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Abstract. We investigate the impact of dissipation on the energy balance in the electron dynamics of
metal clusters excited by strong electro-magnetic pulses. The dynamics is described theoretically by Time-
Dependent Density-Functional Theory (TDDFT) at the level of Local Density Approximation (LDA)
augmented by a self interaction correction term and a quantum collision term in Relaxation-Time Ap-
proximation (RTA). We evaluate the separate contributions to the total excitation energy, namely energy
exported by electron emission, potential energy due to changing charge state, intrinsic kinetic and poten-
tial energy, and collective flow energy. The balance of these energies is studied as function of the laser
parameters (frequency, intensity, pulse length) and as function of system size and charge. We also look at
collisions with a highly charged ion and here at the dependence on the impact parameter (close versus
distant collisions). Dissipation turns out to be small where direct electron emission prevails namely for laser
frequencies above any ionization threshold and for slow electron extraction in distant collisions. Dissipation
is large for fast collisions and at low laser frequencies, particularly at resonances.

1 Introduction

Time-Dependent Density-Functional Theory (TDDFT) is
starting point and leading tool to simulate the dynamics
of many-fermion systems, in electronic systems [1–3] as
well as in nuclei [4–6]. The Local Density Approximation
(LDA) provides a robust and efficient mean-field descrip-
tion of dynamics which allows to cover a huge range of phe-
nomena from the linear regime of small-amplitude oscilla-
tions (also known as random-phase approximation) [7] to
systems possibly highly excited by strong laser pulses [8,9]
or hefty collisions [10,11]. However, more detailed obser-
vations and/or long-time evolution is often sensitive to all
sorts of many-body correlations beyond the mean-field ap-
proach [12]. A particularly important class are dynamical
correlations from two-fermion collisions. They add dissi-
pation to the mean-field motion which has important con-
sequences in a great variety of dynamical scenarios and
systems, e.g., for collisional broadening of excitation spec-
tra [13], for necessary thermalization steps in nuclear re-
actions [14–16], for thermalization in highly excited elec-
tronic systems [17,18]. Dissipation (and thermalization)
is a particularly important and much discussed process
in the electronic dynamics of small metal clusters [18–22]
and plays a crucial role in the quest for most gentle ion-
ization and appearance sizes [23–25]. In the present pa-
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per, we address dissipation and energy transport in small
metal clusters taking up an affordable approach to dissipa-
tion, the Relaxation-Time Approximation (RTA), which
had been implemented recently for simulations of finite
electronic systems [26].

Although highly desirable, theoretical investigations of
dissipation in finite fermion systems have been hampered
so far by the enormous computational demands for a mi-
croscopic description of two-body collisions in the quan-
tum regime. The way from the full many-body hierarchy
down to a mean-field description augmented by dynami-
cal correlations has been thoroughly developed since long
in classical non-equilibrium thermodynamics [27], lead-
ing eventually to the much celebrated Boltzmann equa-
tion to account for dynamical correlations in classical
systems [28]. A manageable scheme for a fully quantum
mechanical description in finite systems is still a mat-
ter of actual research. One important quantum feature
is the Pauli principle. It can be accounted for by ex-
tending the Boltzmann collision term to the Boltzmann-
Uehling-Uhlenbeck (BUU) form [29]. This semi-classical
BUU approach (also known as Vlasov-Uehling-Uhlenbeck
(VUU) equation) provides an acceptable picture at suf-
ficiently large excitations where quantum shell effects
can be ignored. It has been extensively used in nuclear
physics [30,31] and also employed for the description of
metal clusters in a high excitation domain [32,33]. Al-
though very successful, BUU/VUU is valid only for suffi-
ciently high excitation energies. And even in this domain,
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de-excitation by ionization can quickly evacuate large
amounts of excitation energy thus cooling the system
down into a regime where quantum effects count again.
In any case, there is an urgent need for a quantum de-
scription augmented by relaxation effects.

Such dissipative quantum approaches are still well
manageable in bulk systems and have been extensively
studied in the framework of Fermi liquid theory [34]. It
was found that global features of dissipation can often
be characterized by one dominant, exponential relaxation
mode. This motivated the Relaxation Time Approxima-
tion (RTA) as was introduced in [35] and later on applied
to a wide variety of homogeneous systems [36,37]. The
quantum case for finite systems is much more involved. A
full description of detailed correlations has been carried
through in schematic model systems [38] and in the time-
dependent configuration-interaction (TD-CI) method [39],
both being limited to simple systems. A stochastic treat-
ment of the quantum collision term promises a tractable
approach [40]. It has meanwhile been successfully tested
in one-dimensional model systems [41,42] and will be de-
veloped further. Recently, RTA has been successfully im-
plemented as dissipative extension of TDLDA for finite
systems and applied to the realistic test case of Na clus-
ters [26]. This now provides an affordable and efficient
approach to dissipation in finite fermion systems.

The present paper uses RTA to study systematically
the dynamics of Na clusters during and after laser excita-
tion in dependence on the key laser parameters, frequency,
intensity, and pulse length. At the side of observables, we
concentrate here on the energy balance. To this end we
introduce the various contributions to the excitation en-
ergy, namely intrinsic kinetic and potential energy, charg-
ing energy, and energy loss by electron emission. The pa-
per is organized as follows. In Section 2, we summarize
the numerical handling of TDLDA and the RTA scheme.
In Section 3, we introduce the key observables used in this
study, namely the various contributions to the energy. In
Section 4, we present the results, especially the energy bal-
ance as function of the various laser parameters. Further
technical details are provided in appendices.

