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Abstract. Rotational excitation cross sections of tetrahedral and octahedral molecules caused by low energy
positron/electron impact are the subject of this work. We developed a scattering model considering the
Born approximation and the asymptotic multipole potential. These assumptions permitted us to achieve
analytical expressions for rotational integral, momentum transfer and differential cross sections. We have
found good agreement for positron and marginal agreement for electron interactions. The model can be
improved with the inclusion of exchange effects and the distortion of the scattering wave function.

1 Introduction

The problem of electron and positron thermalisation in
atomic and molecular gases finds motivation to be stud-
ied in many different branches of fundamental and applied
science. For example, electron and positron collisions play
a major role in the modelling of the energy deposition
in planetary atmospheres [1], solar flares [2] and in the
interstellar medium [3,4]. In the same fashion, annihila-
tion radiation coming from the center of the galaxy [5]
is a fascinating problem whose origin is still not fully
understood. In the applied frontier, the modeling of swarm
experiments [6] and plasmas always demanded the knowl-
edge of electron cross sections with the chemical species
present in the discharge environment [7]. More modernly,
matter-antimatter plasmas received considerable atten-
tion [8] both in the applied and fundamental scenar-
ios. Experimental initiatives toward the measurement of
positron thermalisation times within molecular gases were
performed by Al-Qaradawi et al. [9] and Natisin et al. [10]
opening the possibility of generation of ultracold positron
beams.

When high energy electrons and positrons get into
molecular environments, they lose energy mainly by ion-
ization [11] fastly cooling to energies of the order of
≈ 100 eV. Then, electronic excitation starts to compete
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with ionization and the leptons cool until energies below
the first inelastic electronic threshold, typically of the
order of eV’s for standard molecular gases [12]. After
the electronic collision channels become energetically
unavailable, vibrational excitation turns into the domi-
nant energy loss mechanism. This situation persists until
the particles reach energies of ≈ 10−1 eV, where vibra-
tional excitation is no more allowed. For molecular gases
at 300 K (≈ 0.025 eV), the leptons cool by elastic col-
lisions but mainly by rotational excitation. Most of the
cooling time is spent in this very low energy range, making
the calculation and measurement of rotational excitation
cross sections a fundamental step towards a deeper under-
standing of the thermalisation dynamics of electrons and
positrons in molecular environments.

For an enlightening discussion about the scattering the-
ory and its relevance in many branches of physics, we
recommend the paper of Belkić [13]. Here we focus in
the problem of rotational excitation caused by electron
and positron impact. In particular, the paper of Itikawa
and Mason [14] brings a good review for electrons. It is
not hard to verify that the techniques to compute low-
energy rotational excitation cross sections vary in two
main aspects: the method to model the lepton-molecule
interaction and the approach to incorporate the rota-
tional dynamics in the scattering. Among many methods
reported along the time in the literature of the field, and
that were applied to compute rotational cross sections,
we find the Schwinger Multichannel Method [15,16], the
R-matrix [17], and the methods of Burke and Chandra [18]
and Gianturco and Thompson [19]. Since these methods
are highly dependent on computational processing, their
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application to bigger molecular systems demands constant
analysis and computational processing strategies [20].

In particular, our group has devoted attention to
this theme in the last years, calculating rotational exci-
tation cross sections for positron-H2, N2, Li2 [21–23]
and tetrahedral molecules by positron impact [24] and
rovibrational cross sections for electron-rare-gas dimers
cross sections [25] using consecrated techniques like the
adiabatic rotational approximation (ARA), the Born-
multipole and zero range potential (ZRP) models, respec-
tively. The attained experience in the works with H2, N2,
Li2 showed that simple analytical models, based on ele-
mentary assumptions, are useful to debug the codes, since
they do not require high-end computational resources and
allow one to vary the scattering and molecular parameters
achieving results in real-time. In most occasions, the ana-
lytical models are capable to predict the qualitative value
of a measure, and they permit us to observe if the high-
level description methods are going in the right direction
to perform a correct physical description of the scattering
phenomenon.

