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Abstract. Reversible multiple timescale (MTS) integration algorithms have long been recognized as a
straightforward way to increase efficiency and extend accessible timescales in molecular dynamics sim-
ulations without altering the ensemble distribution sampled. MTS methods are based on the idea that
interatomic forces in a system drive motion on numerous timescales, and by decomposing force compo-
nents according to these timescales and assigning an individual time step to each one, fast, computationally
cheaper forces are evaluated more frequently than the slow, expensive forces. As it happens, the largest
time step that can be employed in standard MTS methods is fundamentally limited by so-called resonance
artifacts that originate in the fastest timescales. Thus, while it should be possible to assign the slowest
timescales very large time steps approaching 100 fs in, for example, fully atomistic simulations, resonances
impose a practical limit on this step size to around 5–10 fs, which allows for useful but only modest savings
in computational overhead. This article will review the basic MTS approach and the origin of resonances
and then will provide a perspective on how to solve the resonance problem for molecular dynamics sim-
ulations in different ensembles, showing how both statistical and dynamical properties can be generated
with very large time steps.

1 Introduction

Multiple timescale (MTS) integration [1–3] is broadly
recognized as a straightforward and effective approach
to enhancing the efficiency and accessible timescales of
molecular dynamics (MD) simulations without affect-
ing the sampling of a chosen statistical ensemble. In
classical MD, MTS algorithms allow the most expen-
sive computations, typically associated with the evalu-
ation of slowly varying long-range van der Waals and
electrostatic components of a force field, to be per-
formed less frequently than cheaper, more rapidly vary-
ing, bonded components. When a simulation is per-
formed for the purpose of computing statistical ensem-
ble averages, such as distribution functions, free energy
differences, or other thermodynamic observables, then
the maximum benefit afforded by MTS algorithms is
achieved when the largest time step can be matched to
the correlation time of the system dynamics (i.e. the
sampling period required to obtain a series of uncor-
related configurations). Although this is theoretically
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possible in certain situations, resonance artifacts [4–6]
limit the maximum attainable step size in a MTS run,
thus inhibiting MTS algorithms from delivering maxi-
mal gains. Numerical resonances arise within MTS inte-
gration algorithms at specific values of the large time
step, at which slow and fast motions “resonate” numer-
ically, causing a significant degradation in energy con-
servation and integration accuracy. These resonant time
steps are roughly determined by the period of the fast
motion.

Over the last few decades, several schemes to cir-
cumvent resonances have been introduced. One such
approach, known as the mollified impulse method [7,8],
consists in modifying the slow terms in the potential
energy function in such a way that the corresponding
forces are evaluated at coordinates that are averaged
along auxiliary trajectories determined by the fast part
of the potential. A related method employs a general-
ized Langevin equation with a “designer” colored-noise
memory kernel engineered to mollify high-frequency
components of the fast motion [9]. Methods of this
type allow for notable gains in the large time step and,
importantly, largely preserve long timescale dynamics.
If the goal of a simulation is to sample an ensemble dis-
tribution and generate equilibrium properties, very sub-
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stantial gains in the large time step are possible using
an approach that alters the dynamics via the introduc-
tion of a set of isokinetic constraints. These constraints
couple the physical phase-space variables to a set of
auxiliary (extended phase-space) variables that mod-
ulate fluctuations in the instantaneous kinetic energy
and, if desired, the virial, to maintain a target tem-
perature and/or pressure [10–13]. The basic technique
consists in pairing the velocity of each physical degree
of freedom in the system with a set of extended phase-
space velocities and coupling a thermostat individually
to each such pair. The combined kinetic energy of each
physical velocity and corresponding auxiliary velocity
is then fixed by a non-holonomic constraint. In this
way, the kinetic energy of any physical mode can never
exceed a prescribed value and, consequently, avoids res-
onances and instabilities. This procedure can be shown
to produce a kind of microcanonical distribution of
velocities and a proper canonical or isothermal–isobaric
distribution of coordinates [10–13]. The method was
originally formulated [10–12] with deterministic ther-
mostats [14] for canonical sampling and subsequently
reformulated [13] with stochastic thermostats [15,16].
In the latter case, it is known as the SIN(R) method,
i.e., Stochastic Isokinetic Nosé–Hoover (RESPA) [13].
These approaches allow large time steps as large as 100
fs in atomistic simulations to be achieved.