2 Formal framework

2.1 Implementation of TDDFT

Basis of the description is mean-field dynamics with Time-
Dependent Density Functional Theory (TDDFT). Actu-
ally, we employ it at the level of the Time-Dependent
Local-Density Approximation (TDLDA) treated in
the real time domain [1,2]. It is augmented by
a Self-Interaction Correction (SIC) approximated by
average-density SIC (ADSIC) [43] in order have correct
ionization potentials [44], which is crucial to simulate elec-
tron emission properly. The time-dependent Kohn-Sham
equations for mean field and single-electron wave func-
tions are solved with standard techniques [45,46]. The
numerical implementation of TDLDA is done in stan-
dard manner [45,46]. The coupling to the ions is explicit

and mediated by soft local pseudopotentials [47]. The
electronic exchange-correlation energy functional is taken
from Perdew and Wang [48].

The Kohn-Sham potential is handled in the Cylindri-
cally Averaged Pseudo-potential Scheme (CAPS) [49,50],
which has proven to be an efficient and reliable ap-
proximation for metal clusters close to axial symmetry.
Wavefunctions and fields are thus represented on a 2D
cylindrical grid in coordinate space [51]. For the typical
example of the Na40 cluster, the numerical box extends
up to 104 a0 in radial direction and 208 a0 along the
z-axis, while the grid spacing is 0.8 a0. We use a large
set of s.p. states to supply sufficient space for thermal-
ization. It reaches to 2.7 eV above the chemical potential
covering 2∗84 spin-degenerated s.p. states with maximal
azimuthal angular momentum lz = 6�. To solve the (time-
dependent) Kohn-Sham equations for the single particle
(s.p.) wavefunctions, we use time-splitting for time propa-
gation [52] and accelerated gradient iterations for the sta-
tionary solution [53]. The Coulomb field is computed with
successive over-relaxation [51]. We use absorbing bound-
ary conditions [45,54], which gently absorb all outgoing
electron flow reaching the boundaries of the grid. The dif-
ference between the initial number of electrons and the
actual number of electrons left in the simulation box is
thus a measure for ionization in terms of Nesc, the num-
ber of escaped electrons.

The external laser field is described as a classical
electro-magnetic wave in the long wavelengths limit.
This augments the Kohn-Sham Hamiltonian by a time-
dependent external dipole field

Uext(r, t) = e2r · ez E0 sin(ωlast)f(t), (1)

f(t) = sin2

(
π

t

Tpulse

)
θ(t)θ(Tpulse − t). (2)

The laser features therein are: the (linear) polarization
ez along the symmetry axis, the peak field strength E0

related to laser intensity as I0 ∝ E2
0 , the photon frequency

ωlas, and the total pulse length Tpulse. The latter is related
to the full width at half maximum (of intensity) as FWHM
� Tpulse/3.

The basic building block, namely mean-field propaga-
tion of the s.p. wavefunctions φα(t) according to TDLDA,
can be summarized formally as

|φα(t)〉 = Û(t, t′)|φα(t′)〉, (3a)

Û(t, t′) = T̂ exp

(
−i

∫ t′

t

ĥ(t′′)dt′′
)
, (3b)

ĥ(t) =
p̂2

2m
+ UKS[ρ(r, t)], (3c)

where Û(t, t′) is the unitary one-body time-evolution op-
erator with T̂ therein being the time-ordering operator,
ĥ is the Kohn-Sham mean-field operator, and UKS is the
(density dependent) actual Kohn-Sham potential [55].
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2.2 Brief review on RTA

Mere TDLDA is formulated in terms of a set of oc-
cupied single-particle (s.p.) wavefunctions {|φα(t)〉, α =
1, . . . , N} propagating according to equation (3). So far,
TDLDA deals with pure Slater states. Dissipation leads
inevitably to mixed states. These can be described com-
pactly by the one-body density operator, which reads, in
natural orbitals representation,

ρ̂ =
Ω∑

α=1

|φα〉Wα〈φα| (4)

where Ω is the size of the configuration space, which is
significantly larger than the actual electron number N .
The weight Wα represents the occupation probability for
s.p. state |φα〉. The pure mean-field propagation leaves the
occupation weights Wα unchanged and propagates only
the s.p. states, such that ρ̂(t) =

∑Ω
α=1 |φα(t)〉Wα〈φα(t)| =

Û(t, 0)ρ̂(0)Û−1(t, 0) with Û according to equation (3b).
Dynamical correlations generate changes also for the

occupation weights. The RTA describes this in terms of
the density-matrix equation [26]

∂tρ̂+ i
[
ĥ[
], ρ̂

]
=

1
τrelax

(ρ̂− ρ̂eq[
, j, E]) , (5a)

where ĥ[
] is the Kohn-Sham Hamiltonian equation (3c) in
LDA (with ADSIC) depending on the actual local density
distribution 
(r, t) =

∑
αWα|φα(r, t)|2. The right-hand-

side stands for the collision term in RTA. It describes re-
laxation towards the local-instantaneous equilibrium state
ρ̂eq[
, j, E] for given local density 
, current distribution j
and total energy E. The relaxation time τrelax is estimated
in semi-classical Fermi liquid theory. For metal clusters
serving in the following as test cases, it becomes

�

τrelax
= 0.40

σee

r2s

E∗
intr

N
, (5b)

where E∗
intr is the intrinsic (thermal) energy of the system,

N is the actual number of electrons, σee is the in-medium
electron-electron cross section, and rs = (3/(4π
))2/3

is the Wigner-Seitz radius of the electron cloud [26]. It
employs an average density 
 because τrelax is a global
parameter. This approximation is legitimate for metal-
lic systems where the electron density is rather homo-
geneous remaining generally close to the average. Note
that the in-medium cross section σee also depends on
this average density through the density dependence of
screening. The actual σee is taken from the careful eval-
uation of [56,57] computing electron screening for homo-
geneous electron matter in Thomas-Fermi approximation.
This yields σee = 6.5 a2

0 for the case of small Na clusters
whose Wigner-Seitz radius at T = 0 becomes typically
rs ≈ 3.7 a0, somewhat smaller than the bulk value due
to surface tension. These are the values which are used
throughout this paper for the RTA relaxation time. This
value of rs will also be used in the jellium calculations of
Section 4.5 for the sake of consistency.