This article is organized as follows: in Section 2 we
briefly discuss the main aspects of the Born-multipole
model; in Sections 3 and 4 we present our results, and
finally, in Section 5 we state our conclusions. Atomic units
are used unless otherwise explicit stated.

2 The Born-multipole model

In molecular physics, the geometry of the system strongly
interferes in the way it interacts with the environment.
Here we consider the rotational excitation of tetrahedral
and octahedral molecules in the same way as discussed by
Barp and Arretche [24]. In fact, this work is an extension
of this last one, but focused in the discussion of results for
momentum transfer and differential cross sections associ-
ated to rotational excitation. For the sake of completeness,
we summarize the two main assumptions that compose the
model:

1. the scattering amplitude is fairly calculated in the first
Born approximation;

2. an effective one-body interaction potential can be
taken from the multipole expansion of the many-body
original potential.

From the considerations above, such methodology is
usually denoted in literature as the Born-multipole
model [26].

These hypothesis are easily justified in the context of
positron-molecule scattering since the static potential is
essentially repulsive. It means that the positron density
decreases rapidly as the positron penetrates the molecular
field. The electron-molecule static potential is, otherwise,
attractive. But, due to the fact that the principal contri-
bution to the rotational cross section comes from large
distances of the incoming electrons from the molecule, the
scattering wave function is only slightly distorted from
its incident form and the Born approximation improves
with decreasing incident electron energy [27]. In the Born
approximation, if exchange interaction is disregarded, the

cross sections for electron and positron impact are the
same. Moreover, the rotational cross sections are signif-
icantly smaller than the vibrational and elastic ones. In
view of this fact, a perturbative approach providing ana-
lytical expressions is valuable.

The scattering amplitude for a rotational transition
{Ji,Ki,Mi} → {Jf ,Kf ,Mf} (simply denoted from now
on as “i→ f”) becomes [24]

F i→f [kf ,ki] = − 1
2π

∫
d3xe−i(kf−ki)·x

×
∫
dΩ ΨJf ∗

Kf Mf
(Ω)〈χn(q) Φ0(rj ; RA)|V

× |Φ0(rj ; RA)χn(q)〉ΨJi

KiMi
(Ω), (1)

where x denotes the projectile coordinates, kf (ki) is the
scattered (incident) projectile wave vector, the label J is
related to the total angular momentum, K and M rep-
resent the projection of J in the z axis of the laboratory
and body frames, respectively.

The effective potential, i.e.,

〈χn Φ0|V |Φ0 χn〉 =
∑
l m

4π
2l + 1

qlm
Yl m(x̂)
xl+1

, (2)

is taken from the multipole expansion. Such potential
is written in the body frame but the rotational transi-
tions are recorded in the laboratory one, therefore we
must transform V (x) from the body to the laboratory
referential. Besides that, since tetrahedral and octahedral
molecules are spherical tops, the rotational wave functions
are simply normalized Wigner matrices. Also, these sys-
tems present zero dipole and quadrupole moments. In fact
the first non-zero moments are octupole, for tetrahedral,
and hexadecapole, for octahedral molecules. For octupole
and hexadecapole transitions, we have l = 3 and l = 4
in the multipole expansion of the scattering potential, as
given in equation (2) above. The selection rules associ-
ated to these transitions are Jf = Ji ± 3 and Jf = Ji ± 4,
respectively.

3 Tetrahedral systems

In this section, we shall consider only octupole transitions
for CH4 molecules. The reason to fix attention to this sys-
tem lies in the fact that other authors reported results for
rotational cross sections induced by electron and positron
scattering for this molecule, with different methodologies
and levels of coupling, making the comparison with our
analytical results adequate for the purpose of this paper.

