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Abstract. Calculations of electron-impact excitation cross sections for molecular hydrogen have been per-
formed using spherical- and spheroidal-coordinate formulations of the molecular convergent close-coupling
method. We present a comparison and find good agreement between the results of these two techniques
performed within the fixed-nuclei approximation for excitation from the ground X 1Σ+

g (v = 0) state of
H2 to the B 1Σ+

u , C 1Πu, B′ 1Σ+
u , D 1Πu, E, F 1Σ+

g , b 3Σ+
u , c 3Πu, a 3Σ+

g , e 3Σ+
u , h 3Σ+

g , and d 3Πu

states. For the spheroidal-coordinate approach the adiabatic-nuclei method has been applied, allowing for
a more reliable estimate of cross sections at near-threshold energies. Comparison of the adiabatic-nuclei
cross sections with the corresponding fixed-nuclei cross sections is also presented.

1 Introduction

Molecular hydrogen is the simplest neutral molecule. It
is the most abundant molecule in the universe and is
an important constituent of plasmas with applications
in astrophysics, fusion, atmospheric physics, and vari-
ous industries [1–7]. Elemental collision processes play
an important role in modelling these plasmas, and col-
lisions with electrons have attracted significant interest
from both experiment and theory. A number of compila-
tions of cross sections for electron collisions with molecular
hydrogen have been produced [8–13], and a recommended
set of cross sections was suggested by Yoon et al. [14].

In all cases these cross section data sets have been
produced from an analysis of experimental data, even
though there were significant discrepancies between differ-
ent experiments for many transitions. Theoretical calcula-
tions have been largely excluded from critical evaluations
of the data due to large uncertainties. This changed with
the application of the convergent close-coupling (CCC)
method to electron collisions with molecules [15–17]. A
comprehensive data set of cross sections for elastic scat-
tering, excitation of a large number of singlet and triplet
states, ionisation, stopping power, and total cross sections
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for e−-H2 scattering have been produced. The distinctive
feature of the molecular CCC (MCCC) calculations was
an explicit demonstration of convergence in the cross sec-
tions achieved by performing calculations with the size of
the close-coupling expansion ranging from 9 to 491 target
states.

The MCCC calculations were performed in a single-
centre spherical-coordinate formulation using the fixed-
nuclei (FN) approximation, with target wave functions
being of similar or somewhat better quality than those
used in previous calculations [18–30], for example in the
R-matrix (RM) [28,29] and the Schwinger multichannel
(SMC) [30] calculations. We do not expect the approxi-
mations in the MCCC method to lead to significant errors
except at near-threshold energies where the FN approxi-
mation fails. The large discrepancies identified with pre-
vious results, even for the strong transitions of funda-
mental importance such as excitation of the dissociative
b 3Σ+

u state, were a matter of concern. It was therefore
significant that the recent measurements of e−-H2 excita-
tion cross sections [31,32] conducted at California State
University proved to be in much better agreement with
the MCCC calculations; for the b 3Σ+

u state the agree-
ment was nearly perfect [33,34].

To further verify the accuracy of the MCCC calculations
we have developed a formulation of the MCCC method
in the prolate spheroidal coordinate system. Spheroidal
coordinates are the natural choice for describing diatomic
molecules as they allow for a more accurate account of
the lack of spherical symmetry and multi-centre nature of
the scattering system. In the context of electron collisions
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this approach allows us to perform calculations at larger
internuclear separations than possible with the spherical-
coordinate implementation, thereby enabling the appli-
cation of the adiabatic-nuclei (AN) method [35] and
generation of cross sections for transitions between vibra-
tional levels in the initial and final electronic states. Such
cross sections are important in many applications, as
molecular hydrogen is present in astrophysical, fusion, and
technological plasmas in a range of vibrationally excited
states. Determination of plasma properties and interpre-
tation of the spectroscopic data relies on the availabil-
ity of reliable collision data, including fully vibrationally
resolved cross sections [36–38]. The capacity to produce
such data sets has allowed us to perform a detailed study
of dissociation processes involving molecular hydrogen in
the ground and vibrationally excited states [39–42], and
study vibrational excitation of the X 1Σ+

g ground state
via electron-impact excitation and radiative cascade [43].