The most demanding task is to determine the instanta-
neous equilibrium density-operator ρ̂eq[
, j, E] in the RTA
equation (5a). It is the thermal mean-field state of min-
imum energy under the constraints of given local den-
sity 
(r), local current j(r), and total energy E. For the
wavefunctions we use the density constrained mean-field
(DCMF) techniques as developed in [58], extended to ac-
count also for the constraint on current j(r). The s.p.
states come along with occupations weights W (eq)

α accord-
ing to thermal equilibrium. The temperature T is tuned
to reproduce the desired total energy E. For details of this
cumbersome procedure see [26].

Once this DCMF step is under control, the RTA
scheme is straightforward. The collision term in equa-
tion (5a) is evaluated at time intervalsΔt, typically 0.25 fs
and for high laser frequencies somewhat shorter. In be-
tween, the s.p. wavefunctions in the one-body density are
propagated by mean-field evolution equation (3b). Once
one time span Δt is completed, we stay at time t+Δt
and evaluate the collision term. First, the actual 
, j, and
E are computed. These are used to determine the local-
instantaneous equilibrium state ρ̂eq. This is used to step to
the new one-body density ρ(t+Δt) = ρ̃+(Δt/τrelax)

(
ρ̂−

ρ̂eq[
, j, E]
)
. In a final clean-up, this new state ρ(t+Δt) is

mapped into natural orbitals representation equation (4),
thus delivering the new s.p. wavefunctions ϕα(t+Δt) and
occupation weights Wα(t + Δt) from which on the next
step is performed. For more details see again [26].

3 Energies as key observables

In our previous paper on RTA, we have concentrated
on thermalization processes, in particular on relaxation
times [26]. Here, we are going to employ RTA to study
the energy balance in metal clusters excited by strong laser
fields. The key observables are the various contributions
to the energy which we will introduce in this section. The
expressions assume tacitly a numerical representation of
wavefunctions and fields on a spatial grid in a finite box
with absorbing boundaries. In particular, the boundaries
require some care as we will see.

The basic question we aim to analyze here is how the
energy absorbed by the laser is “used” by the cluster and
redistributed into various well identified components. The
starting quantity will thus be the energy absorbed by the
laser which we denote by Eabs. The basic energy branch-
ing channels of the cluster consist in electron emission and
intrinsic heating [26]. Thus we have to analyze both these
components separately. Electron emission corresponds to
charge loss associated with energy loss because the emit-
ted electrons carry some energy outwards. We denote this
energy by Ech,loss. But electron emission also affects the
cluster itself. It charges the cluster which is associated
with a change in potential energy Ech,pot. The remaining
energy delivered by the laser is shared between collective
kinetic energy Ecoll and “intrinsic” excitation energy of
the electron cloud itself consisting of a kinetic Eintr,kin

and a potential Eintr,pot component. All terms, of course,
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sum up to Eabs:

Eabs = Ech,loss+Ech,pot + Eintr,kin+Eintr,pot+Ecoll. (6)

Let us now specify these various contributions in more
detail. This implies that we also take care of small com-
ponents related to the treatment of absorbing boundaries
conditions and which have to be properly accounted for in
the energy balance. Moreover, we introduce as auxiliary
quantity the actual total energy E(t) of the system which
is a crucial input for the RTA step. The various energy
components are thus computed as follows:

1. Eabs = Energy absorbed from the laser field:

Eabs =
∫ t

0

dt′
∫
d3rE0(t′) · j(r, t′) − E

(mask)
abs (7)

where E(mask)
abs is a correction for the particle loss at

the absorbing bounds (for details see Appendix A).
2. E(t) = total energy:

E(t) = E∗
TDLDA(t) + Epot,bc, (8)

Epot,bc =
∫ t

0

dt′
∫
d3r (1 −M2)UKSρ(r, t′). (9)

Thereby E∗
TDLDA(t) = ETDLDA(t) − Eg.s. is the en-

ergy ETDLDA(t) computed with the given LDA + AD-
SIC functional taken relative to the static ground state
(g.s.) energy Eg.s.. The Epot,bc is a correction for the
small amount of binding energy carried in the absorbed
electrons, an artifact which arises due to finite numeri-
cal boxes. Altogether, E(t) accounts for the energy left
within the simulation box as result of energy absorp-
tion from the laser and energy loss through ionization.

3. Ech,loss = energy loss by electron emission:

Ech,loss = Eabs − E(t). (10)

It represents the kinetic energy carried away by the
emitted electrons.

4. Ech,pot(Q) = charging energy:

Ech,pot(Q) = Eg.s.(Q) − Eg.s.,initial − Epot,bc (11)

where Eg.s.(Q) is the g.s. energy (i.e. temperature T =
0) for a given charge state Q and Eg.s.,initial = E(t=0)
the initial ground state energy. It is augmented by the
correction for lost potential energy −Epot,bc to com-
pensate for the corresponding term in equation (8).
The Ech,pot(Q) accounts for the excitation energy in-
vested for charging the cluster.