Recently, we introduced a Hamiltonian-based
resonance-free approach [17] that samples the same
velocity distribution of the massive isokinetic frame-
work without imposing constraints or introducing
extended phase-space velocities apart from those used
for standard thermostatting schemes such as Nosé–
Hoover dynamics [18,19], Nosé–Hoover chains [14], or
Nosé–Hoover–Langevin dynamics [16].

The method consists in replacing the kinetic energy
term in the system Hamiltonian by a new momentum-
dependent function chosen to restrict the velocities to
lie within a finite range, which we refer to as regulation.
The potential energy part of the Hamiltonian remains
unchanged, and, thus, the coordinate-dependent part of
the canonical distribution is properly generated.

In this paper, we will briefly review the standard
symplectic MTS scheme known as reversible RESPA
(reference-system propagator algorithm), and we will
discuss how resonances arise. We will then review the
incorporation of isokinetic constraints as a solution to
the resonance problem and then show how to refor-
mulate this approach within a Hamiltonian frame-
work. Using this new Hamiltonian, we will extend
the regulated dynamics scheme for simulations in the
isothermal–isobaric ensemble that allow very large time
steps to be employed. After this development, we will
describe an alternative scheme based on the colored-
noise generalized Langevin approach [20]. We will con-
clude with a summary and a discussion about possible
next steps in this topic.

2 Multiple timescale molecular dynamics

In this section, we provide a brief review of the basic
symplectic Hamiltonian MTS algorithm to introduce
the notation and formalism that will be used through-
out this article. Consider an N -particle system with
coordinates r1, ..., rN ≡ r, momenta p1, ...,pN ≡ p,
mass m1, ...,mN , which are the elements of an N × N
diagonal mass matrix M. In any configuration, the
particles exert forces F1(r), ...,FN (r) ≡ F(r) on each
other, and these forces are derived from a potential
energy function U(r) via the usual relation F(r) =
−∂U/∂r. Thus, the Hamiltonian for the system is

H(r,p) =
1
2
pT · M−1 · p + U(r) (1)

Defining the anti-self-adjoint Liouville operator L as

L = M−1p · ∂

∂r
+ F(r) · ∂

∂p
(2)

Hamilton’s equations of motion

ṙ =
∂H
∂p

= M−1p

ṗ = −∂H
∂r

= −∂U

∂r
= F(r) (3)

can be written compactly as

ṙ = Lr, ṗ = Lp. (4)

If we define the full phase space vector x = (r,p), then
for an initial condition x(0), Eq. (4) has the formal solu-
tion x(t) = exp(Lt)x(0). The unitary operator exp(Lt),
known as the classical propagator, cannot be evaluated
in closed form for general nonlinear many-body sys-
tems. However, for a small time increment, Δt, the MD
time step, the propagator can be approximately factor-
ized using the Trotter theorem:

eLΔt = eL2Δt/2eL1ΔteL2Δt/2 + O (
Δt3

)
, (5)

where

L1 = M−1p · ∂

∂r
, L2 = F(r) · ∂

∂p
. (6)

Application of the operator product in Eq. (5) on an ini-
tial phase space vector x(0) yields the standard velocity
Verlet algorithm [2,21], which confirms that the algo-
rithm is symplectic and phase-space volume-preserving.
The size of the time step that can be employed is dic-
tated by the most rapidly varying forces in a system,
which, in classical atomistic models of molecular sys-
tems, for example, are bond-stretching, angle-bending,
and torsional forces. Strong timescale separations also
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occur in other simulation problems including path inte-
gral molecular dynamics [22,23], in which pseudoparti-
cles or “beads” are connected to their neighbors by stiff
harmonic springs, and coarse-grained models of poly-
mers and biological macromolecules, [24–27] in which
interaction sites are also coupled by stiff springs. In
many of these examples, non-bonded interactions can
also be decomposed into rapidly varying, strong short-
range collision forces and slowly varying, weak, long-
range forces, thereby leading to another timescale sep-
aration. MTS integrators aim to increase the efficiency
of simulations characterized by such timescale separa-
tions by assigning appropriate time steps to different
force components based on their associated timescale.