The main purpose of this paper is to present a system-
atic comparison of the cross sections obtained in the spher-
ical and spheroidal formulations of the MCCC method. In
the next section a brief outline of the theoretical methods
is presented. In Section 3 the details of the calculations
are presented and in Section 4 we present a comparison of
the results from the spherical and spheroidal formulations
of the MCCC method for excitation of the B 1Σ+

u , C 1Πu,
B′ 1Σ+

u , D 1Πu, E,F 1Σ+
g , b 3Σ+

u , c 3Πu, a 3Σ+
g , e 3Σ+

u ,
h 3Σ+

g , and d 3Πu states from the ground X 1Σ+
g (v = 0)

state. Conclusions and future directions are discussed in
Section 5. Atomic units are used throughout the paper
except where specified otherwise.

2 Theory

The details for the application of the MCCC method
to electron-molecule scattering have been presented in
a number of publications [16,17,44,45]. Here we give a
brief overview with the emphasis being on the differ-
ences between the spherical- and spheroidal-coordinate
implementations.

We start with the FN formulation, where the nuclei are
kept at a fixed orientation and internuclear separation R.
The Born-Oppenheimer approximation allows the nuclear
and electronic degrees of freedom to be separated, reduc-
ing the scattering problem to solving for the electronic
scattering wave function with R treated as a fixed param-
eter. The scattering equations are formulated in the body
frame, with the z axis aligned with the internuclear axis.
For the spherical formulation the origin is placed at the
geometric centre of the two nuclei. For the spheroidal for-
mulation the two focal points are chosen to coincide with
the positions of the nuclei. With this choice the prolate
spheroidal coordinates ρ = (ρ, η, φ) are defined as

ρ =
r1 + r2

2
− R

2
0 ≤ ρ <∞

, and
η =

r1 − r2

R
−1 ≤ η ≤ 1

, (1)

where r1 and r2 are the distances from the two focal
points. Note that we have modified the radial variable

from the standard definition (ξ = (r1 + r2)/R) to avoid
the singularity at the combined-nuclear limit (R = 0). In
this limit it is easy to show that the spheroidal coordinates
we have adopted (1) reduce to the standard spherical coor-
dinates r = (r, θ, φ):

lim
R→0

ρ = r, lim
R→0

η = cos θ. (2)

The azimuthal angle φ retains the same definition in both
coordinate systems.

In the close-coupling approach to electron-molecule col-
lisions the total wave function of the collision system is
expanded in the set of the N target states:

ΨN(+)
i (x̄0, x̄1, x̄2) = AψN(+)

i (x̄0, x̄1, x̄2)

= A
N∑
n=1

fN(+)
n (x̄0)ΦNn (x̄1, x̄2), (3)

where x̄ = {x, σ} is used to denote both the spatial x and
spin σ coordinates and x stands for the spherical (r) or
spheroidal (ρ) representations. The projectile coordinates
are assigned the index 0, while the indices 1 and 2 refer to
the target electrons. The (+) superscript denotes outgoing
spherical boundary conditions, and A is the antisymmetri-
sation operator. The explicit dependence on R has been
suppressed for clarity of presentation and will be restored
when required.

The electronic target states of H2 are characterised by
conserved quantum numbers of orbital angular momen-
tum projection mn, parity πn, and spin sn, and are con-
structed from antisymmetrised two-electron functions:

ΦNn (x̄1, x̄2) =
∑
αβ

C
(n)
αβ φα(x1)φβ(x2)Xsn

msn
(σ1, σ2), (4)

where Xsn
msn

(σ1, σ2) is the two-electron spin function and
the configuration-interaction (CI) coefficients are denoted
by C

(n)
αβ . The CI coefficients satisfy C

(n)
αβ = (−1)snC(n)

βα

to ensure the antisymmetry of the target states, and are
obtained via diagonalisation of the target Hamiltonian for
each target symmetry (m,π, s). The target states satisfy

〈ΦNn′ |HT|ΦNn 〉 = εNn δn′n, (5)

where εNn is the electronic energy of the state ΦNn .
The one-electron functions in equation (4) are charac-

terised by orbital angular momentum `α, parity πα =
(−1)`α , and orbital angular momentum projection mα,
and are expressed as

φα(x) = ϕkα{`α,mα}(x)Y`αmα(x̂), (6)

where Y`m(x̂) is a spherical harmonic. The radial compo-
nents are the Laguerre basis functions given for the spher-
ical formulation by

ϕk`(r) =

√
α`(k − 1)!

