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Abstract. In this work we extend a multi term solution of the Boltzmann equation for electrons in neutral
gases to consider the third-order transport coefficient tensor. Calculations of the third-order transport
coefficients have been carried out for electrons in noble gases, including helium (He), neon (Ne), argon
(Ar), krypton (Kr) and xenon (Xe) as a function of the reduced electric field, E/n0 (where E is the electric
field while n0 is the gas number density). Three fundamental issues are considered: (i) the correlation
between the longitudinal component of the third-order transport tensor and the longitudinal component
of the diffusion tensor, (ii) the influence of the third-order transport coefficients on the spatial profile of
electron swarm, and (iii) the errors associated with the two term approximation for calculating the third-
order transport coefficients for electron swarms in noble gases. It is found that a very strong correlation
exists between the longitudinal components of the third-order transport coefficient tensor and diffusion
tensor for the higher values of E/n0. The effects of the third-order transport coefficients on the spatial
profile of electron swarms are the most pronounced for noble gases with the Ramsauer-Townsend minimum
in the cross sections for elastic scattering. The largest errors of two term approximation are observed in
the off-diagonal elements of the third-order transport coefficient tensor in Ar, Kr and Xe for the higher
values of E/n0.

1 Introduction

The investigation of charged particle transport in neu-
tral gases has a wide range of applications, ranging from
the modeling of swarm experiments [1–5] and modeling
of low-temperature plasmas [6,7], to high-voltage technol-
ogy [8] and modeling of particle detectors used in high-
energy physics [9,10]. While there is a rich amount of data
concerning the lower-order transport coefficients, includ-
ing the drift velocity, diffusion coefficients and rate coef-
ficients, for both electrons and ions, [11,12] and recently
for positrons [13,14], the third-order transport coefficients
are still largely unexplored as they are difficult to measure,
and difficult to investigate theoretically.

The third-order transport coefficient tensor is required
for the conversion of hydrodynamic transport coefficients
into transport data that are measured in the arrival time
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spectra [15,16] and the steady-state Townsend experi-
ments [4]. In addition, the third-order transport coeffi-
cients are needed for the representation of the spatial
distribution of the swarm under conditions where this dis-
tribution deviates from the ideal Gaussian. Moreover, the
third-order transport coefficients would be very useful in
the swarm procedure for determining the sets of cross
sections for the scattering of electrons and/or ions with
neutral particles, if these transport coefficients were both
calculated and measured with sufficient accuracy [17,18].

The third-order transport coefficients have been investi-
gated by several authors. Whealton and Mason have deter-
mined the structure of the third-order transport tensor
for an electric field only situation, and have calculated
third-order transport coefficients for electrons assuming
the constant collision frequency model gas [19]. Penetrante
and Bardsley calculated the third-order transport coeffi-
cients for electrons in He, Ne and Ar by using the Monte
Carlo simulations and a two term approximation for solv-
ing the Boltzmann equation [17]. Vrhovac and co-workers
investigated the third-order transport tensor for electrons
in He, Ne and Ar by employing the momentum transfer
theory [18]. Koutselos studied the third-order transport
coefficients of ions in atomic gases by using the molecular
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dynamics simulations and a three-temperature method
for solving Boltzmann’s equation [21–24]. The equality of
the higher-order transport coefficients between an elec-
tron swarm developing from multiple electron sources
and another originating from a single electron source was
investigated by Sugawara and Sakai [25]. The third-order
transport coefficients for electrons in methane (CH4) and
sulfur hexafluoride (SF6) have been recently investigated
by Kawaguchi and co-workers via Monte Carlo simula-
tions [16]. They have also derived the relation between
the longitudinal third-order transport coefficient and the
alpha-parameters, by using the theory of arrival time spec-
tra of an electron swarm initially developed by Kondo
and Tagashira [15]. Petrović and co-workers also recently
investigated the third-order transport coefficient tensor for
electrons in CH4 by using Monte Carlo simulations and
the multi term method for solving the Boltzmann equa-
tion [26]. Finally, Stokes and co-workers have studied the
third-order transport coefficients for localized and delocal-
ized charged-particle transport [27].

In this work we extend the multi term solution of
Boltzmann’s equation with the aim of investigating behav-
ior of third-order transport coefficients in noble gases. As
noble gases have simpler cross section sets than molecu-
lar gases, they are a good starting point for studying the
third-order transport coefficients. Moreover, it is interest-
ing to investigate the influence of the Ramsauer-Townsend
minimum on the third-order transport tensor for electrons
in Ar, Kr and Xe, as it can be expected that a rapid varia-
tion of the cross section for elastic collisions in these gases
will leave a distinguishable signature on the profiles of the
third-order transport coefficients. Moreover, if the compo-
nents of the third-order transport tensor have very high
values for electrons in Ar, Kr and Xe at low electric fields,
due to the presence of the Ramsauer-Townsend minimum,
they could also have a significant influence on the spatial
profile of a swarm of electrons under these conditions.

The paper is organized as follows. In Section 2.1 we
present the basic elements of the theory and definition
of the third-order transport tensor. In Section 2.2 we
describe the multi term method for solving the Boltzmann
equation used in the present work where special emphasis
is placed on the relating the third-order transport coef-
ficients and the moments of the distribution function.
In Section 3.1 we describe the cross sections used as an
input to solve Boltzmann’s equation and the conditions
of our calculations. In Section 3.2 we analyze the E/n0-
dependence of mean energy for electrons in He, Ar, Kr
and Xe. In Section 3.3 we investigate the variation of the
third-order transport coefficients with E/n0 for electrons
in four noble gases. In Section 3.4 we study correlation
between the longitudinal component of the third-order
transport tensor and the longitudinal component of the
diffusion tensor for electrons in He, Ne, Ar, Kr and Xe.
In Section 3.5 we consider the influence of the third-order
transport coefficients on the spatial profile of the swarm
for electrons in these five gases. Finally, in Section 3.6 we
discuss the errors associated with the two term approxima-
tion for solving the Boltzmann equation in the framework
of calculations of the third-order transport coefficients for

electrons in noble gases. Our conclusions are summarized
in Section 4.

2 Theory: definitions and methods
of calculation

2.1 Definition of the third-order transport coefficient
tensor

In the present work, we consider a swarm of electrons
which moves in an infinite and homogeneous background
gas under the influence of a constant and uniform elec-
tric field. The z axis of the system is oriented along the
direction of the electric field. The number density of elec-
trons is very low and hence, the space charge effects and
collisions between electrons are considered to be negligi-
ble. The background gas is regarded to be in a thermo-
dynamic equilibrium at a temperature T0, and the effect
of the swarm on the state of the background gas can
be neglected. The swarm of electrons is represented by
the phase space distribution function f(r, c, t), which is a
function of position r, velocity c and time t.