To introduce the concept of an MTS integrator, sup-
pose the forces can be decomposed into two compo-
nents according to F = Ff + Fs, where Ff and Fs are
fast and slow components, respectively. If the compu-
tational overhead associated with the evaluation of Ff

is much lower than that needed to evaluate Fs, then
the efficiency of a simulation can be increased if a small
time step δt = Δt/nref , where nref is a positive inte-
ger, is used to integrate motion due to Ff while Δt is
used to integrate motion due to Fs. This can be done
within a symplectic pattern following the framework of
Eq. (5) by introducing the following decomposition of
the Liouville operator:

L = Lref + Ls, (7)

where

Lref = M−1p· ∂

∂r
+Ff(r)· ∂

∂p
, Ls = Fs(r)· ∂

∂p
. (8)

Here, Lref defines a “reference system” propagator,
which constitutes a full Hamiltonian system in which
only the fast forces Ff are present. If the full propaga-
tor exp(LΔt) is now factorized according to

eLΔt = eLsΔt/2eLrefΔteLsΔt/2 + O (
Δt3

)
, (9)

then Δt can be chosen to match the variation of the slow
force Fs. In this factorization, the operator exp(LrefΔt)
cannot be evaluated in closed form except for very sim-
ple cases, e.g., a separable system of harmonic oscilla-
tors. Therefore, in general, it is necessary to factorize
exp(LrefΔt), which is where the small time step δt is
used. Defining the operators

Lref,1 = M−1p · ∂

∂r
, Lref,2 = Ff(r) · ∂

∂p
, (10)

we can recast Eq. (9) as

eLΔt = eLsΔt/2
[
eLref,2δt/2eLref,1δteLref,2δt/2

]nref

eLsΔt/2.

(11)
The first step in the action of Eq. (11) on a phase-space
vector x is a simple translation of momenta p ← p +

ΔtFs/2. The output of this step is then used to seed nref

steps of velocity Verlet using only the fast force Ff and
a time step δt. Finally, the output of this step is then
used to perform one last momentum update identical to
the first, i.e., p ← p+ΔtFs/2 but with an updated slow
force. Thus, the computational costly slow force Fs only
needs to be evaluated once for each of nref evaluations of
the fast force Ff . If the cost of evaluating Ff is negligible
compared to the evaluation of the slow force, then the
gain in efficiency is approximately equal to nref . From
Eq. (11), it is easy to see how the framework can be
extended to incorporate additional time steps when the
forces can be further decomposed based on additional
timescales.

The formalism in Eq. (11) can be extended beyond
the two timescales to include as many timescales as one
might wish to treat in a given system. Unfortunately,
it is now well-established that MTS integrators hit a
practical limit due to numerical resonance phenomena.
When the fast motion in a system is characterized by
a spectrum of high frequencies, then such resonances
can occur at large time steps chosen to be multiples of
the periods associated with these frequencies, indicat-
ing that resonances are possible at a dense set of such
periods. As with ordinary resonances, the signature of
a resonance is buildup of energy in a set of modes, caus-
ing a degradation in energy conservation and a loss
of accuracy in the simulation [5,6,28]. Methods that
have been proposed for staving off resonance involve
mollifying these high frequencies [4,7,9] while preserv-
ing long-time dynamics. More aggressive techniques
that effectively eliminate resonances via kinetic energy
constraints or modification of the Hamiltonian in an
extended phase space sacrifice dynamics in favor of pre-
serving the ensemble distribution and the associated
sampling generated by the MD algorithm [12,13,17,29–
31]. In the proceeding sections of this paper, we will dis-
cuss resonance-avoiding methods for MTS integration
in molecular dynamics and the choice of methods that
should be made when dynamical quantities are desired
or when equilibrium distributions are needed. We will
show how the methods of Refs. [12,13,17], which are
designed to generate a canonical distribution, can be
adapted for the isothermal–isobaric ensemble.