3.1 Positron scattering: rotational momentum transfer
cross sections

In this section we report momentum transfer (diffusion)
cross sections (σMT) associated to the rotational transi-
tions for positron-CH4. It differs appreciably from the
rotational cross section (already reported in [24]) only
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Fig. 1. Positron-CH4 rotational momentum transfer cross
section (σMT) for octupole transition (0 → 3). We display
our results with the lowest [30] (Ωmin = 2.08 ea3

0) and high-
est [31] (Ωmax = 8.3 ea3

0) octupole moments reported in
literature, dashed lines. Also, we present our cross section
with the octupole value of Isnard et al. [32] (Ω = 3.23 ea3

0),
solid line. Our results are compared with the one of Jain and
Thompson [29], dotted line.

when there is a pronounced scattering in either the back-
ward or forward directions [28]. The expression for the
momentum transfer cross section is given by

σ
Ji→Jf

MT =
kf

ki

1
(2Ji + 1)2

∑
MiKi

∑
Mf Kf

1
4π

×
∫
dθ̂

∫
dξ̂ (1− cos θ) |F i→f |2

=
1

4π
kf

ki

4
(15)2

(
4π
7

)3 [
k2

i + k2
f +

2
3
kfki

]
×
(

2Jf + 1
2Ji + 1

)[
21
5π
〈Ω〉2

]
, (3)

where θ is the angle between kf and ki, and ki and kf are
the absolute values of the initial and final wave vectors.
Besides, an average of the initial state and a sum over
the final states have been considered. Both solid angles
θ̂ and ξ̂ are discussed in reference [24]. Finally, F i→f is
the scattering amplitude (see Eq. (1)) and Ω is the mea-
sured (or calculated) octupole moment. The notation 〈Ω〉
means that an average over vibrational states is taken into
account.

In Figure 1 we compare our results to the one of Jain
and Thompson [29]. These authors considered a scattering
potential constructed from the superposition of the static
plus an ab initio nonparametric polarization potential.

The present calculation exhibits good agreement with
the ab initio result of Jain and Thompson [29] at the
low energy regime. This is expected based in the previ-
ous established conditions of the model. Furthermore, our
result shows the same qualitative behaviour for energies
far from the rotational threshold, when compared to the
other theoretical calculation. This is also expected due

to the small contribution of partial waves with low li,
i.e., li = 0. Indeed, it is possible to observe such contribu-
tion when a partial wave decomposition is performed (see
Figs. 2 and 3 of Ref. [24]). In other words, the description
of the potential inside the molecular region is important
if the partial waves with li = 0 have significant contribu-
tion. Since li = 0 means frontal collision, the projectile
gets deeper into the target potential field. Therefore, the
discrepancy of the results in Figure 1 is strongly associated
to the distortion of the scattering wave function.

3.2 Electron scattering: rotational integral
and differential cross sections

In the electron scattering research field, it is well estab-
lished that the exchange effect, not present in this model,
plays an important role at low energies. Nevertheless, con-
sidering the scarce number of theoretical results, the lack
of experimental data and, mainly, the considerable dis-
agreement between the rotational integral and differen-
tial cross sections for tetrahedral molecules by electron
impact, we consider that the report of the present results
is valuable.

The rotational cross section can be calculated in the
same way as the momentum transfer (1), disregarding the
term cos θ in equation (3).

Hence, the expression for the rotational integral cross
section is [24]:

σJi→Jf =
1

4π
kf

ki

4
(15)2

(
4π
7

)3 [
k2

i + k2
f

](2Jf + 1
2Ji + 1

)
×
[

21
5π
〈Ω〉2

]
. (4)

The expression for the rotational differential cross section
(RDCS) for octupole rotational transitions is also readily
obtained:

dσ

dθ

Ji→Jf

=
kf

ki

(
2Jf + 1

2Ji + 1

)
32π〈Ω〉2

53 74 3

[
k2

i + k2
f − 2kfki cos θ

]
.

(5)

The variables and labels present in equations (4) and (5)
are the same as discussed in the previous section.