5. Eintr,kin = intrinsic kinetic energy:

Eintr,kin = ETDLDA(t) − EDCMF(
, j, T =0) (12)

where ETDLDA(t) is the actual LDA + ADSIC energy
and EDCMF(
, j, T = 0) the DCMF energy at T = 0
(=ground state for fixed 
 and j). The computation is
simplified by exploiting the fact that 
 and j remain
frozen in DCMF and thus also the Kohn-Sham poten-
tial. This allows to take the difference of the sums of
s.p. kinetic energies between the two configurations.

6. Eintr,pot = intrinsic potential energy:

Eintr,pot = EDCMF(ρ, j=0, T =0) − Eg.s.(Q). (13)

This is the “potential” energy stored in the constraint
on given ρ & j at T = 0.

7. Ecoll = collective flow energy:

Ecoll =
∫
d3r

j2(r)
2mρ(r)

. (14)

This is the kinetic energy which is contained in the
average momentum distribution j(r). It is to be noted
that Ecoll = EDCMF(ρ, j, T = 0) − EDCMF(ρ, j = 0,
T = 0). This shows that Ecoll is part of the intrinsic
energy.

For the balance plots below, we consider also the relative
contributions Ech,loss/Eabs, Ech,pot/Eabs, Eintr,kin/Eabs,
Eintr,pot/Eabs, and Ecoll/Eabs adding up to one. Moreover,
we use the completeness equation (6) to deduce Eintr,pot

from the other energies. This saves another costly DCMF
evaluation for EDCMF(
, j = 0, T = 0) in the definition
equation (13).

It is to be noted that the evaluation of the intrinsic
kinetic energy equation (12) had been used in the past
often with a semi-classical estimate [45], for details see
Appendix B. This is much simpler to evaluate, but not
precise enough for the present purposes. We must use here
the more involved, exact definition. Fortunately, this is
no problem in connection with RTA because we compute
the expensive DCMF state anyway and so get the correct
quantum mechanical value equation (12) for free.

Besides energies, we will occasionally look also at two
other observables, the average ionization as number of
electrons escaped from the numerical box Nesc and the
dipole momentum D, defined as

Nesc(t) = N(t=0) −
∫
d3r ρ(r, t), (15)

D(t) =
∫
d3r rρ(r, t). (16)

It is important for all observables to keep in mind that
TDLDA produces averages. For example, Nesc represents
the ionization averaged over an ensemble of similar pro-
cesses; a detailed distribution of (integer) ionization stages
can be recovered approximately from the final wavefunc-
tions [59]. This last step of analysis, namely unfolding dis-
tributions of energies and ionization, will not be consid-
ered here.

4 Results and discussion

In the previous RTA paper [26], we had briefly looked at
dissipation effects as function of laser frequency for con-
stant intensity and found that dissipation is strong if the
laser is in resonance with a system mode and weak oth-
erwise. This is a trivial result in view of equation (5b):
the relaxation rate increases with excitation energy and
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excitation energy is large at resonance. In order to elimi-
nate this trivial trend, we consider here variation of laser
parameters for fixed absorbed energy Eabs tuning the in-
tensity such that the wanted value for Eabs is maintained.
We calibrate the laser parameters this way for the case of
pure TDLDA and use the same parameters then also for
RTA. The resulting Eabs is in most situations the same. A
difference in Eabs between RTA and TDLDA, if it occurs,
is then already a message.

One of the interesting topics related to energy bal-
ance is the question of appearance size, the limit of fis-
sion/fragmentation stability of a metal cluster for a given
charge state [23,24]. It is the lower the more gentle one
can arrange ionization. The systematics of energy balance
will tell us how to ionize most gently or, in reverse, to
heat most efficiently. The purpose of this paper is to ana-
lyze how relaxation processes do affect energy balance in
laser or collisional irradiation processes. For this we use
the energy observables discussed in Section 3. This vari-
ous energies are not directly measurable in experiments.
A direct comparison between the present computations
and experimental results would require additional mea-
sures (e.g., photo electron spectra, time resolved obser-
vation, coincidence cross sections). This goes beyond the
scope of the present paper. Still, the effects observed in
our results can serve for qualitative interpretation of some
experimental observables, such as ionization, extensively
discussed in this paper. In the following discussion of our
results we shall thus remain at this level of analysis with
only qualitative links to experiments.

4.1 Typical time evolution of energies

The lower panel of Figure 1 shows the time evolution of
the five contributions equation (6) to the energy stacked
in a balance manner. Each colored band represents the
contribution indicated in the key to the right side of the
panels. Upper and middle panels show as complement-
ing information dipole moment and ionization. The case
ω = 2.7 eV shown in Figure 1 corresponds to a resonant
excitation at the Mie plasmon frequency. We see this from
the time evolution of ionization Nesc ≡ Q and dipole.
The TDLDA result (right panels) shows ongoing dipole
oscillations and, connected with that, ionization carries
on long after the laser pulse has terminated. However, the
RTA ionization (upper left panel) turns gently to a con-
stant Nesc. This is achieved by the dissipation in RTA
which damps the dipole signal. This highly resonant case
reveals a marked qualitative difference between TDLDA
and RTA. We thus see that long-time TDLDA simulations
have to be taken with care because they overestimate the
long-lasting reverberations of the dipole. This point is con-
ceptually very important. The above mentioned defect of
TDLDA is generic. It arises particularly if the dynamics
couples to a resonant state and is related to the fact that
this coupling is not properly damped in TDLDA thus lead-
ing to spurious long term oscillations with subsequent long
lasting emission. This makes the analysis of final states
of a system questionable, especially in sufficiently mas-
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Fig. 1. Time evolution of ionization (upper panels), dipole
moment (middle panels), and energies (lower panels) for the
case of Na40 in CAPS excited by a laser with frequency ω =
2.7 eV, total pulse length Tpulse = 100 fs, and intensity I =
1.3× 1010 W/cm2. Left panels show results from RTA and right
panels from TDLDA. The lower panels show the total absorbed
energy (black line) ad the four different contributions stacked
one above the other.

sive clusters with high spectral density for which resonant
coupling is abundant. The interesting aspect here is that
RTA precisely cuts this effect by damping the long lasting
dipole oscillations and so allows a better founded analysis
of final states.