The continuity of the swarm in the configuration space
is expressed by the following equation

∂n(r, t)
∂t

+∇ · Γ(r, t) = S(r, t), (1)

where n(r, t) is the number density of electrons, while
Γ(r, t) and S(r, t) are the flux of electrons and the source
term, respectively. The number density of electrons can be
expressed in terms of the phase space distribution function
f(r, c, t) as

n (r, t) =
∫
f (r, c, t) dc, (2)

where integration is performed over the entire velocity
space.

When the swarm is located far from boundaries of
the system, and far from sources and sinks of charged
particles, and when the applied electric field is spatially
uniform, the swarm can enter the hydrodynamic regime
[2,28]. In the hydrodynamic regime all space-time depen-
dence of the phase space distribution function may be
expressed in terms of functionals of the number density
n (r, t). Under the hydrodynamic conditions, the phase
space distribution function can be represented by the fol-
lowing expression

f (r, c, t) =
∞∑
k=0

f (k) (c, t)� (−∇)k n (r, t), (3)

where f (k) (c, t) are time-dependent tensors of rank k
and � denotes a k-fold scalar product. This expres-
sion is known as the density gradient expansion of the
phase space distribution function [28]. If the background
electric field is static, the tensors f (k) (c, t) are inde-
pendent of time, after the swarm has relaxed to a sta-
tionary state. In the hydrodynamic regime, the flux of
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velocity of charged particles is defined by the flux gradient
relation

Γ (r, t) =
∞∑
k=0

Γ(k+1) � (−∇)k n (r, t), (4)

where the superscripts (k) denote the order of the density
gradient, while (k + 1) denote the ranks of the tensors
Γ(k+1). These tensors represent the flux transport coef-
ficients [29]. By truncating the flux gradient relation at
k = 2, the following equation is obtained

Γ (r, t) = W(f)n (r, t)−D(f) �∇n (r, t)

+ Q(f) � (∇⊗∇)n (r, t) , (5)

where ⊗ is the tensor product, W(f) and D(f) are the flux
drift velocity and the flux diffusion tensor, respectively,
while Q(f) defines the flux third-order transport coefficient
tensor.

For an electric field only configuration, the third-order
transport coefficient tensor has seven non-zero elements of
which three are independent [19]. The independent com-
ponents of the third-order transport tensor are Q(f)

xxz, Q
(f)
zxx

and Q
(f)
zzz. Other non-zero components are related to the

independent components by the following symmetry rela-
tions [19]:

Q(f)
xzx = Q(f)

xxz = Q(f)
yyz = Q(f)

yzy, (6)

Q(f)
zyy = Q(f)

zxx. (7)

The longitudinal and transverse third-order transport
coefficients are defined as:

Q
(f)
L = Q(f)

zzz, Q
(f)
T =

1
3

(Q(f)
xxz +Q(f)

xzx +Q(f)
zxx). (8)

The hydrodynamic expansion of the source term is given
by [28]

S (r, t) =
∑∞
k=0 S(k) � (−∇)k n (r, t), (9)

where the superscripts (k) denote the rank of tensors S(k)

[29]. By substituting equations (5) and (9) into (1) the
generalized diffusion equation, which is truncated at third-
order gradients, is obtained. This equation can be written
as

∂n (r, t)
∂t

+ W(b) �∇n (r, t)−D(b) � (∇⊗∇)n (r, t)

+ Q(b) � (∇⊗∇⊗∇)n (r, t) = Rprodn (r, t) ,
(10)

where Rprod is the net particle production-rate, W(b) and
D(b) are the bulk drift velocity and bulk diffusion tensor,
respectively, and Q(b) is the bulk third-order transport
coefficient tensor. Bulk transport coefficients are related
to the corresponding flux transport coefficients as [2,11,29]

W(b) = W(f) + S(1), (11)

D(b) = D(f) + S(2), (12)

Q(b) = Q(f) + S(3). (13)

Equation (10) cannot be solved analytically, even for
the set of simple boundary conditions found in an ideal-
ized time-of-flight experiment [2]. However, this equation
can be solved approximately if the Fourier transform of
the solution is expanded in a Taylor series in terms of
components of the third-order transport coefficient tensor
[20]. The approximate solution up to the first-order can
be written as [20]
n(1) (r, t) = n(0) (r, t)

×

[

1 +Q
(b)
L

t
(
z −W (b)t

)3

− 6D
(b)
L t2

(
z −W (b)t

)

8
(
D

(b)
L t
)3

+Q
(b)
T

3t
(
z −W (b)t

)(
x2 + y2 − 4D

(b)
T t
)

8D
(b)
L t

(
D

(b)
T t
)2

]

, (14)

where n(0)(r, t) is the solution of the diffusion equation,
which has the form [2]

n(0)(r, t) =
N0e

Rprodte
− (z−W (b)t)2

4D
(b)
L

t
− x2+y2

4D
(b)
T

t(
4πD(b)

T t
)√

4πD(b)
L t

, (15)

while N0, W (b), D(b)
L , D(b)

T , Q(b)
L and Q

(b)
T are the initial

number of particles, bulk drift velocity, bulk longitudinal
diffusion, bulk transverse diffusion, and bulk values of lon-
gitudinal and transverse third-order transport coefficients,
respectively. Expression (14) has a simpler form in the rel-
ative coordinates that are defined as [20]

χz =
z −W (b)t√

2D(b)
L t

, χx =
x√

2D(b)
T t

, χy =
y√

2D(b)
T t

· (16)

In these coordinates the approximate solution (14) is given
by
n(1)(r, t) = n(0)(r, t)

×

(

1 +
tQ

(b)
L

σ3
z

χz(χ
2
z − 3) +

3tQ
(b)
T

σ2
xσz

χz(χ
2
x + χ2

y − 2)

)

,

(17)

where σz =
√

2D(b)
L t and σx = σy =

√
2D(b)

T t. From
this expression it can be seen that the contribution of
the third-order transport coefficient tensor to the spatial
profile of the swarm is proportional to Q(b)

L /(t1/2(D(b)
L )3/2)

and Q
(b)
T /(t1/2

√
D

(b)
L D

(b)
T ) [20].

