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Abstract. In molecular simulations, the identification of suitable reaction coordinates is central to both the
analysis and sampling of transitions between metastable states in complex systems. If sufficient simulation
data are available, a number of methods have been developed to reduce the vast amount of high-dimensional
data to a small number of essential degrees of freedom representing the reaction coordinate. Likewise, if
the reaction coordinate is known, a variety of approaches have been proposed to enhance the sampling
along the important degrees of freedom. Often, however, neither one nor the other is available. One of
the key questions is therefore, how to construct reaction coordinates and evaluate their validity. Another
challenges arises from the physical interpretation of reaction coordinates, which is often addressed by corre-
lating physically meaningful parameters with conceptually well-defined but abstract reaction coordinates.
Furthermore, machine learning based methods are becoming more and more applicable also to the reac-
tion coordinate problem. This perspective highlights central aspects in the identification and evaluation of
reaction coordinates and discusses recent ideas regarding automated computational frameworks to combine
the optimization of reaction coordinates and enhanced sampling.

1 Reaction coordinates and rare events:
analysis and sampling

Molecular dynamics (MD) simulations have become
an indispensable tool in the study of dynamical pro-
cesses on the atomistic level. Over the years, tremen-
dous progress has been achieved regarding the opti-
mization and parallelization of MD algorithms on mas-
sively parallel supercomputers, enabling exceptionally
large-scale simulations with up to a billion atoms [1,2].
Furthermore, the calculation of accurate energies and
forces for complex systems at affordable computational
costs is continuously advanced, with machine learn-
ing (ML) potentials becoming increasingly popular [3–
8]. Another challenge faced in MD simulations is the
sampling and analysis of rare or infrequent events.
Rare events are characterized by transitions between
metastable states in phase space that require the sys-
tem to overcome sizeable free energy barriers. As a con-
sequence, the system spends most of the time within the
metastable states whereas the actual transitions them-
selves take place on much shorter timescales. These
transitions constitute, however, often the process of
interest in a wide range of areas from chemistry and
physics to materials science and biology, and for a
multitude of systems from single molecules to con-
densed phase systems. Typical examples include con-
formational changes, protein folding, ion dissociation,
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nucleation, phase transformations, and defect diffusion
in solids, to name a few. The limited timescales acces-
sible in MD are, however, not the only challenge. Even
if it were possible to extensively sample rare events
directly with MD simulations, the analysis of the vast
amount of data in the high-dimensional phase space
remains far from trivial.

To analyze and sample rare events, the concept of
a reaction coordinate (RC) is extremely useful. The
terms reaction coordinate, collective variable (CV),
and order parameter (OP) are not always used consis-
tently throughout the literature. In general, these rep-
resent low-dimensional projections of the phase space.
Similar to Peters [9], we refer here to any function
of the full phase space coordinates as collective vari-
able, an order parameter is a CV or combination of
CVs that can distinguish between different metastable
states, and a reaction coordinate is a function of CVs
that accurately captures the progress of the transition
between two states. The definition of RCs is essential for
reaction-rate theories [10]. Within transition state the-
ory [11,12], an estimate of the rate constants for tran-
sitions between metastable states relies on the iden-
tification of a suitable RC, and the analysis of both
the mechanisms and the kinetics of rare events can be
greatly impacted by the choice of the RC.

A number of methods has been developed to facilitate
the sampling of rare events that can be grouped roughly
into two classes: (i) with and (ii) without applying a
bias along a given set of CVs. The latter include acceler-
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ated MD approaches [13–18], replica exchange MD [19],
and the family of path-based methods [20–30], which
yield an ensemble of true dynamical trajectories of the
transition. Methods that use a bias to enhance the sam-
pling include umbrella sampling [31], metadynamics
[32–35], hyperdynamics [36], adaptive biasing force [37],
and (driven) adiabatic free energy dynamics [38–40] or
temperature accelerated molecular dynamics [41], often
employed to estimate free energy profiles. Approaches
applying a bias can be very efficient, but rely on an
a priori knowledge of a suitable reaction coordinate.
Except for the simplest cases, an intuitive definition of
an appropriate RC is, in general, highly error-prone.
On the other hand, if sufficient sampling of the pro-
cess of interest has been obtained, several methods, as
discussed in this perspective, have been proposed to
extract collective variables and assess their validity as
RC. As noted in an earlier review on reaction coordi-
nates [42], this interplay between sampling and analysis
constitutes a chicken-and-egg problem that still poses
a major challenge to the rare event community.