(k + `)(k + 2`)!
(2α`r)`e−α`rL2`+1

k−1 (2α`r),

(7)
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and for the spheroidal formation by

ϕkm(ρ) =

√
2αm(k − 1)!
(k +m− 1)!

(2αmρ)m/2e−αmρLmk−1(2αmρ).

(8)
Here, Lak are the associated Laguerre polynomials, and α
is an exponential fall-off parameter.

The total wave function of the collision system satisfies
the Schrödinger equation

(E(+) −H)ΨN(+)
i = 0, (9)

where H = K0 + V + HT is the total (electronic)
Hamiltonian, K0 is the projectile kinetic-energy operator,
and V is the projectile-target interaction potential. The
MCCC method solves the Schrödinger equation by sub-
stitution of the expansion (3) for ΨN(+)

i , and formulating
the set of close-coupling equations in momentum space for
the T matrix

〈k(−)
f ΦNf |TN |ΦNi k

(+)
i 〉 = 〈k(−)

f ΦNf |V |ψ
N(+)
i 〉. (10)

The projectile distorted waves are the solutions of

(εk −K0 − U0)|k(±)〉 = 0, (11)

where εk = k2/2 and U0 is a short-ranged central distort-
ing potential taken as the spherically symmetric part of
the electron-molecule direct potential averaged over the
ground (electronic) state of H2. The close-coupling equa-
tions are solved by performing a partial-wave expansion of
the distorted waves, which for the spherical formulation is
given by

|k(±)〉 =
1
k

∑
L,M

iLe±iδLY ∗LM (k̂)|kL〉, (12)

where δL is the distorting phase shift and the sum is
taken to some maximum value Lmax and |M | ≤ Lmax.
For the spheroidal formulation the spherical harmonics in
equation (12) are replaced by the spheroidal harmonics,
and the radial and angular equations are solved as dis-
cussed in reference [46].

The resulting Lippmann-Schwinger equations for the
partial-wave T matrix are given by

TMΠS
fLfMf ,iLiMi

(kf , ki) = VMΠS
fLfMf ,iLiMi

(kf , ki) (13)

+
N∑
n=1

∑
LM

∑∫
k

dk
VMΠS
fLfMf ,nLM

(kf , k)TMΠS
nLM,iLiMi

(k, ki)

E − εk − εNn + i0
·

These equations are solved for each partial wave of the
total orbital angular momentum projection M , parity Π,
and spin S using standard techniques [47]. The body-
frame T matrix is transformed to the laboratory frame
and an orientation-averaging procedure is performed to
produce cross sections of interest [44]. For example, the
FN partial-wave integrated cross sections (ICS) are cal-
culated from the partial-wave T -matrix elements in the
following way:

σMΠS
f,i =

qf
qi

1
4π

∑
Lf ,Li
Mf ,Mi

∣∣∣FMΠS
fLfMf ,iLiMi

∣∣∣2 , (14)

where

FMΠS
fLfMf ,iLiMi

= − (2π)2(qfqi)−1iLi−Lf

× TMΠS
fLfMf ,iLiMi

(qf , qi), (15)

and q is the linear momentum of the projectile which is
used to indicate the physical T -matrix elements. The spin-
averaged ICS is given by

σf,i =
∑
S

2S + 1
2(2si + 1)

∑
MΠ

σMΠS
f,i , (16)

where si is the initial target-state spin. For scattering on
the ground state of H2, si = 0 and hence there is only one
spin channel.