2.2 Multi term solutions of Boltzmann’s equation

The evolution of the phase space distribution function is
given by the Boltzmann equation. In the case of a swarm
of electrons, which are moving in an infinite and homo-
geneous background gas, the Boltzmann equation can be
written as
∂f

∂t
+ c · ∂f

∂r
+

e

m
(E + c×B) · ∂f

∂c
= −J (f, f0), (18)
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where e and m are the charge and mass of electrons, E
and B are the electric and magnetic fields, and J (f, f0)
is the collision operator. The Boltzmann equation is an
integro-differential equation, which cannot be solved ana-
lytically in the case of electrons in real gases [2,6]. We
employ the moment method where the phase space distri-
bution function is expanded in terms of Burnett functions
[28,30,31,33]:

Φ[νl]
m (αc) = Nνl

(
αc√

2

)l
S

(ν)
l+1/2

(
α2c2

2

)
Y [l]
m (ĉ)

= Rνl(αc)Y [l]
m (ĉ), (19)

where Y [l]
m is a spherical harmonic, while S(ν)

l+1/2 is a Sonine
polynomial, α is a parameter and ĉ is a unit vector in
velocity space [30,32]. The constant Nνl is given by

N2
νl =

2π3/2ν!
Γ (ν + l + 3/2)

, (20)

where Γ (ν + l + 3/2) is the gamma function, while

Rνl(αc) = Nνl

(
αc√

2

)l
S

(ν)
l+1/2

(
α2c2/2

)
, (21)

determines the radial part of the Burnett function. The
Burnett functions satisfy the orthogonality relations [30]:

∫
ω(α, c)Φ(νl)

m (αc)Φ[ν′l′]
m′ (αc)dc = δν′νδl′lδm′m, (22)

where

ω(α, c) =
(
α2

2π

)3/2

e−α
2c2/2, (23)

is the weighting function [30]. Orthogonality of the
Burnett functions is due to orthogonality of the spheri-
cal harmonics and Sonine polynomials. The phase space
distribution function can be expanded as

f(r, c, t) = ω(α, c)
∞∑
ν=0

∞∑
l=0

l∑
m=−l

f (νl)
m (α, r, t)Φ[νl]

m (αc),

(24)
where f (νl)

m (α, r, t) are the expansion coefficients which
depend on the coordinates in the configuration space r
and time t [30,32].

In the hydrodynamic regime the phase space distribu-
tion function can be expanded in terms of powers of the
density gradient operator as [30,33–35]

f(r, c, t) = ω(α, c)
∞∑
s=0

s∑
λ=0

λ∑
µ=−λ

∞∑
ν=0

∞∑
l=0

l∑
m=−l

F (νlm|sλµ;α, t)Rνl(α, c)Y [l]
m (ĉ)G(sλ)

µ n(r, t),
(25)

where F (νlm|sλµ;α, t) are the moments of the phase
space distribution function, while G

(sλ)
µ is the spherical

form of the density gradient operator [30].

When the Boltzmann equation is multiplied by an arbi-
trary moment F (νlm|sλµ;α, t) and integrated over the
entire velocity space, an infinite hierarchy of matrix equa-
tions in terms of moments F (νlm|sλµ;α, t) is obtained
[31,33–35]. This hierarchy is truncated at a finite num-
ber of spherical harmonics l = lmax, and a finite num-
ber of Sonine polynomials ν = νmax. The values of these
numbers are determined by the criterion for convergence.
The resulting system of equations is then solved numer-
ically by using the matrix inversion. In our calculations,
values of lmax = 4 were sometimes required, when the
phase space distribution function substantially deviates
from an isotropy in the velocity space. Likewise, values of
νmax = 80 were required when the distribution function
was far away from a thermal Maxwellian at the basis tem-
perature Tb. The basis temperature is a parameter which
is used to optimize the convergence.

The explicit expressions for determining the flux trans-
port coefficients in terms of moments of the phase space
distribution function can be obtained by expanding the
flux of velocity of the charged particles Γ(r, t) in terms of
these moments and by recognizing terms which are con-
tracted with the corresponding partial derivative of the
number density n(r, t) [33–35]. The expansion of Γ(r, t)
in terms of F (νlm|sλµ;α, t) is given by

Γ [1]
m (r, t) =

∫
c[1]m f(r, c, t)dc

=

∫
c[1]m ω(α, c)

∞∑

s=0

s∑

λ=0

λ∑

µ=−λ

∞∑

ν=0

∞∑

l=0

l∑

m′=−l

F (νlm′|sλµ;α, t)Rνl(α, c)Y
[l]

m′(ĉ)G(sλ)
µ n(r, t)dc,

(26)

where Γ [1]
m (r, t) is the flux of velocity of charged particles

Γ(r, t) written in the spherical form [30]. Cartesian com-
ponents of a vector whose spherical form is given by

c(1)m =

√
4π
3
cY [1]
m (ĉ), (27)

are given by the expressions [30]

cx =
i√
2

(
c
[1]
1 − c

[1]
−1

)
, (28)

cy =
1√
2

(
c
[1]
1 + c

[1]
−1

)
, (29)

cz = −ic[1]0 . (30)

The components of the third-order transport coefficient
tensor for an electric field only configuration are given by

Q(f)
xxz =

1√
2α

(
Im
{
F (011|221)

}
− Im

{
F (01− 1|221)

})
,

(31)

Q(f)
zxx = − 1

α

(
1√
3

Im
{
F (010|200)

}
+

1√
6

Im
{
F (010|220)

})
+

1
α

Im
{
F (010|222)

}
, (32)
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and

Q(f)
zzz =

1
α

(√
2
3

Im
{
F (010|220)

}
− 1√

3
Im
{
F (010|200

})
,

(33)
where Re{} and Im{} refer to the real and imaginary parts
of the moments F (νlm|sλµ;α, t), respectively [20]. The
explicit expressions for the lower order transport coeffi-
cients in terms of moments of the phase space distribu-
tion function can be found in [33–35]. For brevity, in the
following sections the superscript (f) in the flux third-
order transport coefficients (and in the flux diffusion coef-
ficients) will be omitted.

3 Results and discussion

3.1 Preliminaries

In this work we calculate the third-order transport coef-
ficients for electrons in noble gases. Calculations are per-
formed in the E/n0 range between 10−4 Td and 100 Td
(1 Td = 10−21 Vm2). The temperature of the background
gas T0 is 293 K and thermal motion of background atoms
is taken into account. All background atoms are assumed
to be in the ground state. All electron scattering is con-
sidered to be isotropic. Elastic collisions are represented
by the elastic momentum transfer cross section, while the
inelastic collisions are represented by the total inelastic
cross sections. For electrons in He we use the set of cross
sections which has been detailed by Šašić et al. [36] while
for electrons in Ne we use the set of cross sections, initially
developed by Hayashi [37]. Likewise, for electron scatter-
ing in Ar and Xe we use the cross section sets developed
by Hayashi [38,39]. For electrons in Kr we use the cross
section set from a publicly available Monte Carlo code
MAGBOLTZ [40].