3 Stochastic-isokinetic and regulated
dynamics algorithms

The basic idea of isokinetic methods is to couple each
physical velocity to a set of L velocity-like variables in
an extended phase space via a (non-holonomic) con-
straint on the total kinetic energy of this set of L + 1
variables. If vα is the physical velocity of the αth degree
of freedom (α = 1, ..., 3N) and vk,α, k = 1, ..., L is the
set of extended phase-space velocities coupled to vα,
then the constraint takes the form

mαv2
α +

L

L + 1

L∑

k=1

Qαv2
k,α = LkBT, (12)
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where mα is the physical mass, Qα is a fictitious mass-
like parameter associated with vk,α, and T is the phys-
ical temperature. This constraint can be implemented
in Hamilton’s equations of motion via Gauss’ principle
of least constraint [32] with a Lagrange multiplier λα:

ṙα = vα

v̇α =
Fα(r)
mα

− λαvα

v̇k,α = −λαvk,α. (13)

In its original formulation by Minary et al. [12], these
equations were coupled to a set of L Nosé–Hoover
chain thermostats [14], while a subsequent formulation
by Leimkuhler et al. replaced the Nosé–Hoover chains
with Nosé–Hoover–Langevin thermostats [16] so that
ergodicity could be proved [13]. When this is done, the
extended velocities vk,α are augmented to be a set of
two velocities, denoted vk,α and uk,α, and the equations
of motion, which are now stochastic in nature, take the
form

drα = vαdt

dvα =
Fα(r)
mα

dt − λαvαdt

dvk,α = −λαvk,αdt − uk,αvk,αdt

duk,α =
G(vk,α)

Qα
dt − γαuk,αdt + σαdwα, (14)

where γα is a friction parameter, G(vk,α) = Qαv2
k,α −

kBT , Qα is a thermostat mass-like parameter, σα =√
2γαkBT/Qα, dwα is the infinitesimal Wiener process.

The Lagrange multiplier is obtained by differentiating
Eq. (12) once with respect to time, substituting into
Eq. (14), and solving for the multiplier. This procedure
yields

λα =
vαFα(r) − L

L+1

∑L
k=1 Qαv2

k,αuk,α

mαv2
α + L

L+1

∑L
k=1 Qαv2

k,α

. (15)

The full set of equations of motion can be obtained
by substituting the expression for λα in Eq. (15) back
into Eq. (14). The distribution sampled by Eq. (14)
can be shown to be canonical in the physical configura-
tion space, i.e., ρ(r) ∝ exp(−βU(r)) [13]. The velocity
distribution for each degree of freedom is a δ-function
expressing the fact that Eq. (12) is satisfied. Because of
the constraint, Eq. (14) ensure that the maximum value
of the velocity |vα| is

√
LkBT/mα. In this way, energy

is prevented from building up in any particular degree
of freedom, thus avoiding resonances when Eq. (14) are
integrated via MTS algorithms [13].

