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Abstract. Considering the population diversity and the limitation of individual information in repeated
N -person games, we study a spatial multi-games model under the myopic rule in this paper, in which
two distinct types of players participate in snowdrift game (SG) and prisoner’s dilemma game (PDG),
respectively. Monte Carlo simulation method is used to study: the effects of game intensity parameters
b and δ, noise parameter k and mixing ratio p on the frequency of cooperators; the difference between
learning update rule and myopic update rule. The results demonstrate that: (1) when the values of b and
δ are small, noise parameter k can promote the emergence of cooperation in SG with myopic update rule;
(2) different from learning mechanism, the effect of the parameters p on the frequency of cooperators is
nonmonotonic under myopic mechanism; (3) cooperators can form clusters to resist the invasion of defectors
under learning update rule, while cooperators and defectors tend to form the chessboard-like patterns to
increase individual payoff under myopic update rule.

1 Introduction

In prisoner’s dilemma game (PDG) and snowdrift game
(SG), selfish individuals pursue the maximization of
their own interests, which causes social dilemmas. How-
ever, cooperation widely exists in various life systems.
Therefore, the research on emergence and maintenance
of cooperation among selfish individuals has become an
absorbing research problem. Spatial evolutionary game
theory is one of the effective ways to research such sub-
jects [1–3]. The players are located on the site of spa-
tial networks (such as two-dimensional regular lattices,
small-world networks, and scale-free networks) and play
some kind of game (such as PDG and SG) with their
neighbors. Then, these individuals update their cur-
rent strategies by a specific evolutionary rule (such as
learning mechanism, myopic mechanism, and aspiration
mechanism). After repeated games for many times, the
systems will reach a steady state.

Nowak and May [1] first studied the spatial PDG in
which players change their strategies by a determinis-
tic evolutionary rule on two-dimensional square lattice.
The results indicate that cooperators can form compact
clusters to resist the invasion of defectors. That means
spatial structure promotes the emergence of coopera-
tion in PDG. Later, Hauert et al. [4] studied the spa-
tial SG in which players change their strategies by a
replicator dynamics rule on the regular networks. The
results show that cooperators can form many small and
isolated patches. That means spatial structure inhibits
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the emergence of cooperation in SG. Then, researchers
studied the spatial PDG with a learning rule on the
random regular graph and the regular small-world net-
work, respectively [5,6]. The results indicate that the
overall fraction of cooperators that survives evolution is
sizably enhanced via heterogeneity effects. Later, San-
tos et al. [7,8] studied, respectively, the spatial PDG
and SG on scale-free networks. The results show that
the mechanisms of growth and preferential attachment
in networks provide sufficient conditions for coopera-
tion to dominate. Recently, Wang et al. [9] reviewed the
fascinating and counterintuitive results of evolutionary
games on multilayer networks due to different ways of
coupling on network layers, such as the utilities of play-
ers, the flow of information and the popularity of dif-
ferent strategies. In addition, the introduction of pref-
erence [10,11], punishment [12–15], reputation [16,17],
memory [18,19] social diversity [20], coevolutionary
mechanism [21], defensive alliance [22] and other fac-
tors can also have an effect on the emergence and
maintenance of cooperation. The evolutionary rules are
another important field in spatial evolutionary game.
The general strategy updating rules include: learning
rule [2,4–8] imitating neighbor strategies by a certain
probability; aspiration rule [23–27] setting their own
desired payoffs; myopic rule [28–31], also known as self-
questioning rule [32–38], reflecting on the payoff differ-
ence between their positive and negative strategies.

Multi-games model usually involves several payoff
matrices and has different forms. Hashimoto [39,40]
first introduced a multi-games model based on the bio-
logical and social systems, in which participants play

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjb/s10051-022-00308-x&domain=pdf
mailto:yangbo@kust.edu.cn