3.2 Mean energy

In the following section we often find it necessary to refer
to the mean energy of the electron swarm to understand
and explain certain trends of the behavior of the third-
order transport coefficients. Thus, in Figure 1 we show
the mean energies of electrons in He, Ar, Kr and Xe as a
function of E/n0. Comparing the profiles of mean energy
in He and the remaining three gases, we observe that the
mean energy of electrons in He is different not only quanti-
tatively, but also qualitatively. Specifically, there are four
distinct regions of transport as E/n0 increases for elec-
trons in He and five distinct regions of transport in the
case of Ar, Kr and Xe. First, for electrons in all consid-
ered gases, there is an initial plateau region where the
mean energy is thermal. In the second distinct region of
transport for electrons in He, the mean energy rises with
an approximately constant slope in the log-log plot. The
slope of mean energy is significantly lower in the third
region, due to the influence of inelastic collisions. Finally,
the slope is again increased in the fourth region. This

Fig. 1. Variation of the mean energy with E/n0 for electron
swarms in He, Ar, Kr and Xe.

increase can be attributed to a greater fraction of elec-
trons being in the energy range where the collision fre-
quency for all scattering processes reduces with increasing
energy. For electrons in Ar, Kr and Xe, the rise of mean
energy with increasing E/n0 is very steep in the second
distinct region of transport. A large fraction of electrons is
thus in the energy range where elastic momentum trans-
fer cross section is a monotonically decreasing function of
energy, due to the presence of the Ramsauer-Townsend
minimum. However, the slope of the mean energy is lower
in the third region, in which high energy electrons are
in the energy range where the elastic momentum transfer
cross section is rising sharply. The slope of mean energy is
further reduced in the fourth region where electrons can
undergo inelastic collisions. Finally, this slope increases in
the fifth distinct region of transport, in which the profile
of mean energy changes from a power-law-like behavior
to the more exponential-like increase. In this field region,
the most energetic electrons are in the energy range where
the collision frequency for all scattering processes is being
reduced with increasing energy.

3.3 Variation of the third-order transport coefficients
with E/n0

3.3.1 Brief analysis

In Figure 2 we show the variation of the individual compo-
nents of the third-order transport coefficient tensor with
E/n0 for electrons in He. We observe that n2

0Qxxz and
n2

0Qzzz components are positive over the range of E/n0

considered in the present work. However, the n2
0Qzxx com-

ponent is negative until approximately 10 Td and posi-
tive at higher E/n0. The absolute values of all individual
components of the third-order transport tensor increase
with increasing E/n0 in the sub-excitation field region,
which corresponds to the first two characteristic regions
of the mean energy (see Fig. 1). This can be attributed

https://www.epjd.epj.org
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Fig. 2. Variation of n2
0Qxxz, n

2
0Qzxx and n2

0Qzzz components
of the third-order transport coefficient tensor with E/n0 for
electrons in He.

Fig. 3. Variation of n2
0Qxxz, n

2
0Qzxx and n2

0Qzzz components
of the third-order transport coefficient tensor with E/n0 for
electrons in Ar.

to a slow rise of elastic momentum transfer cross section
in the energy range up to about 2 eV, as well as to its
reduction at higher energies. However, the absolute values
of all individual components of the third-order transport
tensor are reduced for the higher values of E/n0, where
the high energy electrons can undergo many inelastic col-
lisions. This field region roughly corresponds to the third
characteristic region of the mean energy. Finally, all three
components are increasing functions of E/n0 in the limit
of the highest fields considered in this work, where the
collision frequency of the high energy electrons decreases
with increasing electron energy.

In Figures 3–5 we show the variation of the individual
components of the third-order transport coefficient tensor
with E/n0 for electrons in Ar, Kr and Xe, respectively. It
can be seen that in these gases all components of the third-
order transport tensor are rapidly rising functions of E/n0

in the limit of the lowest fields, where most of the elec-
trons are in the energy range in which the elastic momen-
tum transfer cross section is reduced with the increase of

Fig. 4. Variation of n2
0Qxxz, n

2
0Qzxx and n2

0Qzzz components
of the third-order transport coefficient tensor with E/n0 for
electrons in Kr.

Fig. 5. Variation of n2
0Qxxz, n

2
0Qzxx and n2

0Qzzz components
of the third-order transport coefficient tensor with E/n0 for
electrons in Xe.

energy, due to the presence of the Ramsauer-Townsend
minimum. This field region corresponds to the first char-
acteristic region of the mean energy, as well as to the
first half of the second characteristic region of the mean
energy, shown in Figure 1. However, all three components
of the third-order transport tensor are rapidly decreas-
ing functions of E/n0 at higher fields, where the most
energetic electrons are in the energy range in which the
elastic momentum transfer cross section has a steep rise
with an increase of energy. This field region corresponds
to the second half of the second characteristic region of
the mean energy. In the remaining field region considered
in this work, n2

0Qzxx and n2
0Qzzz components exhibit a

local minimum and a local maximum, while the n2
0Qxxz

component has a single local minimum only. The positions
of these local maximums and local minimums correspond
to those values of E/n0 where the ratio between the mean
energy and the position of the Ramsauer-Townsend min-
imum or the threshold of the first electronic excitation
have similar values. For instance, the n2

0Qxxz component
becomes negative at the reduced electric field where the
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mean energy is higher than the position of the Ramsauer-
Townsend minimum by a factor that has values in the
range between 1.3 and 1.4 for all three gases. Likewise, this
component reaches the local minimum at approximately
the same field where the n2

0Qzxx component reaches the
second local maximum, and the mean energy is about 1.75
times higher than the energy of the Ramsauer-Townsend
minimum at the position of these local extremes in all
three gases. Moreover, the n2

0Qzzz component reaches the
second local maximum at the value of the reduced electric
field where the mean energy of electrons is about 2.5 times
lower than the threshold of the first electronic excitation
for all three gases (see Fig. 8). At the highest fields, where
the most energetic electrons may undergo many inelastic
collisions with the background atoms, the absolute val-
ues of all components of the third-order transport ten-
sor are reduced with increasing E/n0. This field region
roughly corresponds to the fourth and the fifth charac-
teristic regions of the mean energy in Ar, Kr and Xe. In
the following subsubsection the E/n0-profiles of the indi-
vidual components of the third-order transport coefficient
tensor for electrons in He, Ar, Kr and Xe are analyzed in
a greater detail.