It is important to note that, even in the absence of the
thermostat coupling, when Gauss’ principle is applied
to the kinetic energy constraint in Eq. (12), the result-
ing equations of motion are non-Hamiltonian. Recently,
Abreu and Tuckerman showed that the isokinetic con-
straint could be reformulated via a Hamiltonian [17],

thus increasing the flexibility of the scheme and ren-
dering the task of designing MTS integrators consider-
ably simpler. To see how this can be done, consider the
following Hamiltonian:

H(r,p) =
3N∑

α=1

mαc2
α ln cosh

(
pα

mαcα

)
+ U(r), (16)

where cα is a parameter whose meaning will become
clear shortly. If Hamilton’s equations are derived from
Eq. (16), the result is

ṙα =
∂H
∂pα

= cαtanh
(

pα

mαcα

)
= vα

ṗα = − ∂H
∂rα

= −∂U(r)
∂rα

. (17)

With this Hamiltonian, the usual classical-mechanical
relation vα = pα/mα between velocity and momentum
no longer holds. Rather, the relation is given in the
first line of Eq. (17), and this relation tells us that the
maximum value of |vα| is cα. Thus, as in the isokinetic
scheme, for constant-temperature ensembles we define
[17]

cα =
√

LkBT

mα
, (18)

where L is no longer restricted to integer values.
Because Eq. (16) differs from a standard Hamiltonian

in the kinetic energy part only, if Eq. (17) are coupled
to a thermostat, it becomes readily apparent that the
phase-space distribution generated is a Boltzmann dis-
tribution in the physical coordinates. For example, if
Nosé–Hoover–Langevin thermostat is used, the equa-
tions of motion would take the form

drα = vα(pα)dt

dpα = (Fα(r) − uαpα) dt

duα =
pαvα(pα) − kBT

Qα
dt − γαuαdt + σαdwα

(19)

with function vα(pα) defined in Eq. (17). MTS integra-
tion algorithms for Eq. (19) were described in detail by
Abreu and Tuckerman [17]. Finally, when Eq. (17), or
their thermostatted analogs in Eq. (19) are integrated
via an MTS algorithm, resonances are avoided [17]. The
dynamics generated in Eq. (17) or Eq. (19) are referred
to as regulated dynamics [17].

At this point, it is worth commenting on the role of
the parameter L. If an average 〈mαv2

α〉 over the canon-
ical distribution of Eq. (16) is performed, the result is
LkBT/(L + 1), which becomes the true canonical aver-
age only when L → ∞. This means that MTS integra-
tion of Eq. (17) coupled to a thermostat in the limit
that L → ∞ would result in the very same resonances
we are trying to avoid. In fact, since
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L ln cosh
(

x√
L

)
=

x2

2
− x4

12L
+

x6

45L2
· · · (20)

in the limit L → ∞, Eq. (16) becomes the standard
Hamiltonian of classical mechanics, for which there is no
restriction on vα. Thus, it is important to keep L finite
and small. On the other hand, setting L = 1 rather
than, for instance, L = 4, can disfavor diffusivity [17]
and lead to somewhat larger correlation times [31]. As
was shown by Abreu and Tuckerman [17], optimal res-
onance avoidance is generally obtained for 1 < L ≤ 4,
which largely agrees with optimal values of L in the
isokinetic scheme [13,31].

Due to its simplicity, regulated dynamics is read-
ily extendable to isobaric ensembles. Caution is neces-
sary, however, due to the effect of MTS integration on
the internal pressure of molecular systems. It has been
observed that the usual atomic pressure can become a
poor estimator when intra- and intermolecular interac-
tions are split apart into fast and slow force compo-
nents, respectively [3,33,34]. This can cause distortions
in the mean bond lengths and angles which are too
small to affect the potentially energy substantially, but
can nevertheless impair the atomic virial. For this rea-
son, it is better to rely on the molecular pressure when
implementing a barostat algorithm [21,35,36].

We now introduce a formulation for constant-pressure
simulations within the regulated dynamics approach.
It is a version of the Martyna–Tobias–Klein (MTK)
algorithm [37] with isotropic scaling of molecular cen-
ters of mass (instead of individual atomic coordinates)
[21] applied to a system whose Hamiltonian is given
by Eq. (16). In the case of a three-dimensional system
whose N atoms are distributed among n molecules, the
total mass, the center of mass, and the total momentum
of a molecule j are, respectively,

Mj =
∑

i∈j

mi, Rj =
1

Mj

∑

i∈j

miri, Pj =
∑

i∈j

pi,

(21)
where

∑
i∈j is a sum over every atom i in a molecule j.