49 Page 2 of 8 Eur. Phys. J. B (2022) 95 :49

several games simultaneously and obtain benefit from
the summation of the rewards of each game. Then, Szol-
noki et al. [41] proposed a coevolutionary success-driven
multi-games model, in which players revise their payoff
matrix by comparing their payoffs from the previous
round with the predesigned payoff threshold. Following
these researches, Wang et al. [42] studied an evolution-
ary multi-games model motivated by the fact that the
same social dilemma can be perceived differently by dif-
ferent players. In their model, populations are divided
into three categories (taking part in the weak PDG, the
traditional PDG and SG, respectively) via the value of
the sucker’s payoff and use different payoff matrices to
play with others. The results show that the higher the
heterogeneity of the population, the more the evolution
of cooperation is promoted. Next, Qin et al. [43] studied
the effects of social diversity (rescale the payoffs by the
uniform, exponential or power-law distribution) on the
promotion of cooperation in spatial multi-games. Later,
Li et al. [44] proposed a coevolution mechanism of strat-
egy and game type evolving simultaneously in multi-
games model. The results show that this mechanism
can effectively solve the collective cooperation problem.
Recently, Li et al. found that the mechanism of alliance
(forming alliances with the neighbors using the same
strategy) [45] and reputation preference (cooperation
can increase reputation, and defection can reduce repu-
tation) [46] can promote the emergence of cooperation
in the spatial multi-games model. Meanwhile, Liu et al.
[47] confirmed that the diversity of interaction inten-
sity (different opponents have different weights) also
can enhance the cooperation in spatial multi-games.

Among the previous studies mentioned above, the
individual heterogeneity has well been considered in the
multi-games model. However, the incomplete informa-
tion brought by heterogeneity cannot be ignored. It is
hard to obtain neighbors’ game types and payoffs in the
process of game. Based on it, we investigate the spatial
multi-games under myopic update rule in this paper.
Specifically, the players obtain the actual total payoff by
playing with their nearest neighbors adopting present
strategy, and obtain the virtual total payoff by playing
with their neighbors using anti-strategy. After compar-
ing the actual total payoff with the virtual total payoff,
they revise their strategies used in the next round by a
certain probability [32–38].

This paper is organized as follows. In Sect. 2, we
introduce spatial multi-games model, myopic update
rule and Monte Carlo simulation method. In Sect. 3, we
analyze and discuss the simulation results. In Sect. 4,
we draw some conclusions.

2 Spatial multi-games model under myopic
update rule

2.1 Spatial multi-games model

Players are placed in a two-dimensional L × L square
lattice with periodic boundary conditions. They only
play games with their four nearest neighbors and obtain

benefits. At the beginning, participants are randomly
divided into two categories according to the mixing
parameter p. That means the fraction p of the total
players takes part in SG, and the remaining 1 − p par-
ticipates in PDG. In the process of game, each indi-
vidual has two strategies: cooperation and defection.
Mutual cooperation yields the reward R, mutual defec-
tion leads to the punishment P , and the mixed choice
gives the cooperator the suck’s payoff S and the defector
the temptation T . The payoff ranking in SG satisfies:
T > R > S > P . According to the condition of repeated
game, it also needs to satisfy: 2R > T +S. Correspond-
ingly, the relations in PDG satisfy: T > R > P > S
and 2R > T + S. To simplify and without losing gener-
ality, this paper sets R = 1, P = 0, T = b and uses
either a positive or a negative value of S to distin-
guish game type. S = +δ represents SG and S = −δ
represents PDG. The payoff matrices can be described
as [42]

MSG =
(

1 +δ
b 0

)
, MPDG =

(
1 −δ
b 0

)
. (1)

Obviously, the parameter b satisfies: 1 ≤ b ≤ 2, and
the parameter δ satisfies: 0 ≤ δ ≤ 1. In particular,
when δ = 0, two payoff matrices are the same, that is,
the widely studied weak PDG.

2.2 Myopic update rule

The randomly chosen player x updates his strategy
using myopic rule. First, player x adopts the current
strategy according to his own game type to play game
with his four nearest neighbors and obtains the actual
total payoff Px. It is expressed as

Px =
∑
y∈Nx

Pxy, (2)

where y is an arbitrary nearest neighbor of x, and Nx is
the set of nearest neighbors. Pxy represents the actual
payoff of x by playing game with y.

Then, x adopts its anti-strategy of the current strat-
egy (the anti-strategy of cooperation is defection, and
the anti-strategy of defection is cooperation) to play a
virtual game with its nearest neighbor and obtains the
virtual total payoff

Px̄ =
∑
y∈Nx

Px̄y, (3)

where Px̄y represents the virtual payoff of x by playing
game with y.

Finally, x compares the actual total payoff Px with
the virtual total payoff Px̄ and determines whether to
change the current strategy according to Wx→x̄. Its
expression is
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Fig. 1 The frequency of cooperators Pc as a function of MCS for the different game parameter p, where k = 0.1, b = 1.1
and δ = 0.3, a learning rule, b self-questioning rule

Wx→x̄ =
1

1 + exp((Px − Px̄)/k)
, (4)

where k is noise intensity that is used for describing the
degree of irrational selection [48–50]. The k is greater,
the individuals are easier to be effected by external envi-
ronmental noise.

