced by LSV. It is worth mentioning that
the linear potential has been investigated in several sys-
tems of relativistic quantum mechanics, for example, in
quark–antiquark interaction [55], on a scalar field sub-
jected to the relativistic Landau quantization in space-
time with torsion [51] and in cosmic string space-time
[56], on a scalar field in Kaluza–Klein theory [57–60],
on a scalar field in Gödel-type space-time [61], in spin-
0 relativistic quantum particles in (1 + 2)-dimensions
Gürses space-time [62] and on the Klein–Gordon oscil-
lator in Minkowski space-time [63,64].
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Let us consider the variable change � =
√

gvϕϑ
2 ρ,

such that Eq. (12) becomes

d2R

d�2
+

1
�

dR

d�
− l2

�2
R − β�R − �2R + γR = 0,

(24)

where we define the follows parameters

β = 2k

√
2

gvϕϑ
; γ =

2(E2 − m2 − k2)
gvϕϑ

. (25)

The solution to Eq. (24) can be written in the form [56]

R(�) = �|l|e− 1
2�(�+β)h(�), (26)

where h(�) is an unknown function. Then, by substi-
tuting Eq. (26) into Eq. (24), we have the differential
equation

d2h

d�2
+

(
2|l| + 1

�
− 2� − β

)
dh

d�
+

(
δ − ε

�

)
h = 0,

(27)

with

δ = γ +
β2

4
− 2(1 + |l|); ε =

β

2
(2|l| + 1). (28)

Eq. (27) is known as the biconfluent Heun equation
[56,65] and h(�) is the biconfluent Heun function:

h(�) = Hb

(
2|l|, β, γ +

β2

4
, 0; �

)
. (29)

Eq. (27) contains two singular points: the origin and
the infinite, a regular singular point and an irregular
singular point, respectively [56]. Since the origin is a
regular singular point, Eq. (27) has at least one solution
around this point given by the power series [49,56]:

h(�) =
∞∑
0

cj�
j . (30)

By substituting Eq. (30) into Eq. (27), we obtain the
recurrence relation

cj+2 =
[β(j + 1) + ε]cj+1 − (δ − 2j)cj

(j + 2)(j + 2 + 2|l|) , (31)

with the coefficients

c1 =
ε

1 + 2|l|c0 =
β

2
c0;

c2 =
(β + ε)c1 − δc0

2(2 + 2|l|) =
c0

4(1 + |l|)
[

(β + ε)ε
(1 + 2|l|) − δ

]
.

(32)

Our aim is to determine solutions of bound states.
Therefore, we must truncate the biconfluent Heun
power series (30) and this procedure is possible through
the following conditions [56]:

cn̄+1 = 0; δ = 2n̄, (33)

where n̄ = 1, 2, 3, . . . are the radial modes. From now
on, we must analyze these two conditions by imposing
values of n̄ separately. In this case, let us consider the
radial mode n̄ = 1, which represents the lowest energy
state of the relativistic quantum system, that is, for
n̄ = 1 in the condition cn̄+1 = 0 we obtain c2 = 0.
Then, imposing this condition in Eq. (32), we obtain
the following expression

ϑk,l,1 =
k2

gvϕ
(2|l| + 3). (34)

Eq. (34) gives us the allowed values for the parame-
ter associated to the volumetric distribution of electric
charges corresponding to the radial mode n̄ = 1. For the
lowest energy state of the relativistic quantum system,
this permit us to construct a first degree polynomial
to the biconfluent Heun series (30). Since the allowed
values of the parameter associated to the volumetric
distribution of electric charges are determined by the
quantum numbers {k, l, n̄}, we have labeled ϑ = ϑk,l,n̄

with k �= 0, where we have assumed assume that the
parameter ϑ can be adjusted in such a way that the
condition cn̄+1 = 0 is satisfied for any value of n̄.