3.3.2 Comprehensive analysis

For electrons in He, the absolute values of all three com-
ponents of the third-order transport tensor are monotoni-
cally increasing functions of E/n0, but only in the limit of
low electric fields. Specifically, n2

0Qxxz and n2
0Qzzz compo-

nents rise in the field region below around 8 Td, where the
mean energy of electrons is lower than 5 eV. Likewise, the
absolute value of n2

0Qzxx increases up to approximately
5.9 Td, where the mean energy is around 3.6 eV. In the
field region, where the absolute values of all three com-
ponents are being increased with increasing E/n0 most
of the electrons undergo elastic collisions only. Moreover,
the elastic momentum transfer cross section is gradually
rising in the energy range between approximately 10−2 eV
and 2 eV, while it is being reduced at higher energies. For
this reason, resistance to diffusive motion that is caused
by collisions of electrons with the background atoms is not
very intensive in the field region up to approximately 5.9
Td. This in turn induces an increase of the absolute values
of all three components of the third-order transport coef-
ficient tensor in this range of E/n0. However, at higher
fields the most energetic electrons can undergo inelastic
collisions with the background atoms, as the threshold for
the first electronic excitation in helium is around 19.82 eV.
This leads to a rapid decrease of n2

0Qxxz and n2
0Qzzz com-

ponents in the field range between approximately 8 Td and
40 Td. Likewise, the increased resistance to the spreading
of the swarm due to inelastic collisions leads to a rapid
decrease of the absolute value of the n2

0Qzxx component
in the field range between approximately 5.9 Td and 8 Td,
and to a gradual increase of this component up to around
40 Td. For the higher values of E/n0, all three compo-
nents of the third-order transport coefficient tensor rise
with increasing E/n0. Over this range of E/n0, the col-
lision frequency of the most energetic electrons decreases

with increasing E/n0 which in turn enhances the third-
order transport coefficients.

For electrons in Ar, Kr and Xe, all components of the
third-order transport tensor are initially, rapidly increased
with increasing E/n0 for the lower values of E/n0, as a
large fraction of electrons is in the energy range where
the elastic momentum transfer cross section markedly
decreases with increasing energy, due to the presence of
the Ramsauer-Townsend minimum in the cross sections
for elastic scattering. These components reach local maxi-
mums in the E/n0 region where the mean energy is lower
than the position of the Ramsauer-Townsend minimum by
a factor which is approximately between 2 and 3 in case
of Ar, and approximately between 2 and 4 in case of Kr
and Xe. Thus, all components of the third-order trans-
port tensor start to decrease with an increase of E/n0

in the E/n0 region where the collision frequencies of the
most energetic electrons increase with the rising energy of
electrons.

The n2
0Qzxx component is the first to reach a local

minimum in all three gases. However, the behavior of
this component is somewhat different in the case of Ar,
as compared to Kr and Xe. Specifically, this component
becomes negative for electrons in Ar, while it remains posi-
tive over the entire considered range of E/n0 for electrons
in Kr and Xe. For electrons in Ar, the n2

0Qzxx compo-
nent becomes negative at the value of E/n0 where the
mean energy is around 1.4 times lower than the position
of the Ramsauer-Townsend minimum. The same compo-
nent reaches a local minimum at the value of E/n0 where
the mean energy of the swarm is approximately equal to
the energy position of the Ramsauer-Townsend minimum.
However, in case of Kr and Xe this component reaches a
local minimum at the value E/n0 where the mean energy
is around 1.25 times higher than the energy position of
the Ramsauer-Townsend minimum. The n2

0Qzxx compo-
nent becomes positive in Ar at approximately the same
field, where the n2

0Qxxz component becomes negative. The
n2

0Qxxz component starts to be negative at the value of
E/n0 where the mean energy is higher than the position of
the Ramsauer-Townsend minimum by a factor of around
1.3 in case of Ar and Xe, and by a factor of approxi-
mately 1.4 in case of Kr. The sign of the n2

0Qxxz com-
ponent remains unaltered until the end of the considered
E/n0 range for Ar, Kr and Xe. The n2

0Qzxx component
reaches the second local maximum at approximately the
same E/n0 where the n2

0Qxxz component reaches the local
minimum. The position of these local extremes for n2

0Qxxz
and n2

0Qzxx components is at the value of E/n0 where
the mean energy is about 1.75 times higher than the posi-
tion of the Ramsauer-Townsend minimum for electrons in
all three gases. For the higher values of E/n0, the abso-
lute values of n2

0Qxxz and n2
0Qzxx are being reduced with

increasing E/n0 until the end of the considered field range.
The n2

0Qzzz component reaches a local minimum at the
value of E/n0 where the electrons with energies that are
between approximately 2 and 3 times higher than mean
energy, are in the energy range where the elastic momen-
tum transfer cross section for electrons in Ar, Kr and
Xe, is reduced (see Fig. 8) with increasing energy. For
the higher E/n0 values, the n2

0Qzzz component rises with
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increasing E/n0. This component reaches a local max-
imum at the value of E/n0 where the electrons with
energies that are about 2.5 times higher than the mean
energy can undergo inelastic collisions with the back-
ground atoms. The absolute values of all three components
of the third-order transport coefficient tensor are reduced
with increasing E/n0 at higher fields until reaching the
end of the considered E/n0 range.

At the qualitative level, the E/n0-profiles of each com-
ponent of the third-order transport coefficient tensor are
very similar for electrons in Ar, Kr and Xe. Specifically,
these components reach local maximums and local mini-
mums at the values of E/n0 at which the ratios between
the mean energy and the position of the Ramsauer-
Townsend minimum and/or the threshold for the first
electronic excitation have very similar values. However,
there is a significant difference in the profile of n2

0Qzxx
component for electrons in Ar, when compared to the
corresponding profiles in Kr and Xe, as this component
becomes negative in Ar. The absence of negative values of
n2

0Qzxx for electrons in Kr and Xe might be attributed to a
steeper rise of the elastic momentum transfer cross section
with an increasing energy, after the Ramsauer-Townsend
minimum, in these two gases. As discussed recently by
Simonović et al. [20] when the collision frequency is rising
with increasing electron energy, one of the off-diagonal
components of the third-order transport tensor (n2

0Qzxx
and n2

0Qxxz) is often negative. If the rise of the collision
frequency with energy is not too steep, n2

0Qzxx compo-
nent is usually negative (and n2

0Qxxz is positive). However,
n2

0Qxxz component is negative (and n2
0Qzxx is positive)

when the rise of the collision frequency with increasing
electron energy is very steep.