2.3 Monte Carlo simulations

Monte Carlo simulations method is also known as sta-
tistical sampling method. Its basic concept is to esti-
mate the frequency of something happening through
numerous experiments. According to the law of large
numbers, the more experiments are conducted, the
more accurate the results will be. In one time step,
a random player x is selected and revise its strategy
according to myopic update rule. One Monte Carlo step
(MCS) is defined as N = L × L time steps (that is,
each individual has one chance to update his strategy
on average). Figure 1 shows the curves of the frequency
of cooperators Pc over time for different p at k = 0.1,
b = 1.1 and δ = 0.3. Obviously, Pc tends to stabil-
ity after 1 × 104 MCS for learning mechanism, and
1 × 103 MCS for myopic mechanism. The fluctuation
for learning mechanism is larger than that for myopic
mechanism. To obtain reliable results, time average is
required. For learning mechanism, we discarded the first
2×104 MCS and took the next 2×103 MCS to calculate
the averages. For myopic mechanism, we discarded the
initial 5 × 103 MCS and took the subsequent 2 × 103
MCS to calculate the averages. To reduce the effects
of initial states (randomized game type and strategy
type) on the results, the final results are average over
20 independent realizations with different initial con-
figurations. All Monte Carlo simulation results in this
paper are carried out on the 100×100 two-dimensional
square lattice.

3 Results and discussions

3.1 The conversion relationship between
evolutionary game model and Ising model

When the game model evolves according to the myopic
update rule, there exists the corresponding Ising model
[35]. Placing the corresponding game matrices Eq.1 into
Eq. 16 of Ref. [35], we can obtain the effective Hamil-
tonian of PDG and SG respectively, and then analyze
the stationary state of the game at k = 0.

The strength of interaction J and the external field
h of PDG on two-dimensional square lattice are

J = − 1
4(b − 1 − δ)

, (5)

h = −(b − 1 + δ). (6)

The stationary state of the game model can be
divided by equation J = 0, h = 0 and h = ±4J . In
the parameter region of 0 < δ < 1 and 1 < b < 2,
the PDG is in the state of complete defection. When
k = 0, the frequency of cooperators Pc is 0. δ = 0 is the
dividing line between the state of complete defection
and the coexisting state of cooperation and defection.
When k = 0, the frequency of cooperators Pc on the
dividing line is less than 0.5.

The strength of interaction J and external field h of
SG on two-dimensional square lattice are:

J = − 1
4(b − 1 + δ)

, (7)

h = −(b − 1 − δ). (8)

In the parameter region of 0 < δ < 1 and 1 < b < 2,
the SG is in the coexisting state of cooperation and
defection. Thus, the frequency of cooperators Pc is
equal to 0.5 at k = 0. b − 1 − δ = 0 is the dividing line
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Fig. 2 The frequency of cooperators Pc as a function of k
for different game parameter b, where p = 0.0, δ = 0.3

of the external field, where b− 1− δ > 0 is the negative
external field and b − 1 − δ < 0 is the positive external
field. δ = 0 is the dividing line between the state of
complete defection and the coexisting state of coopera-
tion and defection. The frequency of cooperators Pc on
this dividing line is less than 0.5 at k = 0. b = 1 is the
dividing line between the state of complete cooperation
and the coexisting state of cooperation and defection.
The frequency of cooperators Pc on this dividing line is
higher than 0.5 at k = 0.

3.2 The effect of noise parameter k on the
frequency of cooperators Pc

Section 3.1 describes the ground state of PDG and SG.
This section further studies the effect of nonzero noise
parameter k on the frequency of cooperators Pc at p = 0
and p = 1, respectively.

When p = 0, the multi-games model degenerates into
spatial PDG. Figure 2 shows the frequency of coopera-
tors Pc as a function of k for different b and fixed p = 0,
δ = 0.3. As is analyzed in Sect. 3.1, when k = 0, the
region is completely defection. When the value of δ is
fixed, increasing the parameter b is equal to increasing
the negative external field. Thus the frequency of coop-
erators Pc will decrease continuously with the increase
of b. As noise parameter k increased, the frequency of
cooperators gradually increases from zero to 0.5 (cor-
responding to the random selection state). In addition,
when k is fixed, with the increase of b (corresponding to
increasing the temptation of defection), the frequency
of cooperators decreases gradually. That is, increasing
the gap between δ and b will inhibit the emergence of
cooperation.