The center-of-mass velocity of such molecule is defined
as

Vj =
1

Mj

∑

i∈j

mivi, (22)

where vi is the velocity of atom i, whose component in
the α direction (α = x, y, z) is given by

viα = citanh
(

piα

mici

)
. (23)

Note that the usual relation between vectors vi

and pi (which makes them parallel) no longer holds
and, therefore, nor does it hold between Vj and Pj .
For a given external pressure P , we can sample an
isoenthalpic–isobaric ensemble by means of the follow-
ing equations of motion for atoms i = 1, . . . , N :

ṙi = vi +
pε

W
Rμi

ṗi = Fi − n + 1
n

pε

W

mi

Mμi

Pμi

V̇ = 3V
pε

W

ṗε = 3V (Pmol − P ) +
1
n

n∑

j=1

Pj · Vj , (24)

where μi is the index of the molecule that contains atom
i, V is the system volume (which becomes a dynamical
variable in isobaric molecular dynamics approaches), pε

is the momentum of a redundant variable ε for which
V̇ = 3V ε̇, and W is a piston mass-like parameter. The
internal molecular pressure Pmol is defined as

Pmol =
1

3V

n∑

j=1

(Pj · Vj + Rj · Fj) − ∂U

∂V
, (25)

where Fj =
∑

i∈j Fi is the resultant force exerted on
molecule j, and we allow for a possible explicit depen-
dence of the potential energy with volume. Because
intramolecular forces cancel out in the computation of
Fj , they do not contribute to Pmol. Eq. (24) conserve
the energy function H = H(r,p) + PV + p2

ε/(2W ),
where H(r,p) is the Hamiltonian in Eq. (16).

For isothermal–isobaric sampling, we can make an
individual thermostat act on every degree of freedom,
including the extra momentum pε associated with the
volume fluctuations. Nosé–Hoover chains [14] as well as
Nosé–Hoover–Langevin thermostats [15,16] are suited
for this task. Here we employ the latter, which consists
in solving, for all i = 1, . . . , N and α = x, y, z, the
stochastic differential equation system

dri =
(
vi +

pε

W
Rμi

)
dt

dpi =
(
Fi − ui ◦ pi − n + 1

n

pε

W

mi

Mμi

Pμi

)
dt

dV = 3V
pε

W
dt

dpε =

⎡

⎣3V (Pmol − P ) +
1
n

n∑

j=1

Pj · Vj − uεpε

⎤

⎦ dt

duiα =
piαviα − kBT

Qiα

dt − γiαuiαdt + σiαdwiα

duε =
p2

ε/W − kBT

Qε
dt − γεuεdt + σεdwε, (26)

where ◦ denotes an entrywise (Hadamard) product, and
the Q, γ, and σ parameters are the analogues of those
in Eqs. (14) and (19).

We now describe a MTS integration algorithm for
Eq. (26), which we have implemented in the LAMMPS
software package [38,39]. Two of its particular fea-
tures deserve special attention. First, although Pmol
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can depend on intermolecular forces that act on multi-
ple timescales, pressure-driven translations of the baro-
stat momentum pε are not split into such scales. This
differs from what has been done in previous methods
[33]. Instead, it takes place exclusively at the outermost
recursion level. This is how LAMMPS currently han-
dles other isobaric MTS integrators. Since the inertial
parameter W is usually very large, the barostat dynam-
ics is expected to respond almost adiabatically to the
intermolecular forces, whose fast fluctuations are aver-
aged out. Second, the thermostat variables and their
influence on the particle and barostat momenta are
integrated in the innermost recursion level (that is, the
fastest timescale) using a middle-type scheme [40,41].