3.4 Correlation between the longitudinal components
of the skewness and diffusion tensors

Another issue that is highly relevant for understand-
ing higher-order transport coefficients is the correlation
between higher-order and lower-order transport coeffi-
cients. In this work we investigate the correlation between
the longitudinal component of the third-order transport
tensor and the longitudinal component of the diffusion
tensor of electrons in noble gases. Recently, this correla-
tion has been investigated for electrons in CH4 [26]. It has
been shown that whenever Dzz decreases, then Qzzz is
reduced markedly, and whenever Dzz increases in a decel-
erating way, Qzzz also decreases, but less intensively. The
Qzzz was found to increase only when Dzz increases in an
accelerating manner. It can be expected that this correla-
tion is absent at the lowest E/n0, as n2

0Qzzz represents an
asymmetric correction to diffusive motion and it vanishes
in the limit of the lowest fields, unlike diffusion coeffi-
cients which have non-zero thermal values. For this rea-
son n2

0Qzzz is expected to rise with increasing E/n0 at the
lowest fields, regardless of the field dependence of n0Dzz.
The value of E/n0 at which the correlation between the
profiles of field dependence of n2

0Qzzz and n0Dzz occurs
is different for various gases.

Fig. 6. The correlation of the longitudinal component of the
third-order transport tensor n2

0Qzzz and the longitudinal com-
ponent of the diffusion tenzor n0Dzz for electrons in He.

The correlation between the profiles of n2
0Qzzz and

n0Dzz for electrons in He and Ne is shown in Figures 6
and 7, respectively. For electrons in He, n2

0Qzzz and n0Dzz

rise with increasing E/n0 in the E/n0 region between
approximately 5.9·10−2 Td and 7.5 Td. This increase is
the most intensive for E/n0 between around 2.1 Td
and 7.7 Td. However, between approximately 7.7 Td and
35 Td, the rise of n0Dzz with increasing E/n0 slows down,
and n0Dzz becomes a concave function of E/n0 in the
log-log plot. In this E/n0 region, n2

0Qzzz is reduced with
increasing E/n0. For E/n0 between approximately 35 Td
and 100 Td, the slope of n0Dzz rises with E/n0 and n0Dzz

becomes a convex function of E/n0 in the log-log plot. As
a consequence, in this E/n0 region, n2

0Qzzz rises mono-
tonically with increasing E/n0.

For electrons in Ne, n2
0Qzzz and n0Dzz decrease with

increasing E/n0 between approximately 3.5·10−3 Td and
3.5·10−2, and n2

0Qzzz continues to decrease up to about
5.9·10−2 Td. For the reduced electric fields higher than
approximately 5.9·10−2 Td, both n2

0Qzzz and n0Dzz rise
with increasing field up to around 1.9 Td. This rise is espe-
cially rapid for E/n0 between approximately 1 Td and
1.9 Td. At higher fields, n0Dzz becomes a concave function
of E/n0 in the log-log plot, and it slowly decreases with
increasing field for E/n0 between approximately 5.9 Td
and 30 Td, while it saturates at higher fields. In the E/n0

region between approximately 1.9 Td and 100 Td, n2
0Qzzz

decreases monotonically with increasing E/n0.
The correlation between the profiles of n2

0Qzzz and
n0Dzz for electrons in Ar, Kr and Xe is shown in Figure 8.
As can be seen, there is a very strong correlation between
the profiles of n2

0Qzzz and n0Dzz for all three gases. It can
also be seen that the profiles of n2

0Qzzz and n0Dzz in each
of these gases are very similar. At the lowest E/n0 n

2
0Qzzz

and n0Dzz rise with increasing E/n0 in all three cases, as
most of the electrons are in the energy range in which
the elastic momentum transfer cross section decreases
rapidly with increasing electron energy. The n2

0Qzzz com-
ponent reaches a local maximum at around 2.1·10−3 Td,
1.4·10−2 Td and 3.7 ·10−2 Td for electrons in Ar, Kr, and
Xe, respectively, while n0Dzz reaches a local maximum at
approximately 2.7·10−3 Td, 1.7·10−2 Td and 4.6·10−2 Td,
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Fig. 7. The correlation of the longitudinal component of the
third-order transport tensor n2

0Qzzz and the longitudinal com-
ponent of the diffusion tenzor n0Dzz for electrons in Ne.

for electrons in Ar, Kr and Xe, respectively. In all three
gases n0Dzz reaches a local maximum at a somewhat
higher E/n0 as compared to n2

0Qzzz. After the local max-
imum, n2

0Qzzz and n0Dzz are decreased markedly with
increasing E/n0, up to around 5.9·10−3 Td, 2.9·10−2 Td
and 7.7·10−2 Td for electrons in Ar, Kr and Xe, respec-
tively. For the higher values of E/n0, these two quan-
tities continue to decrease until reaching approximately
2.7 Td for electrons in Ar, and until reaching approxi-
mately 2.1 Td for electrons in Kr and Xe. However, the
rate of decreasing of both n2

0Qzzz and n0Dzz is less inten-
sive in this field region as compared to the lower fields.
At higher fields, n2

0Qzzz and n0Dzz rise with increas-
ing E/n0 in a narrow field range. The n2

0Qzzz compo-
nent reaches the second local maximum at around 5.9 Td,
4.1 Td and 4.2 Td for electrons in Ar, Kr and Xe, respec-
tively. After the second local maximum, the n2

0Qzzz com-
ponent decreases monotonically with increasing E/n0 for
the remaining E/n0 in all three gases. In the field region
around the second local maximum of n2

0Qzzz, the slope of
n0Dzz is significantly reduced with increasing E/n0 up to
about 13 Td for all three gases. At higher fields, n0Dzz is
saturated with increasing E/n0.

In Figures 6–8 we observe a strong correlation between
the profiles of n2

0Qzzz and n0Dzz for electrons in noble
gases. Specifically, at relatively high enough fields n2

0Qzzz
decreases with increasing E/n0 whenever n0Dzz is a
decreasing function of E/n0, or when it increases as a
concave function of E/n0 in the log-log plot. The n2

0Qzzz
increases only at the lowest fields, and in those regions
of E/n0 where n0Dzz raises with increasing field as a
convex (or possibly linear) function in the log-log plot.
The correlation between n2

0Qzzz and n0Dzz can be under-
stood on an intuitive level. The third-order transport
tensor represents an asymmetric deviation of the total
diffusive motion, from the motion which is represented
by the diffusion tensor. Thus, the third-order transport
tensor describes a small correction to total diffusion. For
this reason, the motion which is represented by the third-
order transport tensor ’carries’ a much smaller amount of
energy and momentum than the motion which is described
by the diffusion tensor. As a consequence, this transport

Fig. 8. The correlation of the longitudinal component of the
third-order transport tensor n2

