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Abstract. We analyse the attractive inverse-square-type potential that arises from the interaction of the
magnetic quadrupole moment of a neutral particle with the magnetic field. Then, we search for bound state
solutions to the Schrödinger equation. Besides, we analyse the repulsive inverse-square-type potential that
arises from the interaction of the magnetic quadrupole moment of a neutral particle with the magnetic
field. Thus, we discuss the influence of this repulsive inverse-square-type potential on the neutral particle
subject to two cylindrical surfaces and a cylindrical surface.

1 Introduction

In recent decades, the magnetic quadrupole moment
has drawn attention in quantum physics due to the
studies of geometric quantum phases [1,2], noncom-
mutative quantum mechanics [3] and under the effects
of rotation [4]. The main interest in the magnetic
quadrupole moment is in systems with molecules [5,6]
and atoms [7,8], but it goes further by exploring the
chiral anomaly [9], the violation of the time-reversal
symmetry in molecules [10] and the violation of CP -
symmetry [11]. Recently, the appearance of effective
uniform magnetic fields [2,12] and Coulomb-type inter-
actions [13,14] from the interaction of the magnetic
quadrupole moment with external fields has been anal-
ysed in search of bound states. In chemical physics, it
is worth citing studies of nuclear quadrupole moments
[15–20] and molecular quadrupole moments [21,22].

Based on the appearance of analogues of the Landau
quantization [2,12] and the Coulomb interaction [13] in
the magnetic quadrupole moment system, other inter-
actions can rise and show bound states. For instance,
a singular potential like the attractive inverse-square
potential is an interesting topic for discussion. From the
analysis of singular potentials, Case [23] made one of
the first studies that involves attractive inverse-square
potentials. Landau and Lifshitz [24] also investigated
the attractive inverse-square potential and showed its
unusual behaviour, which they called as the fall of the
particle to the centre. This unusual behaviour is char-
acterized by having energy levels that go to −∞ when
the limit r0 → 0 is taken on the short-distance cut-off
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r0. At present days, studies of the attractive inverse-
square potential can be found in systems of atoms
that interact with the magnetic field of a ferromag-
netic wire [25] and with the electric field produced by
a long charged wire [26–28]. Other studies have dealt
with the Efimov effect [29], the generalized uncertainty
principle [30] and the Aharonov–Bohm effect [31]. In
the interface of quantum mechanics and general rel-
ativity, the inverse-square potential has been investi-
gated from nonrelativistic effects on a scalar field in
the Reissner–Nordström black hole spacetime [32] and
from the AdS/CFT correspondence [33–35].

Thereby, in this work, we raise a discussion about
the attractive inverse-square potential that can rise in a
magnetic quadrupole moment system. The appearance
of this singular potential is due to the interaction of
the magnetic quadrupole moment of a neutral particle
with the magnetic field produced by a long cylindri-
cal wire. We show that this interaction gives rise to an
attractive inverse-square-type potential; thus, we search
for bound state solutions to the Schrödinger equation.
Further, we show another perspective where this inter-
action can give rise to a repulsive inverse-square-type
potential. We thus analyse the quantum effects of the
repulsive inverse-square-type potential on the neutral
particle subject to two cylindrical surfaces and a cylin-
drical surface.

The structure of this paper is: in Sect. 2, we show that
an attractive inverse-square potential can arise from the
interaction of the magnetic quadrupole moment of a
neutral particle with an external magnetic field and
obtain the bound state solutions to the Schrödinger
equation; in Sect. 2.2, we discuss the case where a repul-
sive inverse-square potential arises from the interaction
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between the magnetic quadrupole moment of a neutral
particle and an external magnetic field. Thus, we anal-
yse the confinement of this neutral particle to two cylin-
drical surfaces and to a cylindrical surface; in Sect. 3,
we present our conclusions.