The difference in ionization also shows up as a
difference in energy consumption by ionization (areas
Echarge,loss plus Echarge,pot) such that eventually TDLDA
produces relatively less intrinsic excitation energy in than
RTA.

The lower panels of Figure 1 also show the collective
kinetic energy equation (14). It plays a role in the initial
stages of excitation. The reason is that the dipole field
of the laser couples to the collective dipole operator thus
depositing its energy first in collective dipole flow. How-
ever, the large spectral fragmentation of the dipole mode
(Landau damping) [60,61] spreads the collective energy
very quickly over the dipole spectrum. The large frag-
mentation width of the actual test case Na40 produces
a relaxation time of about 2 fs for this Landau damping
and this relaxation is active already at mean field level. As
a consequence, collective kinetic energy never grows large
for pulses much longer 2 fs and becomes negligible soon
after the laser pulse is extinguished. We will ignore it in
the following analysis evaluated at late stages of cluster
dynamics.

It is remarkable that RTA allows to absorb much
more energy Eabs from the laser, although exactly the
same pulse is used in both cases. This is a particu-
lar feature of resonant excitation related to Rabi os-
cillations [62]. The external field quickly induces dipole
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Fig. 2. Various observables from RTA (full lines) and TDLDA
(dashed lines) evaluated at final time of the simulations at
300 fs. Pulse length was Tpulse = 100 fs throughout. Intensity
has been tuned such that Eabs ≈ 8.2 eV for TDLDA. Upper
left: field strength E0 (∝√

I). Middle left: total absorbed en-
ergy Eabs. Middle right: ionization Nesc. Lower: balance of rel-
ative energies (energy contributions divided by total absorbed
energy Eabs). Left panel for RTA and right one for TDLDA.

oscillations of the electron cloud. This dipole excitation,
once sufficiently large, leads to stimulated emission and so
reduces excitation. This can be seen from oscillations of
Eabs where phases of energy absorption are interrupted by
phases of energy loss back to the laser field. Now in RTA,
dissipation serves as a competing de-excitation channel
which reduces stimulated emission and so paves the way
to more stimulated absorption. This mechanism is less im-
portant off resonance where we observe generally less dif-
ferences between RTA and TDLDA as we will see in the
upper panel of Figure 2.

4.2 Trends with laser frequency

The main intention of the study is to figure out trends
with laser parameters. To this end, we simulate each case
for a time of 300 fs and collect the results at this final
time. This is a safe procedure for the majority of non-
resonant cases. It is incomplete for resonant excitation,
at least with TDLDA. In the latter case, we have to
keep in mind that the contribution of emission is some-
what underestimated and that of intrinsic energy over-
estimated. The major trends remain, nonetheless, the
same.

Figure 2 shows the energy contributions and other ob-
servables as function of laser frequency ω. The laser in-
tensity is tuned for each frequency such that the absorbed
energy is about the same, namely Eabs ≈ 8.2 eV, for

TDLDA. The same field strength is then used also for
RTA and the emerging Eabs may then be different. This
is indeed seen in the left middle panel where just near
the Mie plasmon resonance (≈2.7 eV) RTA absorbs much
more energy, as was discussed already in connection with
Figure 1.

The upper left panel of Figure 2 shows the field
strength E0. The Mie plasmon resonance is visible as
marked dip at ω = 2.7 eV because resonance means that
more response is achieved with less impact. The steady
growth of E0 for larger frequencies complies with the
Keldysh formula where the effective field strength shrinks
∝ω−2 [63].

The middle right panel shows ionization Nesc. At lower
frequencies, RTA suppresses emission significantly. Obvi-
ously, more of the absorbed energy is turned to intrin-
sic excitation (thermalization). Quite different is the be-
havior at high frequencies above ionization potential (IP)
in which case TDLDA and RTA deliver almost the same
ionization.

The lower panels disentangle the absorbed energy into
its four relevant contributions (6). Again, we see that
TDLDA and RTA differ most at the side of lower ener-
gies, particularly near the Mie plasmon resonance. There
is practically no difference from ω ≈ 6.1 eV on. This
ω = 6.1 eV is a very prominent point. It is just the fre-
quency from which on all occupied valence electrons of
Na40 can be emitted by a one-photon process. The IP at
3.5 eV sets the frequency where the HOMO can be re-
moved by one photon. The region 3.5–6.1 eV covers the
transition from the onset of one-photon processes for the
least bound state to an “all inclusive” one-photon ioniza-
tion. And we see, indeed, how TDLDA and RTA results
come stepwise closer to each other in this region.

The lower panels of Figure 2 show the results in form of
energy balance where the filled areas visualize a given con-
tribution, as indicated. Areas Echarge,loss and Echarge,pot

together show the amount of energy spent for ioniza-
tion while areas Eintr,kin and Eintr,pot together illustrate
the part of intrinsic energy. The balance plot makes the
trends of intrinsic energy immediately visible. Its fraction
is largest around resonance and smallest above the point
of “all one photon” ionization near ω = 6.1 eV. This trend
holds for RTA as well as for TDLDA. What differs are the
actual fractions of intrinsic energy, generally being some-
what larger for RTA. But the fractions are not so dramat-
ically different as one may have expected from the plot of
energies as such in Figure 1. Division by Eabs and the of-
ten larger Eabs in RTA reduces the effect for the fractions
of energy.