0Qzzz and the longitudinal com-
ponent of the diffusion tenzor n0Dzz for electrons in Ar, Kr
and Xe.

property is much more sensitive with respect to the col-
lisions between the electrons and the background atoms.
This leads to a reduction of the n2

0Qzzz component with
increasing E/n0 (at high enough fields) whenever the
resistance to diffusive motion due to collisions is inten-
sive enough to cause a decrease of n0Dzz or even a decel-
erated rise with increasing E/n0. The correlation of the
longitudinal component of the third-order transport ten-
sor and the longitudinal component of the diffusion tensor
is important for two reasons. Firstly, it enables an eas-
ier understanding of the E/n0-dependence of the third-
order transport coefficients in comparison to the direct
analysis from the cross sections and from the variation of
the mean energy with E/n0, which might be sometimes
difficult. Secondly, the correlation between n2

0Qzzz and
n0Dzz shows that the third-order transport coefficients
are more sensitive with respect to the energy dependence
of the cross sections than the diffusion coefficients. This
suggests that the third-order transport coefficients would
be very useful in swarm procedure for determining and
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Fig. 9. The values of ratio QL/(DL)3/2 for electron swarms
in He, Ne, Ar, Kr and Xe as functions of the reduced electric
field E/n0. Calculations have been performed assuming the gas
number density of 3.54×1022 m−3.

normalizing the cross section sets, if they were both cal-
culated and measured with a sufficient accuracy.

3.5 Effects of the third-order transport coefficients on
the spatial profile of the swarm

In this work, we also investigate the influence of the third-
order transport coefficients on the spatial profiles of the
swarm of electrons in noble gases. As was shown in [27],
the components of the third-order transport tensor rep-
resent an asymmetric deviation of the spatial profile of
the swarm of charged particles from an ideal Gaussian,
which represents the solution of the diffusion equation.
Specifically, the longitudinal component of the third-order
transport tensor describes longitudinal elongation or com-
pressing of the swarm along the longitudinal direction,
while the off-diagonal components describe transverse
elongation or compressing of the swarm along the lon-
gitudinal direction. It can be seen from equation (17)
that the contribution of the third-order transport coef-
ficients to the spatial profile of the swarm is proportional
to QL/(t1/2(DL)3/2) and QT /(t1/2

√
DLDT ).

In Figure 9 we show the ratio QL/(DL)3/2 for electrons
in noble gases as a function of E/n0. It should be empha-
sized that in Figure 9 we show the ratio where the flux
values of QL and DL are assumed, although the influence
of the third-order transport coefficients on the spatial pro-
file of the swarm is proportional to the corresponding ratio
of the bulk values of QL and DL. The reason for this is a
much better accuracy of our multi term results when com-
pared to our Monte Carlo results, and our current inability
to obtain the bulk values from our multi term code. How-
ever, the difference between the flux and the bulk values of
the longitudinal components of the third-order transport
coefficient tensor is within statistical uncertainty of Monte
Carlo simulations up to about 21 Td in He and Ne, and up
to 100 Td in Ar, Kr and Xe. Moreover, we are principally
interested in the field dependence of this ratio for E/n0

less than 10 Td, due to the presence of local maximums

and local minimums in this particular field range. For this
reason, we investigate the field dependence of the ratio
QL/(DL)3/2 assuming the flux values of QL and DL.

We may observe in Figure 9 that the ratio QL/(DL)3/2
increases monotonically with increasing E/n0 in the limit
of the lowest E/n0 (below 10−3 Td). For the higher values
of E/n0 (higher than 10 Td) we see that this property
decreases monotonically with increasing E/n0 for elec-
trons in all considered gases. At intermediate fields, how-
ever, this ratio reaches several local maximums and local
minimums. Specifically, this ratio has only a single local
maximum for electrons in Ne, at around 0.01 Td1. For
electrons in He and Ar, this ratio has two local maxi-
mums and one local minimum. In the case of He these
local maximums are at about 0.21 Td and 5.9 Td, and
both of these maximums are of a similar magnitude. How-
ever, in the case of Ar, the first local maximum at around
10−3 Td is much higher than the other local maximum at
about 4.6 Td. This difference is caused by the presence
of the Ramsauer-Townsend minimum in the elastic cross
section of Ar. The local minimum is shallow, and it is
at around 2.7 Td in both gases. For electrons in Kr and
Xe, the investigated ratio has three local maximums and
two local minimums. The first local maximum occurs at
about 7·10−3 Td and 1.9·10−2 Td for electrons in Kr and
Xe, respectively, and is quite high in both gases, due to
the presence of Ramsauer-Townsend minimum in the cross
sections for elastic scattering. This maximum is followed
by a local minimum at about 2.7·10−2 Td for electrons in
Kr and at around 6.8·10−2 Td for electrons in Xe. The sec-
ond local maximum of this ratio is at around 0.046 Td and
0.13 Td for electrons in Kr and Xe, respectively. The last
local minimum is at about 2.1 Td, and it is quite shallow
in both Kr and Xe. The third local maximum is at about
2.7 Td in both gases. In the case of electrons in Ar, Kr
and Xe the value of E/n0 at which QL/(DL)3/2 reaches
the first local maximum is about 2 times lower than the
value of E/n0 where QL reaches the first local maximum.
This is expected, on a qualitative level, as QL/(DL)3/2
reaches the first local maximum after DL starts rising with
increasing E/n0, but before reaching the first peak.

The ratio QL/(DL)3/2 has the highest values for Ar,
Kr and Xe near the position of the first local maximum.
Thus, the contribution of the third-order transport coeffi-
cients to the spatial profile of the swarm is the most pro-
nounced exactly for these conditions. However, it must
be emphasized that the approximate expression (17) has
been derived under an assumption that transport coeffi-
cients are constant in time, from the initial time (t = 0).
As this condition is satisfied only after relaxation of the
swarm to the stationary state, the expression (17) is
not applicable to the early stages of swam development

1 There is an additional local maximum of this ratio at around
1.5 Td for electrons in neon, that is preceded by a local minimum
at around 1.2 Td. However, both of these local extremes are very
shallow. Specifically, the difference between the value of this ratio at
these two local extremes is about 4 %. For this reason, the authors
are not certain if these two local extremes would appear if a different
cross section set is used, due to the sensitivity of both QL and DL to
the energy dependence of the cross sections for elementary scattering
processes.
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Fig. 10. The absolute value of the percentage difference
between the two term and fully converged, multi term results,
for the third-order transport coefficients of electrons in He
and Ne.