In this perspective, some fundamental aspects of how
to construct and evaluate reaction coordinates in com-
plex systems will be discussed. The ultimate method
of choice does not only depend on the investigated
problem, but also on the intended usage of the RC:
should the RC provide physical insight into the mech-
anism, is it needed for sampling, is the free energy
profile of interest, or can the transition state ensem-
ble be inferred. Furthermore, ML based or supported
approaches that are becoming increasingly accessible
and applicable to the RC challenge will be discussed,
as well as some recent ideas regarding an automated
sampling and RC optimization, before finishing with
some concluding remarks.

2 What constitutes a good reaction
coordinate?

Whether or not a reaction coordinate is considered use-
ful depends, to a certain degree, on the question that is
being asked. To obtain, for example, mechanistic insight
and infer kinetic trends, a physically meaningful reac-
tion coordinate is most helpful. However, reaction coor-
dinates derived from intuition alone already assume
specific mechanisms and require extensive knowledge
about the system of interest. Even in seemingly obvi-
ous cases, an intuitive RC might not capture all impor-
tant degrees of freedom, as was shown for ion pair dis-
sociation in water more than 20 years ago [43]: here,
the distance between the two ions does not provide an
accurate RC, but additional solvent degrees of freedom
need to be included to fully characterize the dissociation
mechanism. On the other hand, mathematically derived
RCs can be very accurate in describing the progress of
a transition, but are often difficult to interpret.

The danger of projecting a high-dimensional space
onto a single or a few CVs is often exemplified with
the 2D energy landscapes shown in Fig. 1. When pro-

Fig. 1 Both energy landscapes on the top yield the same
free energy profile and presumed transition state q∗ when
projected onto q1 (bottom graphs). For the energy landscape
on the left, q1 represents a good RC and configurations at
q∗ are representative of the transition state. On the right
energy landscape, however, configurations with q1 = q∗ and
small values of q2 are fully committed to state A, whereas
configuration with large q2 values are committed to B

jected onto the coordinate q1, both landscapes result in
the same free energy profile, F (q1), with a maximum
at q∗ marking the presumed transition state (TS) for
the transition between states A and B. For the energy
landscape on the left, this is a suitable representation
and configurations with q1 = q∗ constitute the tran-
sition state ensemble. On the right energy landscape,
however, configurations with q1 = q∗ and small values
of q2 lie in the basin of attraction of state A, whereas
configurations with large q2 values are committed to
state B. Correspondingly, configurations at q∗ do not
comprise the transition state ensemble and q1 would
clearly be an ill-chosen RC.

To ensure that an RC is suitable to describe the
progress of a transition between two states, three crite-
ria were proposed in Ref. [9]: (i) the RC is a function
of only the instantaneous point in configuration space;
in this definition, the velocities are not included in the
RC; (ii) the value of the RC should change monotoni-
cally between two states and the corresponding isosur-
faces yield a set of non-intersecting dividing surfaces
in configuration space; (iii) a free energy profile can
be projected along the RC and the reduced dynamics
along this RC are still consistent with the dynamics in
the full phase space. These criteria are generally appli-
cable to systems with different dynamics, ranging from
overdamped to inertial dynamics.

3 The committor

The committor pB(r) is defined as the probability that
a trajectory initiated at point r in configuration space
will reach state B before A. It provides a statistical
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measure of the progress of a transition between two
states and, naturally, represents an ideal reaction coor-
dinate [44–46]. The concept has been introduced as
early as the 1930s [47] and has also been termed split-
ting or commitment probability or pfold in the case of
protein folding. A brief historical recapitulation is, for
example, given in Ref. [48].