Already at this point, we can give a first answer to
the question of how to ionize most gently or to heat most
efficiently. Least intrinsic energy relative to most electron
output is achieved near the point from which on all elec-
trons can be removed by one photon which is 6.1 eV in the
present case. Most heating is obtained below, particularly
near resonance or for very low frequencies.
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Fig. 3. Lower panel: energy balance as function of pulse length
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intensity tuned to E
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ratio E
(RTA)
abs /E

(TDLDA)
abs for three different frequencies as indi-

cated, resonant ω = 2.7 eV and off-resonant ω = 0.8, 6.1 eV.
Right upper panel: ratio Nesc/Eabs of emitted electrons per
absorbed energy for the three frequencies as in the left panel
and separately for RTA (full lines) as well as TDLDA (dashed
lines).

4.3 Trends with pulse length Tpulse

Figure 3 shows the effect of laser pulse length Tpulse. The
lower panels show the energy balance. as function of Tpulse

for the resonant case ω = 2.7 eV. The trends with Tpulse

are extremely weak, even for the most sensitive case of
resonant excitation. They are equally weak for other fre-
quencies. Thus these are not shown.

One interesting aspect pops up, again, concerning the
amount of absorbed energy. This is illustrated in the upper
panel of Figure 3 showing the ratio from RTA to TDLDA,
E

(RTA)
abs /E

(TDLDA)
abs , for three frequencies standing for the

three typical regions, very low frequency (0.8 eV), reso-
nance (2.7 eV), and above threshold for direct ionization
of all shells (6.1 eV). The energy ratio increases dramati-
cally with pulse length in the resonant case ω = 2.7 eV. Al-
though the partition of energies changes very little, the to-
tal output becomes much larger with RTA for long pulses.
This happens because dissipation steadily removes energy
from the coherent dipole oscillations thus keeping the door
open for ongoing energy absorption while in TDLDA en-
ergy loss by stimulated emission limits energy take-up,
see the discussion in Section 4.1. For off-resonant cases,
the ratio E

(RTA)
abs /E

(TDLDA)
abs stays close to one as can be

seen here for low frequency ω = 0.8 eV and for high fre-
quency 6.1 eV.

4.4 Trends with laser intensity

The three lower panels of Figure 4 show the effect of laser
intensity I (or field strength E0, respectively) for three fre-
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the resonant case (ωlas = 2.7 eV) also as function of laser
intensity I .

quencies, low ω = 0.8 eV, resonant ω = 2.7 eV, and high
ω = 6.1 eV which is on the onset of the one-photon regime
for all occupied s.p. states. For the low frequency case and
at resonance, intrinsic energy shrinks with increasing I.
The reason is that higher order photon processes become
increasingly important which, in turn, enhances the con-
tribution from direct (multi-photon) emission leaving less
energy to dissipate. For resonant excitation, we have the
additional effect that the Mie plasmon frequency is in-
creasing with increasing I because ionization is stronger
and enhances the charge state of the cluster [60]. Thus
the resonance frequency is running away from the laser
frequency which also reduces dissipation. For the high-
frequency case ω = 6.1 eV, the intrinsic energy increases
with I. This is, again, an effect of ionization which drives
the IP up and thus moves large parts of the s.p. states out
of the one-photon regime back to the multi-photon regime.
Differences between the frequencies shrink with increasing
I because the fraction of intrinsic energy decreases with
I for the low and medium frequencies thus approaching
the high frequency case (related to direct emission). This
is better visible within the given span of I for RTA while
it requires even larger I to be seen for TDLDA. The ef-
fect is plausible because large I means that we come into
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the field dominated regime where frequencies become less
important and where direct field emission takes over [64].

The upper panel of Figure 4 shows the ratio of
absorbed energy E

(RTA)
abs /E

(TDLDA)
abs as function of field

strength for the resonant frequency ωlas = 2.7 eV. This
case, unlike the non-resonant frequencies, shows a peak
at a certain field strength. This emerges as combination
from several features seen before. At small intensities,
there is little energy deposited, thus little dissipation and
RTA does not differ much from TDLDA. More energy be-
comes absorbed with increasing intensity which is con-
verted preferably to intrinsic energy in the resonant case
opening subsequently the pathway to more absorption.
This explains the increase from low I on upwards. For
larger amounts of absorbed energy, the enhanced dissipa-
tion broadens the resonance thus reducing resonant re-
sponse at peak frequency. This explains the decrease of
the ratio for further increasing intensities.

4.5 Impact of cluster charge

For the one reference system Na40, we have so far stud-
ied laser excitation with extensive exploration of the rich
variety of laser parameters. We are now going to vary
the systems under consideration, studying clusters of the
form Na+Q

40+Q which have Nel = 40 electrons and varied
initial charge state Q. It would not make sense to scan
all laser parameters for each system anew. Thus we take
as a means of comparison an instantaneous dipole boost
ϕα → exp(−i p0 z)ϕα applied to all s.p. wavefunctions in
the same manner [45,46]. The boost momentum p0 regu-
lates its strength associated with the initial excitation en-
ergy Eabs = Np2

0/(2m) which can be compared with the
absorbed energy in the laser case. The boost excitation
touches all modes of a system at once with some bias on
resonant excitation and it has only one parameter which
simplifies global comparisons between different systems.
We will thus use boost excitation in this section for vari-
ation of cluster charge and in the next section for cluster
size.