We compare our results to the theoretical values of Jain
and Thompson [33], Brescansin et al. [34] and McNaughten
et al. [35] for electron-CH4. All these results were gener-
ated within the ARA. The rotational cross sections reported
by Brescansin et al. [34] were calculated with the many
body ab initio variational formulation known as Schwinger
Multichannel Method. In such method the correlation-
exchange effects between the incident electron and the tar-
get electrons are treated in the many body formalism,
leading to a more complete and sophisticated description
of the process. The results of Jain and Thompson [33]
were derived by solving a set of coupled differential equa-
tions, taking into account an ab initio interaction potential
where the exchange term is calculated with a free-electron-
gas-exchange (FEGE) [36] model. Finally, McNaughten
et al. [35] reported new results using the same formulation as
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Fig. 2. Rotational integral and differential cross sections for octupole transition (0→ 3) in CH4 for electron impact. Our results
are shown for the lowest [30] (Ωmin = 2.08 ea3

0, dashed line with label) and the highest [31] (Ωmax = 8.3 ea3
0, dashed line with

label) values for octupole moments reported in literature. We also used the value of Isnard et al. [32] (Ω = 3.23 ea3
0), solid

line. Other theoretical results are: Brescansin et al. [34], squares (top left)/solid line with squares; Jain and Thompson [33],
dashed-dotted; McNaughten et al. [35], dashed-dot-dot. The experimental values of Muller et al. [37] are represented by circles.
(a) Rotational integral cross section. (b) RDCS for 0.5 eV. (c) RDCS for 3.0 eV. (d) RDCS for 5.0 eV.

Jain and Thompson [33] used, although applying an exact
exchange model.

All results are summarized in Figure 2. It is notewor-
thy that the theoretical values for the integral rotational
cross section, Figure 2a, show a considerable disagreement
in the intermediary energies (see for example the data at
3 eV). The higher magnitude of our results when compared
to the ones of Jain and Thompson [33] and McNaughten
et al. [35] at low energies is probably due to the lack of
exchange effects in the present model. At high energies,
there is an agreement between the theoretical models, for
example at 5 eV. At such energy, the distortion of the
wave function and the description of the potential inside
the molecular region are significant, thus the agreement of
our calculation with the more elaborated models of inter-
action may be fortuitous, i.e. there may be a cancellation
of factors that leads to such agreement.

For the differential cross section at 0.5 eV, Figure 2b,
our results are in good agreement, when we compare

the magnitude, with the ones calculated by Jain and
Thompson [33] and McNaughten et al. [35]. The slightly
different behaviour in the differential cross sections is due
to the description of the short-range interactions. All the-
oretical models are in disagreement with the only exist-
ing experimental data available in literature of Muller et
al. [37] which exhibits a minimum at ≈ 60 degrees that is
not observed in any theoretical calculation.

Comparing the results for 3 and 5 eV, respectively
Figures 2c and 2d, they show a concordance in magnitude
with the Born-multipole model if we consider the highest
value of the octupole moment. The data from Brescansin
et al. [34] exhibit a minimum structure between 120 and
140 degrees for both RDCSs which is observed but shifted
to the region between 100 and 120 degrees in the other
calculations. The experimental values of Muller et al. [37]
are closer to the ones reported by McNaughten et al. [35].
It seems that the structure present at high angular region
comes from the fact that for the forward scattering the
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Fig. 3. Rotational integral and differential cross sections for hexadecapole transition (0→ 4) in SF6 for positron/electron impact.
Our results are shown for the lowest [40] (Φmin = −14.3 ea4

0, dotted line with label) and the highest [41] (Φmax = −32 ea4
0,

dotted line with label) values for hexadecapole moments reported. The cross section obtained with the use of the value of
Maroulis [42] (Φ = −24.76 ea4

0) is represented by a solid line in 3a and it was used for all curves of 3b. (a) Rotational integral
cross section. (b) RDCS for selected energies.

short-range potential is important. Actually the different
description of such effect by the other theoretical mod-
els displays the prominent influence of exchange for the
backscattering effect.