Conceptually, the committor fulfills all criteria of an
optimal RC, and configurations on the isocommittor
surface with pB(r) = 0.5 constitute the transition state
ensemble, as these configurations have an equal prob-
ability to either proceed to the final state B or return
to the initial state A. From a practical or computa-
tional point of view, however, the committor is not quite
as optimal. It lacks any direct connection to physical
observables and is, thus, difficult to interpret. Further-
more, to obtain the committor, a large number of MD
simulations need to be performed for each configura-
tion r, rendering this approach computationally rather
demanding [22]. Still, the committor is extremely useful
in the validation as well as in the identification of suit-
able RCs and is central to several approaches discussed
in this perspective.

4 Evaluation of reaction coordinates

Since the committor is the ideal RC, any collective vari-
able that represent a suitable RC must exhibit a strong
correlation with the committor. More precisely, all con-
figurations with the same CV value must lie on the same
isocommittor surface. The quality of any given CV q(r)
as RC can be evaluated by computing the committor
distribution [22,23]

P (p̂B |q̂) =
〈δ(pB(r) − p̂B)δ(q(r) − q̂)〉

〈δ(q(r) − q̂)〉 , (1)

where δ(x) is the Dirac delta function and 〈. . . 〉 denotes
an ensemble average. If q̂ = q∗ marks the transition
state, the committor distribution should be sharply
peaked around p̂B = 0.5. For the projection of the
energy landscape onto q1 in the left graph of Fig. 1, this
would be the case, whereas the committor distribution
for the presumed transition state q∗ on the right would
yield two peaks around p̂B = 0.0 and 1.0 for small and
large q2 values, respectively.

The committor can also be used to quantitatively
compare the quality of different RCs and identify the
optimal RC from a given set of CVs. The first system-
atic approach to achieve this was based on genetic neu-
ral networks (GNN) [46]. Here, the input to the NN is a
set of CVs and the output is the predicted pB value of a
given configuration. The corresponding loss function to
train the NN is the root mean square (RMS) error in the
predicted pB . A genetic algorithm was employed to find
the optimal combination of CVs, where again the RMS
error in the predicted pB determines the fitness of the
population in each generation. With this approach, a
large number of trial CVs could be compared quantita-

tively to identify the best approximation to the RC. The
training of the NN does, however, require the computa-
tion of the committor for a large number of configura-
tions spanning the entire range of pB values. A variation
of the method was recently suggested where, instead of
the committor, the NN predicts atomic coordinates of
configurations along the transition [50]. To improve the
fitting, a second genetic algorithm was employed in an
initial step to optimize the architecture of the NN.

Another approach to obtain optimal RCs is based on
likelihood maximization [51,52]. The basic idea in max-
imum likelihood estimation (MLE) is to find a model
that best describes the observed data by maximizing
the likelihood function. The data are, in this case,
obtained from aimless shooting transition path sam-
pling (TPS) simulations [51–53], and the model is a
function that represents the committor, usually a sig-
moid function of the RC in the range 0 to 1. In aimless
shooting, a new transition path is created by selecting
a configuration close to the TS from the current tra-
jectory, randomizing the velocities, and integrating for-
ward and backward in time. The corresponding shoot-
ing point can thus be considered as an instantaneous
evaluation of the committor, and the likelihood for the
shooting point data is given by [45,51]

L =
∏

xi→B

p̃B(rc(xi))
∏

xi→A

(1 − p̃B(rc(xi))), (2)

where the product runs over all shooting points xi lead-
ing to states B and A, respectively, and p̃B is the com-
mittor modeled by a sigmoid function. The reaction
coordinate was initially approximated as a linear combi-
nation of CVs, rc(x) =

∑
αiqi(x)+α0, and the param-

eters αi were optimized by maximizing the likelihood.
The combination of CVs that maximizes the Bayesian
information criterion (BIC) [54], taking into account
added benefit due to increasing model complexity with
larger numbers of variables, represents the best RC.