The partial-wave expansion (16) of the cross sections
converges slowly for dipole-allowed transitions at inter-
mediate and large incident electron energies. To acceler-
ate the convergence, the analytic Born subtraction (ABS)
technique can be utilised. See details in reference [44] for
applications of the ABS technique to both integrated and
differential cross sections.

2.1 Adiabatic-nuclei approximation

The AN approximation provides a method for obtaining
fully vibrationally resolved cross sections from the FN
T matrix calculated over a range of internuclear separa-
tions R. The AN cross section for the transition ivi → fvf
is given by

σfvf ,ivi =
qfvf
4πqi

∑
Lf ,Li
Mf ,Mi

∣∣〈νfvf |FfLfMf ,iLiMi |νivi〉R
∣∣2 .

(17)

Here qfvf and qi are the outgoing and incident projec-
tile linear momenta, and νnvn are the vibrational wave
functions which are obtained by diagonalising the Born-
Oppenheimer vibrational Hamiltonian

HBO
n = − 1

2µ
d2

dR2
+
J(J + 1)−m2

n

2µR2
+ εn(R) (18)

in a basis of nuclear functions which have the same form
as the one-electron functions (7). Here, µ is the nuclear
reduced mass, εn is the potential-energy curve (PEC)
of the electronic state n, J is the total molecular angu-
lar momentum, and mn is the electronic-state angular
momentum projection onto the internuclear axis. The cen-
trifugal term in equation (18) can be neglected for small J ,
as it is insignificant compared to εn. The outgoing momen-
tum qfvf satisfies the energy conservation relation

qfvf =
√

2
[
Ein − εfvf ,ivi

]
, (19)
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where εfvf ,ivi is the vibrationally resolved excitation
energy.

The integration over R in equation (17) requires the FN
calculations to be performed on a sufficiently fine R mesh
over the region where the initial vibrational wave func-
tion is non-negligible. This can lead to very substantial
computational requirements when the calculations utilise
large close-coupling expansions.

To compare the FN and AN cross sections we sum the
vibrationally resolved cross sections (17) over the final
vibrational levels, giving

σf,ivi =
∑
vf

σfvf ,ivi . (20)

In the limit of neglecting the energy difference between
the final vibrational levels, equation (20) takes the simple
form

σf,ivi ≈ 〈νivi |σf,i|νivi〉R (21)

due to the completeness of the set of vibrational
states {νfvf }. Here, σf,i is the R-dependent FN cross
section (16). If the R dependence of the FN cross section
can be neglected over the region where the initial vibra-
tional wave function is non-negligible then equation (21)
reduces to the FN cross section (16). The last require-
ment can be relaxed by assuming a linear dependence of
the FN cross section on R. Then performing the FN calcu-
lations at the average internuclear distance (Rm = 1.448
for H2) gives the best approximation to the corresponding
AN cross section [48]. Note, however, that the FN method
cannot reproduce the AN cross sections at near-threshold
energies, where the R dependence of the cross sections
must be taken into account.

3 Details of the calculations

The accuracy of the calculated collision data significantly
depends on the accuracy of the underlying structure
model. In this section we present an overview of the H2

target structure adopted in the MCCC calculations per-
formed in the spherical and spheroidal formulations. In
general, the main aspects in adopting a target structure
model for the H2 molecule are:

(a) accounting for the multicentre and non-spherical
nature of the problem,

(b) accounting for electron-electron correlations,
(c) implementing the above in a way that allows for

tractable scattering calculations.

The spheroidal formulation is significantly more accu-
rate in dealing with the multicentre and non-spherical
issues. For both formulations we have used a two-step
approach to building the target wave functions. First, a
large Laguerre basis (N` = 60− `, ` ≤ 8) is used to obtain
an accurate 1sσg orbital of the H+