There is another subtle problem when varying cluster
charge: the ionic geometry changes with charge state. This
can become particularly pronounced for deformed clusters.
Thus we consider variation of charge for a magic electron
number, actually Nel = 40. This forces all systems for any
charge state to near spherical geometry. In this particular
section we thus go one step further and exclude any geom-
etry effect by using a soft jellium density for the ionic back-
ground [45,65]. The result for charge balance after boost
excitation with initial energy of 2.7 eV is shown in Fig-
ure 5. We see again the typical pattern: about equal share
of intrinsic kinetic and intrinsic potential, about factor 2
more energy invested charging the cluster than energy lost
by emission, and somewhat more intrinsic energy in RTA
as compared to TDLDA. The new feature here is that we
see a strong trend of the intrinsic energy versus energy loss
by emission. Electron emission decreases with increasing
charge state Q because the IP increases with Q which en-
hances the cost of emission. In turn, less energy is exported
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All clusters are excited initially by an instantaneous boost with
boost energy Eabs = 2.7 eV. Left panel: energy balance for Na,
plotting RTA and TDLDA side by side. Lower right: ionization
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by emission and invested into charging energy while more
energy is remaining in the clusters for dissipation into in-
trinsic excitation energy. The trend is clear, simple, and
monotonous. It will apply equally well in other systems
(with varying IP) and other observations. For example,
laser frequency scans for different charge states will show
the same pattern as function of frequency, but with an
increasing offset of intrinsic energy with increasing charge
state.

4.6 Impact of cluster size

We have also compared RTA with TDLDA for clusters
of different size considering a series of closed-shell sys-
tems Na+

9 , Na+
21, Na+

41, as well as open-shell systems
Na+

15, Na+
33. This sample allows to explore trends with

system size as well as the effect of shell closures. As
for variation of charge in the previous section, we avoid
a tedious scan of frequencies and other laser param-
eters by using simply a boost excitation. Two boost
strengths are considered, Eboost/Nel = 0.027 eV still in
the linear regime and a higher Eboost/Nel = 0.14 eV.
Note that these boost strength are scaled to system size.
This should provide comparable thermodynamic condi-
tions (e.g. temperatures).

No clear trend with system size could be found. How-
ever, at lower excitation energies, we see a shell effect to
the extend that magic systems gather more thermal en-
ergy. This shell effect is going away for the higher excita-
tions. It is to be noted that the lower excitation strength
Eboost/Nel = 0.027 eV leads in all five system to a tem-
perature around T = 1500 K while the higher excita-
tion Eboost/Nel = 0.14 eV is associated with temperature
about T = 3000 K. This matches with observations from
shell structure in medium sized Na clusters where shell ef-
fects become negligible at about T = 2000 K (we deduce
this from the fact that the shell correction energy drops
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pulse length Tpulse and excitation strength can be translated to
an impact parameter b (upper left) and ion velocity v (upper
right). This is done here for an Ar ion with charge Q = 8.

∝T exp
(
− 20

�ωT
)

with �ω = 3.4 eV/N1/3 [66] and assume
the dividing line at a reduction by factor 10). The lower
excitation strength here is below this critical point and
the higher excitation above.

4.7 Excitation with by-passing ions

An alternative excitation mechanism is collision through
a by-passing ion see, e.g., [23,25]. We simulate that by a
single dipole pulse equation (1) with frequency ω = 0. The
result is shown in the lower panel of Figure 6. There are
clearly two very different regimes. For Tpulse ≤ 1 fs, we en-
counter practically an instantaneous excitation by a Dirac
δ pulse, just a boost. Here, the relations between ionization
and intrinsic energy are similar to laser excitation in the
multi-photon regime (frequencies below IP), see Figure 2.
Much different looks the regime of very slow ions (large
Tpulse). The intrinsic excitation shrinks dramatically. Al-
most all energy flows into ionization. The efficiency of ion-
ization is here even better than for the one-photon regime
(high frequencies) in Figure 2. Thus we can conclude that
collision by very slow, highly charged ions is the softest
way of ionization.

The field exerted by a highly charged ion was simulated
for simplicity by a single, zero frequency pulse. This can
be translated into collision parameters. We have done that
for an Ar ion with chargeQ = 8 as example. The peak field
strength E0 is related to the impact parameters b as E0 =
8Q/b2 and the passing time is identified as the FWHM of
field strength in the pulse which yields an estimate for the
velocity as v = 2b/Tpulse. The result of this identification
for fixed excitation energy Eabs = 8.1 eV is shown in the
upper panel of Figure 6. The sample of Tpulse produces a
huge span of collisional conditions.

A word is in order about the “ideal case” of slow col-
lisions. It may be not as ideal as it looks at first glance.
Mind that the impact parameter b cannot be controlled in
a collision. We encounter always a mix of impact parame-
ters thus leaving an ensemble of clusters in very different
excitation stages. Slow collisions as a means to produce
smaller appearance sizes work only if one can suppress
sufficiently well the contributions from the more energetic
reactions at low impact parameter. Laser excitation can
be better controlled and we found that laser frequencies
just above the ionization threshold for the whole valence
shell leave also little intrinsic excitation. For a fair final
comparison one has yet to produce the whole excitation
cross sections, integrated over all impact parameters a task
which goes beyond the scope of this paper.