When p = 1, the multi-games model degenerates into
spatial SG. Figure 3 shows the frequency of cooperators
Pc as a function of k for different values of the game
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Fig. 3 The frequency of cooperators Pc as a function of k
for different game parameter b, where p = 1.0, δ = 0.3

parameter b and fixed p = 1, δ = 0.3. Obviously, when
noise intensity is small, the frequency of cooperators Pc

is greater than 0.5 at b = 1. Pc is nearly 0.5 when b > 1.
As is known in Sect. 3.1, b = 1.3 is the diving line of the
external field. When 1 < b < 1.3 (the coexisting state
of cooperation and defection under the effect of posi-
tive external field), with the increase of noise intensity
k, the frequency of cooperators Pc first increases and
then decreases. When 1.3 < b ≤ 2 (the coexisting state
of cooperation and defection with a negative external
field), with the gradual increase of noise intensity k,
the frequency of cooperators Pc first decreases and then
increases. When the value of k is large enough, no mat-
ter what value of b, the frequency of cooperators is close
to 0.5. That is, when k is large enough, individuals ran-
domly select their own strategies.

3.3 The effects of mixing ratio p on the frequency
of cooperators

In the multi-games model, p determines the proportion
of players who take part in PDG and SG. The fraction p
of the total players takes part in SG, and the remaining
1 − p participates in PDG. This section discusses the
effect of parameter p on cooperative evolution. Specifi-
cally, all individuals take part in the PDG when p = 0,
and all individuals take part in the SG when p = 1. In
other words, with the increase of p value, the number of
players who participate in the SG gradually increases,
and the number of players who participates in the PDG
gradually decreases.

Figure 4 shows the frequency of cooperators Pc as a
function of b for different values of p, fixed the value
of δ = 0.3, k = 0.1. Obviously, for the same value of
b, with the increase of p, the frequency of cooperators
increases gradually. Interestingly, when b is small, the
two curves of p = 0.8 and p = 0.9 are staggered. Thus,
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Fig. 4 The frequency of cooperators Pc as a function of b
for different mixing ratio p, where δ = 0.3 and k = 0.1
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Fig. 5 The frequency of cooperators Pc as a function of
mixing ratio p for different game parameter b, where δ = 0.3
and k = 0.1

the effect of p on the frequency of cooperators will be
further discussed later when the value of b is small.

In Fig. 5, the frequency of cooperators Pc as a func-
tion of p for several b is shown at δ = 0.3 and k = 0.1.
The results show that when b is small, the curves are
nonmonotonic. In other words, the mixing of differ-
ent game types is not simply linear superposition, but
that is a process accompanied by emergence and inhi-
bition of cooperation. This phenomenon is similar to
the mixing of the ferromagnetic and anti-ferromagnetic
in the Ising model randomly. The frustration possibly
appeared, and the system may be accompanied by spin
glass phase.
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Fig. 6 The frequency of cooperators Pc as a function of b
for different game parameter δ, where p = 0.5 and k = 0.1

In Fig. 6, the frequency of cooperators Pc as a func-
tion of b for different values of δ at p = 0.5 and k = 0.1.
The results show that Pc decreases with the increase
of b. Pc increases with the increase of δ for the same
value of b. Specifically, when δ = 0, there still exists
the cooperators near k = 0. The reason is that δ = 0 is
the diving line between the state of complete defection
and the coexisting state of cooperation and defection.
In conclusion, the increase of parameter δ promotes the
generation of cooperation, while the increase of param-
eter b inhibits the generation of cooperation. The final
results are determined through the interaction of δ and
b, and those curves are nonlinear.

In Fig. 7, the heat maps of the frequency of cooper-
ators for different parameter combinations are shown.
Figure 7a shows the frequency of cooperators Pc grad-
ually increases with the increase of δ. Pc first increases
and then decreases with the increase of p, when b = 1.1
and k = 0.1. In Fig. 7b, the frequency of cooperators
decreases with the increase of b at p = 0.5 and k = 0.1.
In Fig. 7c, the frequency of cooperators is large only
when b is small fixed δ = 0.3 and k = 0.1.

3.4 Comparison of learning mechanism and myopic
mechanism in multi-games model

In Fig. 8a, the frequency of cooperators Pc as a func-
tion of b for learning mechanism and myopic mechanism
at δ = 0.3 and p = 0.5 are shown. Obviously, the fre-
quency of cooperators Pc decreases with the increase of
b. Compared with learning update rule, myopic update
rule can still maintain cooperation when b is large. In
Fig. 8b, the frequency of cooperators Pc as a function
of δ for learning mechanism and myopic mechanism at
b = 1.1 and p = 0.5 are shown. Obviously, the frequency
of cooperators Pc increases with the increase of δ. In
other words, the larger value of δ, the easier emergence
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Fig. 7 The heat maps of the frequency of cooperators Pc for different parameter combinations: a b = 1.1, k = 0.1; b
p = 0.5, k = 0.1; c δ = 0.3, k = 0.1
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Fig. 8 The difference between learning rule and myopic rule. a δ = 0.3, p = 0.5; b b = 1.1, p = 0.5; c δ = 0.3, b = 1.1