2 ion as it is most affected
by the multicentre and non-spherical aspects. This step
is performed with the internuclear separation of the ion
equal to the separation R of the H2 molecule. The second
step is a standard two-electron configuration-interaction

approach that makes use of a much smaller Laguerre
basis together with the calculated 1sσg orbital in place
of the 1s Laguerre function. The target model adopted
in the spherical formulation has been described in refer-
ence [44]. The model has an underlying Laguerre basis
with N` = 17− `, ` ≤ 3 and exponential falloffs α0 = 0.76,
α1 = 0.765, α2 = 0.79, and α3 = 0.85, which provide a suf-
ficiently accurate representation of the target states up to
the n = 4 shell at R = 1.448. The CI expansion includes
frozen-core configurations (1s, nlm), and all (nlm, n′l′m′)
correlation configurations with principle quantum num-
bers n, n′ ≤ 2. The maximum number of states generated
in this model is 491, including 92 negative energy states
(relative to the H+

2 ground state), with the remaining
states representing the ionisation continuum. The partial-
wave expansion of the projectile continuum waves was
performed up to Lmax = 8, and the maximum total angu-
lar momentum projection in the partial-wave expansion of
the Lippmann-Schwinger equation (13) was chosen to be
Mmax = Lmax. The MCCC(491) calculations require sub-
stantial computational resources and were performed at
relatively few energies where experiment is available and
which were sufficient to map all excitation cross sections.
As the accuracy of the spherical formulation becomes poor
at large internuclear separations, the scattering calcula-
tions were performed at R = 1.448 only, with the princi-
ple aim being to establish convergence in the calculated
cross sections as discussed in reference [44]. This restric-
tion on R limits the results to cross sections which are
summed over final vibrational levels, for scattering on the
vi = 0 vibrational state only. In order to model scattering
on excited vibrational levels and to obtain results for exci-
tation of specific final vibrational levels the AN approx-
imation must be utilised, which requires FN calculations
to be performed over a range of R values.

The spheroidal calculations were performed with the
aim of obtaining AN cross sections for excitation of a
number of low-lying electronic states. This requires a
large number of calculations to be performed at many
internuclear distances R for each incident electron energy
and makes it impractical to use a model as large as the
MCCC(491) model discussed above. We have adopted
a model with an underlying Laguerre basis of N` =
12 − `, ` ≤ 3 functions and exponential falloffs α = 0.8
for each m. The CI expansion includes all frozen-core
configurations (1s, nlm), as well as correlation configu-
rations (n`m, n′`′m′) with n`, n′`′ spanning the 1s, 2s,
3s, 2p, 3p, 3d, 4d, 5d, and 4f orbitals. To account for the
molecule becoming more diffuse at larger internuclear sep-
arations, these core orbitals were taken from a Laguerre
basis with modified exponential falloffs which were opti-
mised as a function of R to yield more accurate target
states. At R = 1.448 the core orbitals have α0 = 1.2 and
αm≥1 = 1.627. At larger R the exponential falloffs are
reduced to produce more diffuse orbitals, for example at
R = 5.0 we used α0 = 0.975 and αm≥1 = 1.3. The large
number of correlation configurations in the spheroidal
calculations was necessary to achieve sufficiently accu-
rate target wave functions across all internuclear distances
up to R ≈ 8.0. The total number of states included in
the scattering calculations is 210, including 56 discrete
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Table 1. Two-electron energies of electronic target states of
H2 at the internuclear distance R0 = 1.4 a0. Comparison of
the present spherical- and spheroidal-coordinate calculations
is made with accurate structure calculations [50–58].

State Spherical Spheroidal Ref.

X 1Σ+
g −1.162 −1.170 −1.174 [51]

b 3Σ+
u −0.770 −0.784 −0.784 [52]

a 3Σ+
g −0.710 −0.713 −0.714 [53]

c 3Πu −0.701 −0.706 −0.707 [54]
B 1Σ+

u −0.697 −0.705 −0.706 [55]
E, F 1Σ+

g −0.687 −0.691 −0.692 [56]
C 1Πu −0.683 −0.688 −0.689 [50]
e 3Σ+

u −0.640 −0.643 −0.644 [57]
h 3Σ+

g −0.628 −0.630 −0.630 [58]
d 3Πu −0.626 −0.629 −0.629 [59]
B′ 1Σ+

u −0.625 −0.628 −0.629 [55]
D 1Πu −0.621 −0.623 −0.624 [50]

states at R = 1.448. The projectile partial-wave expan-
sion includes angular momenta up to Lmax = 6 for inci-
dent electron energies below 20 eV and Lmax = 10 at larger
energies. At R = 1.448 the MCCC(210) calculations were
performed on a fine energy mesh with the aim of resolving
resonance behaviour and comparing with AN calculations.