The likelihood in Eq. (2) is valid for systems with
diffusive dynamics. For inertial dynamics, not only the
value of the RC, but also the velocity along the RC will
impact the probability to commit to the final state. The
inertial likelihood maximization approach [55] extends
the previous idea by also including the velocities in the
likelihood expression. The RC, however, is still only a
function of configuration space since the particle veloc-
ities solely enter through their projection onto the RC.

The use of data from the aimless shooting algorithm
in Eq. (2) restricts the analysis of the RC to the TS
region, whereas in complex systems information along
the entire transition process might be needed to unravel
the mechanism. In addition, a nonlinear approximation
to the RC might be necessary instead of a simple linear
combination of CVs. Both aspects can be addressed by
combining maximum likelihood estimation with data
from the reweighted path ensemble (RPE) and a pro-
jection onto a string in CV space that approximates the
RC [56,57]. The string connects states A and B and its
position in CV space is optimized during the likelihood
maximization. Again, the BIC is used to determine the
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Fig. 2 Free energy during nucleation in Ni projected from the reweighted path ensemble: projection in the nfcc,ns plane
together with the optimized string RC (left), projection onto nfcc (middle), and projection onto ns (right); the increase in
free energy associated with the initial formation of the precursor is not captured by the projection onto nfcc. Adapted with
permission from Ref. [49]. Copyright 2018 American Chemical Society

best combination of CVs and string representation and
identify the optimal RC.

An illustrative example of how a quantitative evalua-
tion of proposed RCs can provide insight into the tran-
sition mechanism is nucleation from supercooled liq-
uids. A maximum likelihood analysis of RCs describing
solidification in Ni revealed that the number of solid
particles in the growing cluster ns is a much better RC
than the number of face-centred cubic (fcc) particles
nfcc [49], even though the bulk phase crystallizes in an
fcc structure. The reason for this is that in the initial
stage of the nucleation process a precursor is formed
in the supercooled liquid from which the crystalline
phase emerges, which is not captured by nfcc. This pre-
cursor formation is associated with a sizeable energy
barrier. Consequently, the free energy profile projected
onto nfcc yields a nucleation barrier that is much too
low as it does not incorporate the initial pre-ordering
in the liquid. The 2D projection of the free energy in
the nfcc,ns plane together with the optimized string RC
and the projections onto the individual coordinates are
shown in Fig. 2. This also demonstrates that a poor RC
does not necessarily increase the apparent free energy
barrier of the process, but the projection might also
result in a barrier that is too low. The same effect was
observed for a completely different system, examining
the free energy barrier for the phosphodiester hydrol-
ysis reaction catalyzed by the RNase H enzyme [58].
Some other examples, where a committor analysis or
likelihood maximization was used to find optimal RCs,
include Refs. [59–72].

The methods discussed in this section can evaluate
the quality of RCs constructed from a set of proposed
CVs by correlating them with the committor. If, how-
ever, an important degree of freedom cannot be cap-
tured within the provided set of CVs, it will also not
appear in the analysis and will be missed.

5 Constructing reaction coordinates

There are essentially two ways to construct possible
RCs: (i) inferred from physical intuition and/or prior
knowledge about the process or similar systems; and
(ii) inferred from analyzing extensive simulation data
of the process. Some of the central ideas are highlighted
below.

5.1 Intuition-based reaction coordinates

The main advantage of intuition-based RCs is that
these are usually simple and have a well-defined physi-
cal interpretation. For instance, conformational changes
in molecules can often be described in terms of dihedral
angles, the number of native contacts is often used in
protein folding, changes in local coordination or sym-
metry for structural transformations in solids, or clus-
ter sizes to describe nucleation. As discussed, a CV can
essentially be any function of configuration space and
multiple CVs can be combined into a reaction coordi-
nate. If the CVs comprising the RC are to be used,
however, in enhanced sampling simulations, they need
to be differentiable with respect to the particle posi-
tions. Another aspect to be considered when deriv-
ing intuition-based RCs for enhanced sampling is the
computational cost of obtaining the derivatives. Since
forces are needed in every simulation step, expensive
calculations of additional derivatives will substantially
slow down the simulation. Even though useful and suit-
able for many systems, intuition-based RCs are always
trial-and-error and their validity needs to be carefully
scrutinized for every new problem.