4 Octahedral systems

The study of rotational transitions in octahedral molecules
induced by positrons has a major role in the development
of positron traps, since the SF6 has been pointed out as the
most efficient buffer gas [38,39]. However, neither experi-
mental nor theoretical values are available for both rota-
tional integral and differential cross sections.

The calculation can be performed similarly as done
before (for more details see Sect. 3.2 of Ref. [24]). The
rotational integral cross section is given by

σJi→Jf =
1

4π
kf

ki

4
(105)2

(
4π
9

)3 [(
k2

i + k2
f

)2
+

4
3
k2

fk
2
i

]
×
(

2Jf + 1
2Ji + 1

)[(
3
2

)2 1
35π
〈Φ〉2

]
. (6)

Also, one can evaluate the rotational differential cross
section by

dσ

dθ

Ji→Jf

=
kf

ki

(
2Jf + 1
2Ji + 1

)(
2
35

)3
π

310
〈Φ〉2

×
[
k2

i + k2
f − 2kfki cos θ

]2
. (7)

For both previous equations, 〈Φ〉 is the hexadecapole
moment and the other variables are the same as in
equation (3).

Our calculation explicitly depends on the hexadecapole
value. One may find in the literature a broad variation of

hexadecapole values for SF6. Hence, we follow the same
approach as aforesaid: we report the rotational integral
cross section for the lowest and highest value in litera-
ture, i.e., −14.3 ea4

0, from Birnbaum and Sutter [40], and
−32 ea4

0, from Isnard et al. [41]. In addition, after a care-
ful review, we have used the value of −24.76 ea4

0 from
Maroulis [42] since in such work a complete investigation
of the electric properties of SF6 has been done.

We expect good agreement with further investigations
in the positron area, since the rotational integral cross
section is basically formed by high magnitude li partial
waves (see Fig. 4 of Ref. [24]), which means that the
inner part of the potential may be neglected. It is worth
noting the importance of SF6 in positron traps, since
such molecule has been a subject of studies of positron
accumulation and cooling for the creation of high-quality
positron beams [38,43,44]. In the energy range of these
experiments, the mechanisms responsible for energy loss
by positrons are the momentum transfer, vibrational and
rotational scattering. The relative relevance of each mech-
anism still being a matter of investigation.

In the electron sector, considering that the exchange
effect is important, it is expected some discrepancy in
the comparison of our results with more sophisticated
models. Moreover, in the very low energy regime, since
the dominant process involves nuclear motion [45–48], a
fixed-nuclei approximation certainly will give qualitatively
incorrect results for electron-SF6 scattering.

According to reference [45], the lowest threshold for
vibrational excitation of SF6 is ≈ 0.1 eV. While electron
attachment plays a very strong role for lower impact ener-
gies due to the nuclear motion of SF6, there is no reason, at
least in principle, to assume that positron attachment will
have a similar relevance. In spite of the very low magni-
tude of the rotational excitation cross sections reported in
Figures 3a and 3b, one may expect that the positron cool-
ing in SF6 gas will be dominated by momentum transfer
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and rotational excitation, for energies below the vibra-
tional threshold.

Finally, considering the limitations of the present scat-
tering model, in the absence of resonances [49], the results
reported in this paper shall give a fair estimate of the
magnitude of the rotational excitation cross sections for
SF6.

5 Conclusions

We developed analytical expressions for the momentum
transfer, integral and differential cross sections associated
to octupole and hexadecapole rotational transitions. Such
model depends only on the values of the octupole and
hexadecapole moments, therefore it is possible to evalu-
ate the rotational cross section for any tetrahedral and
octahedral molecule, since these moments [42,50,51] are
known and sophisticated computational approaches can
be, at least in principle, readily debugged. Results for
rotational excitation of CH4 were systematically com-
pared with previous calculations and experimental data.
We have found good and marginal agreement for positrons
and electrons, respectively. We have also reported results
for SF6, for further studies in buffer gases for positron
traps [39,52].

In the case of electrons, it seems that the main reason for
the discrepancy at low energy is the lack of the exchange
effect, and, a proper description of the distortion of the
scattering wave function.
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