To limit the computational resources we have devel-
oped a scaling procedure which makes use of collision data
obtained with a significantly smaller close-coupling expan-
sion. The MCC(27) model includes only the first 27 bound
states from the MCCC(210) model. Scattering calcula-
tions have been performed with the MCC(27) model on a
fine grid of internuclear separations. The scaling procedure
is discussed in detail in reference [40]. We use the same
MCCC(210) label to indicate AN collision data obtained
with this procedure.

In Table 1 we present the two-electron energies for a
number of low-lying states calculated at the internuclear
distance R = 1.4 in both the spherical and spheroidal
techniques, and compare with accurate structure calcu-
lations [50–59]. The spheroidal approach clearly demon-
strates a high level of accuracy, particularly for the ground
(X 1Σ+

g ) and first excited (b 3Σ+
u ) states. In Figures 1

and 2 the PECs calculated in the spheroidal model are
presented for the singlet and triplet states, and compared
with the accurate calculations of references [50,55,60,61].
We find excellent agreement for all states up to R = 5.0,
which is sufficient to model collisions with vibrationally
excited H2(X 1Σ+

g , vi) with vi = 0–12, and good agree-
ment (within 3%) up to R = 8.0, which is required to
model scattering on the remaining vi = 13–14 levels.

Table 2 presents the optical oscillator strengths (OOS)
for a number of optically allowed transitions calculated at
R = 1.4. We find very good agreement between the length
and velocity forms for the spheroidal approach and sim-
ilarly good agreement with previous calculations [50,62].
The spherical approach shows reasonable agreement with
the previous calculations, in particular for the length form,
though for the B 1Σ+

u state the length form is 9% too
low. Figure 3 presents the dependence of the OOS on the
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Fig. 1. The present potential-energy curves for several singlet
states of H2 (solid lines), compared with accurate calculations
(dashed lines) obtained for the X 1Σ+

g state from reference [60],
the B 1Σ+

u and B′ 1Σ+
u states from reference [55], the C 1Πu

and D 1Πu states from reference [50], and the E, F 1Σ+
g state

from reference [61].
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Fig. 2. The present potential-energy curves for several triplet
states of H2 (solid lines), compared with accurate calculations
(dashed lines) obtained from reference [59].

internuclear distance up to R = 8.0. Similar to the ener-
gies obtained in the spheroidal approach, we find very
good agreement with the accurate calculations [50,62] for
R ≤ 5.0 with only small errors at larger internuclear
distances.

4 Results

In Figures 4 and 5 we present cross sections summed
over all final vibrational levels in the B 1Σ+

u , C 1Πu,
B′ 1Σ+

u , D 1Πu and E,F 1Σ+
g singlet states and the b 3Σ+

u ,
c 3Πu, a 3Σ+

g , e 3Σ+
u , h 3Σ+

g , and d 3Πu triplet states, for
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Table 2. Optical oscillator strengths (OOS) for transitions
from the X 1Σ+

g state to the B 1Σ+
u , C 1Πu, B′ 1Σ+

u , and D 1Πu

states of H2 at the internuclear separation R = 1.4 a0. Results
from the present spherical- and spheroidal-coordinate struc-
ture calculations performed in the length (L) and velocity (V)
forms are compared with the accurate calculations of references
[50,62].

State
Spherical Spheroidal Refs.