2 Interaction with an azimuthal magnetic
field

In the rest frame of the neutral particle, such as an
atom or a molecule, the potential energy that describes
the interaction of the magnetic quadrupole moment of
the (spinless) neutral particle with a magnetic field is
given by Vm = −∑

i

∑
j Mij ∂i Bj [36,37], where Mij is

the magnetic quadrupole moment tensor and �B is the
magnetic field. In addition, the tensor Mij is a sym-
metric and traceless tensor. On the other hand, when
the neutral particle moves with velocity v � c (c is the
velocity of light), the quantum description of interac-
tion of the magnetic quadrupole moment of the (spin-
less) neutral particle with external fields is given by the
time-independent Schrödinger equation (with the units
� = 1 and c = 1) [2,12,13]:

Eφ =
1

2m

[
p̂ − �M × �E

]2

φ − �M · �B φ. (1)

Note that the components of the vector �M are deter-
mined by Mi =

∑
j Mij ∂j . The fields �B and �E are the

electric and magnetic fields in the laboratory frame,
respectively. Moreover, m corresponds to the mass of
the neutral particle, p̂ = −i�∇ is the momentum opera-
tor, and E corresponds to the energy eigenvalue.

In this work, we assume that the non-null compo-
nents of the tensor Mij are given by

Mr ϕ = Mϕ r = M, (2)

where M is a constant (M > 0). From now on, our
focus is on the arising of an inverse-square-type poten-
tial [23,28,38–40] from the interaction of magnetic
quadrupole moment (21) with a magnetic field. We shall
discuss the arising of attractive and repulsive inverse-
square potentials and the possibility of obtaining bound
state solutions to Schrödinger equation (1). Recently,
one of us has studied the arising of inverse-square-
type potentials in a spin-dependent potential [41], from
Lorentz symmetry breaking effects [42] and in a sys-
tem of a neutral particle with an induced electric dipole
moment [43].

2.1 Attractive inverse-square-type potential

Let us consider the magnetic field produced by a long
cylindrical wire of radius R0, where the electric current
i0 is uniformly distributed inside the wire. Then, the

magnetic field at r > R0 is given by

�B = −I

r
ϕ̂, (3)

where I = μ0 i0
2π > 0 and ϕ̂ is a unit vector that indicates

the azimuthal direction. With the magnetic quadrupole
tensor given in Eq. (2) and azimuthal magnetic field (3),
hence, the last term of the right-hand side of Eq. (1)
becomes

Veff (r) = − �M · �B = −M I

r2
. (4)

Thereby, Eq. (4) shows us that the interaction of the
magnetic quadrupole moment with the azimuthal mag-
netic field gives rise to an attractive inverse-square
potential [23,28,38–42].

Hence, Schrödinger equation (1) becomes

Eφ = − 1
2m

[
∂2φ

∂r2
+

1
r

∂φ

∂r
+

1
r2

∂2φ

∂ϕ2
+

∂2φ

∂z2

]

− M I

r2
φ.

(5)

With the purpose of solving Eq. (5), let us write
φ (r, ϕ, z) = G (ϕ) Z (z) u (r). After substituting ψ into
Eq. (5), we obtain G (ϕ) = ei � ϕ and Z (z) = eipzz,
where � = 0,±1,±2, . . . and pz is a constant. In addi-
tion, the function u (r) is the solution to the following
second-order differential equation:

u′′ +
1
r

u′ −
(
�2 − 2mMI

)

r2
u +

(
2mE − p2

z

)
u = 0.

(6)

Our focus is on the bidimensional system; therefore,
let us take pz = 0. Furthermore, let us deal with s-
waves from now on. The s-waves are defined when we
consider � = 0. From this perspective, radial equation
(6) becomes

u′′ +
1
r

u′ +
2mMI

r2
u + 2mE u = 0. (7)

In the search for bound state solutions, let us consider
E < 0 [44–47] and define the parameter:

ζ =
√−2mE . (8)

In this way, radial equation (7) is rewritten in the form:

u′′ +
1
r

u′ +
2mMI

r2
u − ζ2 u = 0. (9)

Let us define ξ = ζ r, thus, radial equation (9)
becomes

u′′ +
1
ξ

u′ +
2mMI

ξ2
u − u = 0. (10)
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Second-order differential equation (10) is known in the
literature as the Bessel differential equation [28,38–40].