5.2 Dimensionality reduction

The search for an adequate RC is essentially a dimen-
sionality reduction problem from the high-dimensional
phase space to a low-dimensional space of a few col-
lective variables. The underlying assumption in apply-
ing dimensionality reduction schemes to identify RCs
is, that the configurations relevant to the process can
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be found on a low-dimensional manifold embedded in
the high-dimensional space. A number of ML based
methods has been used to obtain RCs through lin-
ear and nonlinear dimensionality reduction. Several
comprehensive reviews with extensive lists of refer-
ences can be found in Refs. [42,48,73–76]. Here, we
will only briefly mention frequently used approaches.
The oldest and probably simplest linear dimensional-
ity reduction method is principle component analysis
(PCA), which aims to find a linear combination of
variables that optimally captures the variance of the
dataset. Several dimensionality reduction techniques
determine a low-dimensional space in such a way that
pairwise distances between points projected in the low-
dimensional space reproduce the pairwise distances in
the high-dimensional space. In multidimensional scal-
ing (MDS) [77], Euclidean distances are used in the
high-dimensional space. Nonlinearity is introduced by
employing nonlinear functions of Euclidean distances in
kernel PCA [78] or geodesic distances in Isomap [79].
Sketch-maps [80] apply a nonlinear transformation to
both the distances in the high- and low-dimensional
space, and can thus focus on a particular range of dis-
tances. A dynamical distance measure is used in diffu-
sion maps [81] defining a diffusion distance in the high-
dimensional space.

The coordinates obtained from dimensionality reduc-
tion are well-defined. There is, however, one major
drawback: these coordinates are not directly connected
to any physical variable which makes it difficult to
analyse or infer mechanisms. Similar to the commit-
tor, an interpretation is often attempted by corre-
lating a set of physically meaningful CVs with the
identified coordinates that comprise the optimal RC
space.

5.3 Path collective variables

A path collective variable S(r) defines the progress
along a given initial trajectory or sequence of n states
in configuration space [82]

S(r) =
1

n − 1

∑n
i=1(i − 1) exp(−λD(r(i), r))∑n

i=1 exp(−λD(r(i), r))
, (3)

where D(r(i), r) is a distance metric between the refer-
ence configuration r(i) and the instantaneous configu-
ration r. In addition, the function Z(r)

Z(r) = − 1
λ

ln

(
n∑

i=1

exp(−λD(r(i), r))

)
, (4)

describes the distance from the reference path. S(r)
increases monotonically from 0 to 1 along the path
and the hyper-surfaces with a constant value of S(r)
are locally perpendicular to the path. Path CVs can
be used together with enhanced sampling schemes to
explore the free energy surface. The function Z(r) can
either be used to promote sampling perpendicular to

the reference path or to restrain the sampling close to
the proposed path.

In the original formulation [82], the distance D(r(i), r)
was defined as the mean square displacement, but
other metrics might be more suitable depending on
the investigated system. Recently, an approach to opti-
mize the distance metric based on a weighted com-
bination of a set of CVs was proposed [83]. Alter-
natively, a reference path can also be defined in CV
space, resulting in a path CV that effectively provides
a nonlinear combination of CVs along the transition
[84,85]. It was furthermore shown, that an efficient
sampling of the free energy can already be achieved
by considering only the end-points of the path [86]
in Eq. (3). In this case, just two reference config-
urations are needed, one in each of the metastable
states.

Path CVs are particularly useful if no suitable RC
can be readily defined, but an initial guess of a trajec-
tory describing the transition can be obtained. Together
with the exploration of the free energy landscape, a
good approximation of the free energy is achieved even
if the initial path is not optimal.