of cooperation. Compared with learning update rule,
myopic update rule has weaker effect on the frequency
of cooperators Pc. In Fig. 8c, the frequency of cooper-
ators Pc as a function of p for learning mechanism and
myopic mechanism at δ = 0.3 and b = 1.1 are shown.
It indicates the frequency of cooperators Pc increases
with the increase of p for learning mechanism. When p
is small, the cooperators can still exist for myopic mech-
anism, and the curve does not increase monotonously
when p increases. In other words, mixing ratio p does
not always promote cooperation. To explain the micro
differences between learning and myopic mechanism,
the snapshots will be used to reveal this phenomenon
in the next.

Figure 9 shows the snapshots (spatial distributions of
cooperators and defectors) of learning mechanism and
myopic mechanism for different values of b at δ = 0.3
and p = 0.5, where yellow and purple represent cooper-
ator and defector respectively. Figure 9a, d is the snap-
shots for learning mechanism and myopic mechanism
at p = 0.2. Obviously, the cooperators under learning
update rule tend to form clusters to resist the invasion
of defectors, while the cooperators under myopic update
rule tend to form staggered sequences with defectors
to increase payoff. Figure 9b, e is the snapshots under
learning mechanism and myopic mechanism at p = 0.5.

Obviously, with the increase of game parameter p, the
clusters formed by the cooperators gradually become
larger. However, the spatial configurations formed by
the two mechanisms are significantly different. Fig-
ure 9c, f is the snapshots under learning mechanism
and myopic mechanism at p = 0.9. Obviously, coop-
erators form larger clusters under learning mechanism,
and cooperators and defectors occur alternately under
myopic mechanism. Cooperators or defectors have no
obvious tendency to form clusters, and most of the
cooperators or defectors are isolated. This spatial con-
figuration is quite similar to anti-ferromagnetic Ising
model under frustration. Specifically, this so-called role-
separating patterns is a checkerboard-like distribution
of cooperators and defectors on square lattice have been
observed in Ref. [51–53]. In short, there are signifi-
cant differences in the stationary space configurations
formed by the time evolution of learning mechanism
and myopic mechanism.

4 Conclusion

In this paper, we use Monte Carlo simulation method to
study a spatial evolutionary multi-games model under
myopic update rule. Initially, the players select PDG
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Fig. 9 Spatial distributions of cooperators [yellow (light gray] and defectors [purple (dark gray)] for different the mixing
ratio p and fixed δ = 0.3, b = 1.1. The snapshots under learning mechanism are shown in panels a–c, and the value of p is
in sequence of 0.2, 0.5, and 0.9. The snapshots under myopic mechanism are shown in panels d–f, and the value of p is in
sequence of 0.2, 0.5, and 0.9

or SG randomly according to the mixing ratio p. Then,
individuals update their strategies using myopic rule.
The main results are as follows: (1) the initial state of
PDG and SG are obtained by the relationship between
spatial evolutionary game model and Ising model when
the noise parameter k is zero. In the parameter region
of 0 < δ < 1 and 1 < b < 2, PDG is in the state of
complete defection, and SG is in the coexisting state of
cooperation and defection; (2) the effect of noise param-
eter k on the frequency of cooperators Pc varies with the
parameter spaces. In the state of complete defection,
the frequency of cooperators increases with the increase
of k and gradually approaches 0.5. In the state of the
coexisting state of cooperation and defection under the
positive external field, the frequency of cooperators first
increases and then decreases with the increase of k and
finally approaches 0.5; (3) the effect of the mixing ratio
p on the frequency of cooperators is nonmonotonic.
When the value of b is small, the frequency of cooper-
ators first increases and then decreases; (4) the effects
of the game parameters δ and b on the frequency of
cooperators are mutually related and restricted. When
b is fixed, the frequency of cooperators increases with

the increase of δ, and when δ is fixed, the frequency of
cooperators decreases with the increase of b. In particu-
lar, when δ = 0, the game model degenerates into weak
PDG; (5) by comparing the learning mechanism and
myopic mechanism in the multi-games model, the coop-
erators under learning update rule tend to form clusters
to resist the invasion of defectors, while the cooperators
under myopic update rule tend to form a staggered rela-
tionship with the defectors to increase individual payoff.
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