Let us impose that u (ξ) → 0 when ξ → ∞, then, the
solution to Eq. (10) is given in terms of the modified
Bessel function of third kind of imaginary order [28,38,
40,44–46]:

u (ξ) = c1 Ki
√

2mMI (ξ) , (11)

where c1 is a constant.
Next, we assume that the radius R0 of the cylindri-

cal wire is very small. This permits us to impose that
the wave function vanishes at a short-distance cut-off
r0 = R0 in agreement with Refs. [44–47]. Thereby, we
can write ξn = ζn r0 = ζn R0, and thus, we have the
boundary condition:

u (ξn) = c1 Ki
√

2mMI (ξn) = 0. (12)

Obverse that, with this short-distance cut-off r0 = R,
we can assume that ξn � 1. As a consequence, the
function Ki

√
2mMI (ξn) can be written in the form [23,

28,38,40]:

Ki
√

2mMI (ξn) ≈
√

π
√

2mMI sinh
(
π
√

2mMI
)

× sin
(√

2mMI ln (ξn/2) + δ
)

, (13)

where δ is a constant [23,28,38,40]. Hence, by substi-
tuting (13) into Eq. (12), we obtain

ξn =
2

eδ/
√

2mMI
eνπ/

√
2mMI , (14)

where ν = 0,±1,±2,±3, . . .. With the aim of having
the condition ξn � 1 satisfied, the possible values of
the parameter ν are given by ν = −n < 0, where n =
1, 2, 3, 4, . . . [47]. Thereby, after substituting ξn = ζn R0

and Eq. (8) into Eq. (14), the energy eigenvalues, for
s-waves, are given by

En = − 2
mR2

0 e2δ/
√

2mMI
e−2nπ/

√
2mMI , (15)

where n = 1, 2, 3, . . . is the radial quantum number.
The eigenvalues of energy (15) stem from the inter-

action of the magnetic quadrupole moment of neutral
particle (2) with azimuthal magnetic field (3). These
eigenvalues of energy are obtained for s-waves when we
impose that the radial wave function is well-behaved
at r → ∞ and vanishes at a short-distance cut-off
r0 = R0. An interesting aspect of energy levels (15)
is that En → −∞ when R0 → 0. This aspect of the
energy levels means that no ground state exists and
corresponds to what Landau and Lifshitz [24] called as
the fall of the particle to the centre. Hence, the energy
levels are finite due to the presence of the short-distance

cut-off r0 = R0. In other words, the short-distance cut-
off r0 = R0 is responsible for the renormalization of the
energy levels [47].

Another aspect of the spectrum of energy (15) is
that it decreases exponentially with the radial quantum
number n. Then, when n → ∞ we have that En→∞ → 0.
With the increase in the quantum number n, the energy
eigenvalues become closer to the energy level En = 0.
This yields a point of accumulation of energy levels in
the energy level En = 0. The ground state, by con-
trast, is determined by n = 1; thus, its energy is given
by E1 = − 2

m R2
0 e2δ/

√
2mMI

e
− 2π√

2mMI . Thereby, the energy
eigenvalues for s-waves are defined in the range:

− 2
mR2

0 e2δ/
√

2mMI
e

− 2π√
2mMI ≤ En ≤ 0. (16)

Observe that for other values of the quantum number
�, i.e. for � 	= 0, bound states associated with an inverse-
square potential can be achieved if 2mMI > �2. In this
case, we can define in radial equation (6) the parame-
ter:

α2 = 2mMI − �2, (17)

and thus, with pz = 0, radial equation (6) would be
written in the form:

u′′ +
1
r
u′ +

α2

r2
u + 2mE u = 0. (18)

Then, after following the steps from Eq. (8) to Eq. (14),
we obtain the energy levels:

En, � = − 2
mR2

0 e2δ/α
e−2nπ/α, (19)

which are determined in terms of the parameter α.
Observe that Eq. (15) is a particular case of Eq. (19).
Besides, the eigenvalues of energy En, � are also defined
in range (16).