5.4 Machine learning based classification

The dimensionality reduction schemes discussed in
Sect. 5.2 require extensive simulation data along the
entire transition, which is not always readily available.
However, if the end-states of a process are known, sam-
pling within these metastable states is often feasible.
The data can then be used in supervised ML approaches
for classification to learn the decision boundary between
the two states and the decision function of the classifier
serves as a collective variable.

In Ref. [87], support vector machines (SVM), logis-
tic regression (LR), and neural networks (NN) were
used for classification. The trajectory data from each
state are first projected onto a set of CVs that serves
as the input feature vector for the ML classification.
The list of CVs can be rather exhaustive as during
the optimization the ML algorithms can automati-
cally reduce the complexity of the model and high-
light important features. Since the resulting RC is a
combination of all input CVs, biasing along the RC
will simultaneously enhance all important degrees of
freedom. It should be noted that for the approach to
work with enhanced sampling, analytical derivatives
with respect to the atomic coordinates need to be avail-
able. Consequently, the SVM output itself was not suit-
able, but instead the distance to the SVM’s hyperplane
was used as RC. For LR and NN, the probability out-
put can be employed directly. The approach was also
extended to multiple stable states using a multiclass
SVM model.

Similarly, linear discriminant analysis (LDA) has
been employed to classify metastable states and con-
struct a reaction coordinate [84]. The performance
was not entirely satisfying, but could be improved
using the harmonic instead of arithmetic average of
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Fig. 3 Schematic representation of constructing a path CV based on local structure classification: for each atom i, a set

of local descriptors G is fed into an NN that classifies the local structural environment. The local environments y
(i)
k are

combined into global classifiers Yk and transitions are sampled along a path CV S(Y) in the global classifier space

the covariance within each state to define the scat-
ter matrix. This was rationalised by the nature of the
data for metastable states of rare events, as states
with smaller fluctuations should be less easy to enter
and exit and should therefore have a larger weight
in computing the discriminant. The LDA approach
is suitable for a rather small number of input CVs
and only provides a linear combination of the CVs.
To alleviate these limitations, the approach was fur-
ther combined with an NN [88]. A large set of physi-
cal CVs is fed into the NN which performs a nonlin-
ear transformation of the data and reduces the dimen-
sionality. LDA is then performed on the final layer
of the NN and the RC is constructed from a pro-
jection of the NN final layer onto the LDA eigenvec-
tor.

In condensed phase systems, a local classification
for each atom can also be used, for example, to
describe transformations between different crystalline
structures. The information for each atom can then be
combined into global classifiers that characterize the
state of the entire system. In Ref. [85], an NN was used
for local structure classification, where the NN input
features are local descriptors for each atom and the
output is the probability that a given local environ-
ment corresponds to any of the investigated bulk crys-
talline phases. As for the other approaches discussed in
this section, only trajectory data from the metastable
states, in this case the bulk phases, are needed to train
the NN. The global classifiers were chosen as the aver-
age over the NN output of each atom, effectively cor-
responding to a phase fraction. In principle, the global
classifiers could directly be used as CVs in enhanced
sampling. However, in this case, the global classifiers
were not independent and individually biasing each
component turned out to be inefficient. Instead a path
CV, Eq. (3), was defined in the global classifier space
to capture the transition. A schematic representation of
constructing a path CV based on local structure classi-
fication is shown in Fig. 3.

In all approaches discussed in this section, it is still
necessary to define descriptors as input to the ML clas-
sification method. However, these can be many and
are combined in a nonlinear fashion by the ML algo-
rithms. The resulting RC might not necessarily rep-
resent the optimal one, but is suitable to sample the
transition between the metastable states, even though
it is constructed from data obtained only within the

metastable states. Additional data acquired from sam-
pling the transition can subsequently be used to further
refine the RC with the corresponding approaches dis-
cussed above.