L V L V [50,62]

B 1Σ+
u 0.277 0.243 0.298 0.293 0.301

C 1Πu 0.337 0.312 0.357 0.352 0.358
B′ 1Σ+

u 0.058 0.050 0.057 0.058 0.057
D 1Πu 0.083 0.077 0.086 0.085 0.085
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Fig. 3. Optical oscillator strengths (OOS) between the X 1Σ+
g

state and several singlet states of H2. Results of the present
spheroidal-coordinate structure calculation (solid lines) are
compared with accurate calculations (dashed lines) obtained
from references [50,62].

electrons scattering on the X 1Σ+
g (vi = 0) ground state

of H2. In this investigation we concentrate on the low
to intermediate incident electron energy range, from 6 to
40 eV. For all excitations we present results from three
calculations: the FN spherical MCCC(491) model, the
FN spheroidal MCCC(210) model, and the AN spheroidal
MCCC(210) model (with scaling, as described in Sect. 3).
For clarity of presentation, we have not included experi-
mental data points in Figures 4 and 5, however detailed
comparisons of the MCCC(491) cross sections with exper-
iment can be found in references [16,33].

The FN MCCC(210) calculations were performed on
a fine energy mesh at R = 1.448. The calculations show
numerous resonance structures for practically all tran-
sitions that diminish with increasing incident energy.
These could be a combination of true resonances, pseu-
doresonances related to the relatively small size of the
close-coupling expansion in the MCCC(210) model, and
numerical instabilities. The spherical MCCC(491) model,
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Fig. 4. Electron-impact excitation cross sections summed over
all final vibrational levels in the B 1Σ+

u , C 1Πu, B′ 1Σ+
u , D 1Πu,

and E, F 1Σ+
g states for scattering on the X 1Σ+

g (vi = 0)
ground state of H2. Fixed-nuclei (FN) results of the spherical
MCCC(491) and spheroidal MCCC(210) models are presented,
as well as adiabatic-nuclei (AN) calculations performed with
the spheroidal MCCC(210) model.

performed also at R = 1.448, has a much larger close-
coupling expansion and therefore is significantly less
affected by pseudo resonances. It generally produces
smoother cross sections, though the choice of incident
energies at which the calculations were performed could
be fortuitous.

The calculations performed in the AN formulation of
the MCCC(210) model were conducted at a set of incident
energies that was sufficient to map out excitation cross
sections. It is prohibitively computationally expensive to
conduct the AN MCCC(210) calculations on a fine energy
mesh. However, we have performed such calculations with
smaller models. In reference [49] we used a 12-state model
in the spherical formulation to perform AN calculations
with the aim of producing AN cross sections for excitation
of the b 3Σ+

u state from the X 1Σ+
g (vi = 0) ground state

of H2. These calculations are in very good agreement
with the AN MCCC(210) results for the b 3Σ+

u state. We
showed that the FN MCC(12) cross section for the b 3Σ+

u
state exhibits a number of sharp resonance structures that
change their energy position with changing R. However,
the effective averaging procedure over R in equation (21)
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Fig. 5. Electron-impact excitation cross sections summed over
all final vibrational levels in the b 3Σ+

u , c 3Πu, a 3Σ+
g , e 3Σ+

u ,
h 3Σ+

g , and d 3Πu states for scattering on the X 1Σ+
g (vi = 0)

ground state of H2. Fixed-nuclei (FN) results of the spherical
MCCC(491) and spheroidal MCCC(210) models are presented,
as well as adiabatic-nuclei (AN) calculations performed with
the spheroidal MCCC(210) model.

leads to a smooth AN cross section. We have performed
AN calculations using the spheroidal MCC(27) model and
found similar behaviour for other electronic transitions
– the sharper resonance structures tend to disappear in
the AN approach while broader structures are diminished
in magnitude. The AN MCCC(210) cross sections show
similar behaviour as can be seen from Figures 4 and 5.
We therefore believe that smooth interpolation between
the energies of the AN MCCC(210) results should lead to
sufficiently accurate cross-section estimates. We note that
similar smoothing behaviour in the AN method was found
in reference [63] in their studies of dissociative excitation
of HeH+ by electron impact, where the FN cross sections
showed a number of strong resonance peaks.