(small values of t). In addition, this expression has been
derived by using the Taylor expansion in terms of the
components of the third-order transport tensor. For this
reason, the expression (17) is applicable only when the
ratios QL/(t1/2(DL)3/2) and QT /(t1/2

√
DLDT ) are not

too large.

3.6 Comparison of the two term and fully converged
multi term results

In Figure 10 we show the absolute value of the percentage
difference between the two term and fully converged, multi
term results, for the third-order transport coefficients of
electrons in He and Ne. The absolute value of the percent-
age difference between the two sets of results for electrons
in Ar, Kr and Xe is shown in Figure 11. The absolute
value of the percentage difference ∆Qabc is calculated as

|∆Qabc| =
∣∣∣∣1− Q

(TT )
abc

Q
(MT )
abc

∣∣∣∣ (34)

where the superscripts TT and MT refer to two term and
multi term results, respectively.

We see that the two sets of results agree very well in the
limit of the lowest E/n0, where electrons undergo elas-
tic collisions only. Specifically, the deviation between the
results that are determined by these two methods is very
low, up to approximately 8 Td, 17 Td, 0.2 Td, 0.35 Td, and
1.3 Td for electrons in He, Ne, Ar, Kr and Xe, respec-
tively. The disagreement between these two methods for
the off-diagonal components increases continuously with
increasing E/n0 until the end of the range of the consid-
ered E/n0. Moreover, the deviation of multi term results
for n2Qxxz and n2Qzxx from the corresponding two term
results is much higher for electrons in Ar, Kr and Xe, as
compared to the case of He and Ne. However, the behav-
ior of the percentage difference between these two sets of
results is somewhat different for the longitudinal compo-
nent. While the disagreement between these two methods
for the longitudinal component in He and Ne increases
with increasing E/n0, these methods, surprisingly, remain
in a very good agreement for electrons in Ar, Kr and Xe,
over the entire range of E/n0 considered in this work.
The percentage difference for the longitudinal component
reaches values up to 30% and 17% for electrons in He

Fig. 11. The absolute value of the percentage difference
between the two term and fully converged, multi term results,
for the third-order transport coefficients of electrons in Ar, Kr
and Xe.

and Ne, respectively, while it remains lower than 5% for
electrons in Ar, Kr and Xe. We expect that the devia-
tions between the two term and multi term results are
much greater for the higher values of E/n0. It should
also be noted that the errors of the two term approxi-
mation are significantly lower for the lower-order trans-
port coefficients, over the same region of E/n0. Therefore,
higher order transport coefficients appear more sensitive
to anisotropy in the velocity distribution function.

4 Conclusion

In this work we have extended a multi term solution of the
Boltzmann equation, initially developed for evaluating the
lower-order transport coefficients, to investigate the third-
order transport coefficients of electrons in noble gases. For
electrons in helium, we have observed that the Qzxx com-
ponent is negative for the lower values of E/n0. In this
field region, the collision frequency for elastic scattering
of a large fraction of electrons is an increasing function
of the electron energy. However, for electrons in argon,
krypton, and xenon all three components of the third-
order transport tensor are positive in the limit of the
lower fields considered in this work, as the collision fre-
quency of the low-energy electrons decreases with increas-
ing energy. For higher fields, the Qxxz component is neg-
ative in argon, krypton and xenon over a wide range of
E/n0. In addition, for electrons in argon, the Qzxx compo-
nent is also negative, but over a narrower field range. For
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electrons in helium in the sub-excitation field region, the
absolute values of all three components of the third-order
transport tensor are increasing functions of E/n0. On the
other hand, for electrons in argon, krypton and xenon,
all components are significantly reduced over the range of
E/n0 where the energy of high-energy electrons exceeds
the position of the Ramsauer-Townsend minimum.

One of the fundamental topics considered in this work
is the existence of the correlation between the longitudinal
component of the third-order transport tensor n2

0Qzzz and
the longitudinal component of the diffusion tensor n0Dzz.
We have observed that at high enough fields whenever
n0Dzz decreases or increases as a concave function of E/n0

(in the log-log plot) n2
0Qzzz is being reduced. We have also

observed that n2
0Qzzz increases when n0Dzz increases as

a convex function of E/n0 (in the log-log plot). However,
this correlation is absent in the limit of the lowest E/n0,
as the third-order transport coefficients vanish in the low-
field limit, unlike diffusion which has non-zero thermal
values. This behavior of n2

0Qzzz can be attributed to a
greater sensitivity of the third-order transport coefficients
with respect to the energy dependence of cross sections
for elementary scattering processes.

Another highly relevant topic that has been investigated
in this work is the influence of the third-order transport
coefficients on the spatial profiles of the swarm in noble
gases. It has been shown that this influence is the most
pronounced for electrons in Ar, Kr and Xe, at low E/n0,
due to the presence of the Ramsauer-Townsend minimum.
Specifically, the ratio QL/(DL)3/2 that describes the con-
tribution of the longitudinal component of the third-order
transport tensor to the spatial profile of the swarm reaches
the first local maximum at about 10−3 Td, 7·10−3 Td, and
1.9·10−2 Td for electrons in Ar, Kr and Xe, respectively.
Around these values of E/n0 the effects of the longitudinal
component of the third-order transport coefficient tensor
on the spatial profile of the electron swarm are the most
significant.

Finally, we investigated the deviation of the two term
approximation from the fully converged multi term results
for the third-order transport coefficients. We have found
that the two term approximation is applicable at the
lowest fields, where electrons undergo elastic collisions
only. However, the two term approximation deviates from
the multi term results for higher fields, where electrons
may undergo inelastic collisions also with the background
atoms. The difference between the two sets of results is
especially pronounced for the off-diagonal components of
the third-order transport tensor. This difference is much
higher for electrons in Ar, Kr and Xe than for electrons in
He and Ne. Conversely, the difference between the two sets
of results for the longitudinal component is much larger
in He and Ne than in Ar, Kr and Xe. This difference is up
to about 30% and 17% for electrons in He and Ne, respec-
tively. Surprisingly, the two term approximation is in an
excellent agreement with the multi term results for the
longitudinal component in the case of Ar, Kr and Xe. The
difference between the results that are obtained by using
these two methods is not higher than approximatelly 5%
in the case of the longitudinal component of the third-
order transport tensor for electrons in Ar, Kr and Xe.
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O. Šašić, J. Jovanović, G. Malović, V. Stojanović, Plasma
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Santhanam, J. Chem. Phys. 110, 2423 (1999)

19. J.H. Whealton, E.A. Mason, Ann. Phys. 84, 8 (1974)
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Rev. E 81, 046403 (2010)

35. S. Dujko, R.D. White, Z.Lj. Petrović, R.E. Robson, Plasma
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