Finally, a point to be observed with respect to the
interaction of the magnetic quadrupole moment deter-
mined in Eq. (2) and the azimuthal magnetic field is
that the eigenvalues of energy given in Eqs. (15) and
(19) are no longer obtained if we have �2 > 2mMI
or if the direction of the magnetic field is changed. We
shall discuss this point in the following.

2.2 Repulsive inverse-square-type potential

Let us begin by observing that if �2 > 2mMI, then, the
parameter α in Eq. (17) becomes an imaginary number.
Therefore, the solution to radial equation (6) or (18)
that we have obtained previously is no longer valid.
Another perspective is given if we change the direction
of the azimuthal magnetic field:

�B = +
I

r
ϕ̂, (20)
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where I > 0 has been defined in Eq. (3). In this case,
with the magnetic quadrupole moment tensor defined
in Eq. (2), the last term of the right-hand side of Eq.
(1) becomes

Veff (r) = − �M · �B = +
M I

r2
. (21)

In this case, the interaction of the magnetic quadrupole
moment with azimuthal magnetic field (20) gives rise to
a repulsive inverse-square potential [41]. Thereby, with
pz = 0, radial equation (6) becomes

u′′ +
1
r

u′ −
(
�2 + 2mMI

)

r2
u + 2mE u = 0. (22)

Henceforth, we assume that E > 0 and define the
parameters:

λ2 = �2 + 2mMI;
β2 = 2mE . (23)

In this way, radial equation (22) becomes

u′′ +
1
r

u′ − λ2

r2
u + β2 u = 0. (24)

Hence, Eq. (24) is the Bessel differential equation
[48], where its general solution is given by

u (r) = a1 J|λ| (β r) + a2 N|λ| (β r) , (25)

where a1 and a2 are constants, and J|λ| (βr) and
N|λ| (βr) are the Bessel functions of first and second
kinds, respectively [48,49].

Let us assume that the neutral particle is confined to
a region between two cylindrical surfaces r = R0 and
r = R1, where R1 > R0 are fixed [50]. This confine-
ment gives two boundary conditions:

u (R0) = 0; u (R1) = 0. (26)

Observe that the boundaries of the region R0 < r <
R1 are impenetrable, which means the radial wave

function vanishes at the boundaries and outside them.
By substituting (25) in boundary conditions (26), we
obtain:

J|λ| (β R0) N|λ| (β R1) − J|λ| (β R1) N|λ| (β R0) = 0.
(27)

Next, we analyse a particular case where we consider
β R0 
 1 and β R1 
 1. For a fixed ζ, then, we can use
Hankel’s asymptotic expansion [48,50]:

J|λ| (yi) ≈
√

2
π yi

[

cos
(

yi − λπ

2
− π

4

)

− 4λ2 − 1
8yi

sin
(

yi − λπ

2
− π

4

)]

;

(28)

N|λ| (yi) ≈
√

2
π yi

[

sin
(

yi − λπ

2
− π

4

)

+
4λ2 − 1

8yi
cos

(

yi − λπ

2
− π

4

)]

,

where we have labelled yi = βR0, βR1. By substituting
the functions given in Eq. (28) into Eq. (27), we can
write [50]:

β2 ≈ n̄2π2

(R1 − R0)
2 +

4λ2 − 1
4R0R1

, (29)

where n̄ = 0, 1, 2, 3, . . . describes the radial quantum
number. Thus, by using Eq. (23) we obtain the energy
levels En, �:

En̄, � ≈ n̄2π2

2m (R1 − R0)
2 +

4λ2 − 1
8mR1R0

. (30)

Hence, we have obtained energy levels (30) when the
neutral particle is confined to a region between two
cylindrical surfaces under the influence of the repul-
sive inverse-square potential. It is worth emphasizing
that this repulsive inverse-square potential stems from
the interaction of magnetic quadrupole moment (2) and
azimuthal magnetic field (20). The repulsive inverse-
square potential influences the energy levels through
the presence of the parameter λ.