5 Conclusion

In this paper, we have investigated from a theoreti-
cal perspective the effect of dissipation on the energy
balance in metal clusters under the influence of strong
electro-magnetic pulses. Particular attention was paid
to the branching between thermalization (intrinsic en-
ergy) and ionization (charging energy, energy export by
electron emission). Basis of the description was time-
dependent density functional theory at the level of the
Time-Dependent Local-Density Approximation (TDLDA)
augmented by an averaged self-interaction correction. For
a pertinent description of dissipation, we include also dy-
namical correlations using the Relaxation-Time Approx-
imation (RTA). Test cases are Na clusters, mainly Na40

complemented by a few cases with different size and charge
state.

We have investigated laser excitation looking at the
dependence of energy balance on the main laser parame-
ters, frequency, intensity (field strength), and pulse length.
Frequency is found to be the most critical parameter. Dis-
sipation is much more important for resonant excitation
than for non-resonant cases. It takes away energy from the
coherent dipole oscillations induced from the laser field
and converts it to intrinsic energy. This, in turn, reduces
the energy loss by induced photon emission and so en-
hances significantly the energy absorption from the laser
field. The effect continues steadily and thus grows huge the
longer the laser pulse. Another crucial mark is set by the
ionization threshold. For frequencies below, the fraction of
intrinsic excitation is generally larger than for frequencies
above. Direct emission (one-photon processes) is fast and
leaves dissipation no chance. Thus dissipative effects are
negligible for high frequencies and RTA behaves almost
identical with TDLDA. The other two laser parameters,
intensity and pulse length show much less dramatic trends
in the energy balance. Noteworthy are here two effects.
First, the dissipative enhancement of energy absorption in
the resonant case increases linearly with pulse length. Sec-
ond, with increasing intensity (field strength), the transi-
tion from the frequency dominated to the field dominated
regime renders the energy balance more similar for the
different frequencies (i.e. independent of frequency). Field
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emission in the strong field regime comes along with pro-
ducing less intrinsic energy.

The impact of system charge and system size was
investigated for simplicity with an instantaneous dipole
boost excitation. The charge state of a cluster changes
systematically the relation between electron emission and
intrinsic heating in an obvious manner: the higher the
charge, the harder it becomes to emit an electron and thus
a larger fraction of the absorbed energy is kept in the clus-
ter and converted to intrinsic energy. Effects of cluster size
are weak. Shell structure still plays a role for small exci-
tations and becomes unimportant for higher energies.

We have also investigated excitation by a highly
charged ion passing by the cluster. There is a dramatic
change of energy balance with impact parameter. Close
collisions exert a short pulse which leads to significant in-
trinsic energy (more than 50%) if dissipation is accounted
for. Distant collisions soak off electrons very gently and
achieve high ionization while depositing very little intrin-
sic energy.

The trends of the energy balance with pulse profile
and pulse parameters are all plausible. It is interesting
to check these effects for other systems (bonding types,
geometries). Research in this direction is underway.
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Appendix A: Boundary correction
to laser energy

Starting point for the computation of the energy absorbed
from an external laser field is the definition in terms of the
current j which reads

E
(j)
abs(t) =

∫ t

0

dt′
∫
d3rE0(t′) · j(r, t′). (A.1)

This is turned, by virtue of the continuity equation ∂tρ =
∇ · j, into an expression in terms of ∂tρ, namely:

E
(ρ)
abs(t) =

∫ t

0

dt′
∫
d3rE0(t′) · r ∂tρ(r, t′). (A.2)

This form is easier to evaluate because ρ is readily avail-
able while j needs to be computed separately. The problem

is that the continuity equation holds only for Hermitean
propagation of the s.p. wavefunctions. To be more specific,
we have to write

∂tρherm = ∇ · j (A.3)

where ∂tρherm is the part stemming from Hermitean prop-
agation ∂tψα =

[
ĥ, ψα

]
. Absorbing boundaries introduce

a non-Hermitean contribution to time evolution and so
spoil the continuity equation for the total density. Subse-
quently, the relation E

(j)
abs = E

(ρ)
abs is not guaranteed any

more. But we can split the time-derivative of total density
∂tρ into Hermitean part and contribution from absorbing
bounds as

∂tρherm = ∂tρ− ∂tρmask, (A.4)

∂tρmask = 1−M2

δt

∑
α |ψα|2 (A.5)

where M is the mask function and δt is the size of the
time step. This separation equation (A.4) allows to repair
the relation E(j)

abs and E(ρ)
abs as

E
(j)
abs(t) = E

(ρ)
abs − E

(mask)
abs (A.6)

E
(mask)
abs =

∫ t

0

dt′ E0(t′) · r ∂tρmask(r, t′). (A.7)

Appendix B: On the semi-classical intrinsic
energy

The fully quantum-mechanical definition equation (12)
of an intrinsic kinetic energy employs a DCMF itera-
tion which is naturally available when propagating with
RTA but becomes a rather expensive extra step in pure
TDLDA. Thus one often sidesteps to a simpler semi-
classical estimate from the extended Thomas-Fermi ap-
proach [67]

E
(ETF)
intr,kin = E

(TDLDA)
kin

−
∫
d3r

(
2
3 (3π2)2/3ρ2/3 +

(∇ρ)2
18ρ

)
− Ecoll

with the collective energy from equation (14). The two
definitions are compared in Figure B.1. The semi-classical
E

(ETF)
intr,kin is a robust order-of-magnitude estimate which

works particularly well in the early phases of excitation.
The case is more involved than it appears in Fig-

ure B.1. Actually, the mismatch starts at t = 0. But we
shift the value of E(ETF)

intr,kin to match at t = 0, precisely
because it is a semi classical estimate, thus not fully van-
ishing in ground state. The punishment is then a mismatch
at large times. This may have to be discussed.
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