The AN MCCC(210) calculations together with our pre-
vious AN MCC(12) results for the b 3Σ+

u state provide a
set of cross sections for incident electron energies close
to excitation thresholds for a large number of excited
states of H2 (a complete set of vibrationally resolved cross
sections is in preparation [64]). At low energies the AN
cross sections differ substantially from the correspond-
ing FN cross sections for the triplet-state excitations and
dipole-forbidden transitions, which generally have a sharp
rise at the threshold. For excitation of the dipole-allowed

transitions, which rise smoothly from threshold, the dif-
ference between the FN and AN cross sections is not as
significant.

For a number of transitions there are systematic
differences between the spheroidal MCCC(210) cross
sections and the corresponding cross sections of the spher-
ical MCCC(491) model. This is primarily due to the more
accurate target structure in the spheroidal formulation.
For example, the B 1Σ+

u MCCC(210) cross section is
larger than the MCCC(491) cross section, due to the OOS
for this transition being less accurate in the MCCC(491)
model. As discussed earlier, the OOS from the spherical
structure model are too low by about 9%, and this trans-
lates to a comparable error in the excitation cross sec-
tions. Similar systematic differences were found for the
E,F 1Σ+

g state, where the spheroidal MCCC(210) cross
section is larger by nearly 30% than the MCCC(491) cross
section for incident energies above 20 eV. Smaller, but still
substantial differences have been found for a number of
triplet states (c 3Πu, d 3Πu, and h 3Σ+

g ). Importantly, we
find good agreement between the spherical and spheroidal
MCCC results for the C 1Πu excitation, where there still
exists a large discrepancy between theory and the recom-
mended cross sections (derived from experiment) at inter-
mediate and high energies [16].

In Figures 6 and 7 we present differential cross sec-
tions (DCS) for excitation of the singlet B 1Σ+

u , C 1Πu,
E,F 1Σ+

g , and triplet b 3Σ+
u , a 3Σ+

g , and c 3Πu states
from the X 1Σ+

g (vi = 0) ground state of H2. Results of
the spherical MCCC(491) and spheroidal MCCC(210) FN
models are compared with available measurements at inci-
dent energies between 15 and 20 eV for the triplet states,
and 20 and 30 eV for the singlet states. The overall shapes
of the DCS are similar in the two MCCC formulations,
with differences in magnitude for some states as consis-
tent with the ICS results presented in Figures 4 and 5.

5 Conclusions

We have presented a comparison of the cross sections
calculated in the spherical- and spheroidal-coordinate for-
mulations of the MCCC method. The more accurate tar-
get structure in the spheroidal calculations makes the
calculated collision cross sections more accurate. Gener-
ally good agreement is found between the spherical FN
MCCC(491) and spheroidal FN MCCC(210) cross sec-
tions. However, for a number of transitions the differences
were substantial (up to 30%).

The spheroidal FN MCCC(210) calculations have been
performed on a fine energy mesh for R = 1.448. The
numerous resonance structures found in these FN cal-
culations tend to disappear when the AN approach is
applied to calculations of the collision cross sections. The
AN MCCC(210) calculations have allowed us to produce
a comprehensive set of cross sections with vibrational lev-
els resolved in both the initial and final electronic states.
Here we presented a set of AN cross sections for scattering
on the X 1Σ+

g (vi = 0) ground state of H2. These cross
sections represent a reliable estimate at near-threshold
energies, where the FN approach fails. At higher incident

https://www.epjd.epj.org
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Fig. 6. Electron-impact differential cross sections for excita-
tion of the B 1Σ+

u , C 1Πu, and E, F 1Σ+
g states by 20- and

30 eV electrons scattering on the X 1Σ+
g (vi = 0) ground state

of H2. Fixed-nuclei results of the spheroidal MCCC(210) and
spherical MCCC(491) models are compared with the measure-
ments of Khakoo and Trajmar [65] and Wrkich et al. [66].

energies, the FN cross sections are an excellent approxi-
mation to the AN cross sections summed over final vibra-
tional levels.

We hope the present results will be of interest to the
plasma-modelling community. Future work in the MCCC
project will include more accurate calculations of low-
energy elastic and excitation cross sections using a vibra-
tional close-coupling method, and the extension to more
complex molecular targets.
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