Let us proceed our discussion with the confinement
of the neutral particle to a cylindrical surface. This kind
of confinement is given by the limit R1 → R0. However,
by taking R1 → R0 in Eq. (30), we have that En̄, � →
∞. According to Refs. [50–52], we can obtain a finite
spectrum of energy by introducing an attractive scalar
potential:

Vn̄ = − n̄2π2

2m (R1 − R0)
2 . (31)

This attractive scalar potential is introduced in the
region between the cylindrical surfaces. Therefore, with
the introduction of this attractive scalar potential, the
divergence that stems from the radial modes is removed
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when we take the limit R1 → R0. Hence, from Eq. (30),
we obtain the energy levels:

E� ≈ λ2

2mR2
0

− 1
8mR2

0

. (32)

Energy levels (32) stem from the confinement of the
neutral particle to a cylindrical surface under the influ-
ence of the repulsive inverse-square potential. The influ-
ence of the repulsive inverse-square potential is also
observed through the presence of the parameter λ in
energy levels (32). Note that the last term of Eq. (32)
corresponds to the Costa term [53]. It arises from the
dynamics of a particle in a two-dimensional surface
inside a three-dimensional space.

An interesting point to be observed is that if we
have considered magnetic field (3); thus, the repulsive
inverse-square potential is achieved when �2 > 2mMI.
In this case, the parameter α defined in Eq. (17)
becomes an imaginary number, i.e. α = i α′, where
α′ = �2 − 2mMI. Thereby, energy levels (30) and (32)
would be given in terms of the parameter α′. However,
these energy levels are valid for � 	= 0. In the case � = 0,
the parameter α′ gives rise to the attractive inverse-
square potential as well as the parameter α that we
have seen in the previous section; thus, Eqs. (30) and
(32) are no longer valid.

3 Conclusions

We have seen that the interaction of the magnetic
quadrupole moment of a neutral particle with an
azimuthal magnetic field can yield an effective scalar
potential that plays the role of attractive or repulsive
inverse-square potentials. In the case of the attractive
inverse-square-type potential, we have obtained bound
state solutions to the Schrödinger equation by imposing
that the radial wave function is well-behaved at r → ∞
and vanishes at a short-distance cut-off r0 = R0. Then,
we have seen that the spectrum of energy is discrete
and characterized by decreasing exponentially with the
radial quantum number n. Besides, the spectrum of
energy has a point of accumulation in the energy level
En, � = 0 as n → ∞. Another aspect of the spectrum of
energy is En, � → −∞ when R0 → 0, which is called by
Landau and Lifshitz [24] as the fall of the particle to
the centre.

With respect to the repulsive inverse-square-type
potential, we have analysed its influence on the con-
finement of the neutral particle to two cylindrical sur-
faces and also to a cylindrical surface. We have seen
that the spectra of energy are discrete, but they are
valid for � 	= 0. Otherwise, we do not have the repulsive
inverse-square-type potential and the energy levels are
no longer valid.

Recently, the Rényi entropy [54,55] has been stud-
ied from the bound states obtained in the non-central
Kratzer potential [56]. Therefore, from the bound states

obtained in this work, an interesting perspective of
exploring the attractive inverse-square-type potential
is in studies of the Rényi entropy [54,55]. Another per-
spective is in studies of the thermodynamics properties
of quantum systems. In recent years, the thermody-
namics properties have been studied from the bound
states of a radial scalar power potential [57], a quan-
tum ring [58], the harmonic oscillator in the presence
of global monopole [59], the Landau-Aharonov-Casher
quantization under the influence of a disclination [60]
and the Dirac oscillator [61]. Thereby, from the dis-
crete spectrum of energy obtained in Eqs. (15) and
(19), the study of the thermodynamics properties of the
attractive inverse-square-type potential proposed in the
present work is an interesting topic for discussion.
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