6 Automated sampling and reaction
coordinate optimization

The sampling of rare events and the identification of
suitable RCs are strongly interdependent. For new sys-
tems, for which neither sampling data nor a good
approximation to the RC are available, the initial explo-
ration often requires significant human input based on
trial-and-error and iterative sampling, data analysis,
and RC improvement. Very recently, a few approaches
have been proposed that automatically perform the
sampling and optimize RCs. Two of the methods dis-
cussed in the following use autoencoders together with
biased sampling in an iterative manner, the third one is
based on ML predicted committors and transition path
sampling. In particular for ML-based approaches, the
availability of sufficient and representative data is cru-
cial. However, for sampling rare events, data are gener-
ally sparse and have to be generated in the first place.
The approaches outlined in this section aim to itera-
tively sample rare events and train ML models to facil-
itate sampling, thus successively providing more and
more data. An important aspect in these methods is
the critical assessment of the convergence of the itera-
tive workflow.

6.1 Molecular enhanced sampling with
autoencoders

The central idea in molecular enhanced sampling with
autoencoders (MESA) [89,90] is an automated frame-
work that iteratively employs an autoencoder to extract
CVs from the available data and accelerated sampling
in the corresponding CV space. The initial data can, for
example, be taken from an initial unbiased simulation.
The autoencoder optimizes the low-dimensional projec-
tion into the bottleneck layer which is used as CVs. The
number of nodes in the bottleneck layer determines the
dimensionality of the CV space and needs to be opti-
mized as well. Using the trained autoencoder, the tra-
jectory data are projected into the CV space defined
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by the bottleneck nodes to identify the region with
non-vanishing probability density. This region is sub-
sequently divided into a number of cells and umbrella
sampling is performed in each cell. The new sampling
data are again fed into the autoencoder and a new set
of CVs is determined. The process is repeated until con-
vergence is reached. It was recently remarked that the
data obtained from biased simulations should be prop-
erly reweighted before being passed to the autoencoder
again [91].

Some care must be taken when preparing the input
data for the autoencoder from Cartesian coordinates:
translational and rotational invariance must be removed
or the rotational invariance must be build into the NN
architecture, respectively. Alternatively, for molecular
systems, which were the focus of the current studies,
internal degrees of freedom could be used. In condensed
phase systems, additional challenges arise in the repre-
sentation of the input data, as permutational invariance
needs to be considered as well. Another concern are
CVs that are intrinsically periodic as they increase the
dimensionality of the bottleneck region. In this case, it
was suggested to employ circular activation functions
for pairs of coupled bottleneck nodes [90]. As in other
dimensionality reduction schemes, one drawback is the
interpretability of the obtained CVs. This still needs to
be performed by hand, for example, by correlating phys-
ically meaningful CVs with the low-dimensional projec-
tion of the autoencoder.

6.2 Reweighted autoencoded variational Bayes for
enhanced sampling

In its original formulation, the reweighted autoen-
coded variational Bayes for enhanced sampling (RAVE)
approach [92,93] employed a variational autoencoder
to project trajectory data onto a single latent space
coordinate. Instead of biasing directly along this coor-
dinate, a trial RC is proposed as a linear combination
of a set of CVs (as in the MLE approach, Sect. 4).
The corresponding coefficients are optimized by match-
ing the probability distribution of the trajectory data
along the bottleneck coordinate and the trial RC. From
the probability distribution, a bias potential is con-
structed along the RC and sampling is performed on
the biased energy landscape. The obtained simulation
data are unbiased before being used as input to the vari-
ational autoencoder in a next iteration, and a new trial
RC and biasing potential are constructed. Iterations are
continued until convergence of the desired properties is
obtained.

RAVE was extended by estimating the predictive
information bottleneck (PIB), which is then associated
with the RC [94,95]. Here, the encoder projects data
at a time t onto the bottleneck coordinate, whereas
the decoder predicts the data at a time t + Δt. In
this respect, the RC is the coordinate that is maxi-
mally predictive of a trajectory’s future evolution based
on the current configuration. The encoder was chosen
as a simple linear combination of the input values, so
that the bottleneck coordinate is directly interpreted as

the RC being a linear combination of the input CVs.
The decoder was implemented as a stochastic deep NN,
which allows for enough flexibility in the ML model to
evaluate the usefulness of various input features. The
iterative scheme remains the same, a bias potential is
constructed from the probability distribution which is
then used in enhanced sampling to produce a new set
of data.