From the condition δ = 2n̄, for n̄ = 1, we have

E2
k,l,1 = m2 + gvϕϑk,l,1(2 + |l|). (35)

Then, by substituting Eq. (34) into Eq. (35), we obtain
the expression

Ek,l,1 = ±
√

m2 + k2(2|l| + 3)(|l| + 3), (36)

which represents the allowed values of relativistic
energy for the lowest energy state of the quantum sys-
tem. By comparing Eqs. (19) and (36), we can see that
the system relativistic energy levels are drastically mod-
ified. This modification results from the condition k �= 0
which induces a linear central potential in the system.
In addition, the lower energy state is determined by the
radial mode n̄ = 1, in contrast to the quantum number
n = 0 as obtained in Eq. (19). We can also note that,
in contrast to Eq. (19), the lowest energy state of the
quantum system (36) doesn’t depend of the parameters
associated to LSV, that is, the lowest energy state of
the relativistic quantum system isn’t influenced by the
anisotropic background.
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4 Conclusion

We have analyzed the relativistic quantum dynamics
of a scalar field in a possible CPT-odd LSV scenario.
For this, through a non-minimal coupling in the Klein–
Gordon equation, we modified it in order to investi-
gate the possible anisotropic effects governed by a vec-
tor field which violates the CPT symmetry and, con-
sequently, violates the Lorentz symmetry. Differently
from Ref. [37], we consider all terms from the non-
minimum coupling, taking into account the quadratic
terms, previously neglected.

Having made the complete modification in the Klein–
Gordon equation, we propose a Lorentz break scenario,
which, from a theoretical point of view, is possible and
is characterized by a simple azimuth vector and electro-
magnetic field configuration defined by the absence of
a magnetic field and by the presence of an electric field
that varies linearly with the axial coordinate. Through
this particular scenario, we can notice the induction of
a central harmonic-type potential plus a linear poten-
tial on the relativistic quantum system. So, we analyze
our system in two parts: in the plane and in the whole
space, that is, for k = 0 and k = 1, respectively.

We can notice that, in the plane, the radial wave
equation is reduced in a quantum system of a massive
scalar field in interaction with a harmonic-type poten-
tial, where it is possible to obtain a relativistic energy
profile of a relativistic oscillator, where the frequency
of the oscillator is determined by the parameters asso-
ciated with the LSV. In addition, we can also note that
this harmonic-type potential induced by LSV in the
presence of a rigid wall potential does not influence the
scalar field, that is, the hard-wall confinement potential
inhibits the anisotropic effects on the scalar field.

In the general case characterized by k �= 1, we can
note that the relativistic energy levels of the system are
drastically modified. This occurs due to the presence
of the linear potential in the system competing with
a harmonic-type potential, both induced by LSV. This
modification is perceived by the following effects: unlike
the system previously analyzed, the lowest energy state
of the system is determined by the radial mode n̄ = 1
and not by n = 0; it is not possible to obtain a closed
expression for the relativistic energy levels, but to deter-
mine the allowed energy values for the radial modes sep-
arately; in addition to relativistic energy, the permitted
values of the parameter associated with the volumetric
distribution of electrical charges is determined by the
quantum numbers of the system; the lowest energy state
of the relativistic quantum system isn’t influenced by
the anisotropic background.
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35. R.L.L. Vitória, H. Belich, Eur. Phys. J. Plus 135, 247

(2020)
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64. R.L.L. Vitória, K. Bakke, Ann. Phys. 370, 128 (2016)
65. A. Ronveaux, Heun’s Differential Equations (Oxford

University Press, Oxford, 1995)

123

https://doi.org/10.1007/s13538-020-00785-4

	Effects of a harmonic-type potential on a scalar field in a background of CPT-odd Lorentz symmetry violation
	1 Introduction
	2 General background
	3 Effects of a harmonic-type potential induced by the LSV on a scalar field
	3.1 Particular case: k=0
	3.1.1 Harmonic-type potential
	3.1.2 Harmonic-type potential plus a hard-wall confining potential

	3.2 General case: kneq0

	4 Conclusion
	Author contributions
	References
	References