The remaining human input in RAVE is the pro-
posed set of trial CVs that are combined into the RC.
The main advantage is that the results can be directly
interpreted, in particular, since the coefficients in the
linear combination indicate the importance of each CV.
Furthermore, the input CVs can incorporate any type
of invariance inherent to the system. The obvious dis-
advantage is that important degrees of freedom might
not be captured by the set of trial CVs. An indica-
tion for this would be if the added bias potential does
not lead to any acceleration in the sampling of the rare
event, necessitating the introduction of additional trial
CVs.

6.3 Concurrent transition path sampling and
committor prediction

In transition path sampling, an ensemble of unbiased
trajectories connecting two metastable states is created
by a Monte Carlo sampling in trajectory space. The
efficiency of the sampling hinges on the generation of
new transition paths (TP) from existing ones. Since the
probability of sampling a transition path is related to
the committor [96], knowledge of the committor can
accelerate the generation of TPs [97].

On the basis of this, an automated framework as been
proposed that learns both the committor and an opti-
mized sampling of TPs during the simulation [98,99].
As in the MLE approach (Sect. 4), the committor is
modelled as a sigmoid function of the RC and the likeli-
hood of the shooting points is given by Eq. (2). The neg-
ative logarithm of the likelihood is used as the loss func-
tion in training an NN, where the input is a set of CVs
and the output is the predicted pB value. Training the
NN on existing shooting point data yields an optimal
nonlinear combination of input CVs to represent the
RC. Furthermore, the trained NN can predict pB val-
ues for any configuration, which is used to optimize the
shooting point selection for the generation of new TPs.
As the sampling progresses, the NN is concurrently
retrained with new shooting point data, but this is only
necessary if the number of generated and expected TPs
based on the predicted pB values differ significantly.

To regain physical interpretability of the optimized
RC, a sensitivity analysis of the NN was combined with
symbolic regression [98,99]. The sensitivity analysis fil-
ters out a small subset of CVs from all input variables
to the NN. Symbolic regression is then used to iden-
tify simple mathematical expressions for this subset of
CVs that best represent the nonlinear transformations
encoded in the NN. Similar to RAVE, an important
human input is the chosen feature representation of the
investigated system serving as input CVs to the NN,
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which still requires a certain level of physical intuition
about important degrees of freedom.

7 Concluding remarks

The sampling and analysis of rare events continues to
pose a central challenge to the molecular simulation
community. The identification of reaction coordinates
to both enhance the sampling and facilitate the inter-
pretation of transition mechanisms is a key step in
this endeavour. Ideally, the task of an exhaustive sam-
pling and analysis would be performed by fully auto-
mated computational frameworks with minimal human
input. As machine learning and data-driven approaches
become more and more accessible, considerable efforts
have been made in this direction. Still, we are not yet
at a point where we can simply provide an algorithm
with one or several snapshots of a system without any
additional information, in particular regarding the rep-
resentation of configurations in terms of features that,
for example, reflect certain symmetries and highlight
important degrees of freedom. Furthermore, to derive
physical interpretations and infer mechanistic trends,
we generally rely on parameters that have some sort of
meaning within the physical model of the investigated
system. We can evaluate the importance of each param-
eter in describing the process and we can optimally
combine them in linear and nonlinear ways, which is
critical for our understanding, but we still need to come
up with a set of trial parameters ourselves. Another
aspect in the era data-driven science that might become
beneficial is the setup of databases. Collecting informa-
tion about important CVs in a wide variety of systems
could potentially be used to propose sets of CVs for sys-
tems with similar characteristics, guiding the selection
of trial CVs beyond human intuition.
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