For the sake of clarity, we focus on a double timescale
version of the algorithm, but extension to the general
MTS case is straightforward. The RESPA factorization
goes as

eΔtL = e
Δt
2 Ltr

pε e
Δt
2 Ltr,s

p
[
eδtLref

]nref
e

Δt
2 Ltr,s

p e
Δt
2 Ltr

pε (27)

where ‘tr’ means translation and ‘s’ refers to the slow
force components. The Liouville operators involved in
the slowest timescales are

Ltr
pε

=

⎡

⎣3V (Pmol − P ) +
1
n

n∑

j=1

Pj · Vj

⎤

⎦ ∂

∂pε

Ltr,s
p = Fs · ∂

∂p
. (28)

The reference-system propagator is further split as

eδtLref =e
δt
2 Ltr,f

p e
δt
2 Lsc

V e
δt
2 Ltr

r eδtLtherme
δt
2 Ltr

r e
δt
2 Lsc

V e
δt
2 Ltr,f

p ,
(29)

where ‘sc’ stands for scaling and ‘f’ denotes the
fast force components. The propagator exp(δtLtherm),
which lies in the middle of the factorization scheme,
accounts for the thermostatting action. The other Liou-
ville operators involved are

Ltr,f
p = Ff ·

∂

∂p

Lsc
V =

pε

W

[
3V

∂

∂V
+

N∑
i=1

(
Rμi · ∂

∂ri
− n+1

n

mi

Mμi

Pμi ·
∂

∂pi

)]

Ltr
r = v · ∂

∂r
. (30)

It is worth mentioning that the equations V̇ = Lsc
V V

and ṙ = Lsc
V r result in a concerted scaling of the vol-

ume and all molecular center-of-mass coordinates, while
the displacement of each atom i from the center of
its containing molecule, ri − Rμi

, remains constant.
Simultaneously, ṗ = Lsc

V p results in a scaling of all
molecular center-of-mass momenta, while the difference
pi/mi −Pμi

/Mμi
also remains constant for every atom

i.
Finally, the Nosé–Hoover–Langevin thermostats and

their effects on the atom and barostat momenta are

integrated as follows: [42]:

eδtLtherm = e
δt
2 Ltr

u e
δt
2 Lsc

p eδtLou
u e

δt
2 Lsc

p e
δt
2 Ltr

u , (31)

where

Ltr
u =

p2
ε/W − kBT

Qε

∂

∂uε
+

N∑

i=1

z∑

α=x

piαviα − kBT

Qiα

∂

∂uiα

Lsc
p = −uεpε

∂

∂pε
−

N∑

i=1

z∑

α=x

uiαpiα

∂

∂piα

(32)

and exp(δtLou
u ) represents 3N+1 independent Ornstein–

Uhlenbeck processes involving uε and all uiα.

4 Results

In what follows, we present new results obtained from
multiple timescale simulations of liquid-phase systems
carried out in cubic boxes with periodic boundary con-
ditions. By means of a 5th-degree smoothstep function
[43], Lennard–Jones interactions are gradually switched
to zero from r = rs = 11 Å up to r = rc =
12 Å. Lattice-sum methods [44,45] are employed for
electrostatic interaction with the same cutoff distance
rc applied for the real-space contribution. Multiple
time-stepping is done by splitting the forces into two
timescales if Δt ≤ 3 fs or three timescales if testing for
stability and accuracy when very large outer time steps
are employed. In either case, harmonic bond stretch-
ing and angle bending are allocated to the smallest
timescale and integrated with an inner time step size
δtfast = 0.5 fs. When Δt ≤ 3 fs, the slowest terms are
the ones due to the full Lennard–Jones and electro-
static interactions. Otherwise, these non-bonded forces
are split into two (middle and outer) timescales by
means of the RESPA2 scheme [13,46,47]. In the mid-
dle timescale, every pair force (rather than the corre-
sponding pair potential) gradually decays to zero from
r = rin

s = 5 Å up to r = rin
c = 8 Å, once again

using a 5th-degree smoothstep function [43]. The inte-
gration time step in this middle scale is δtmiddle = 3 fs.
In a complementary manner, these forces change from
zero to their full values in the outer timescale, whose
integration is done at different values of δtslow = Δt,
thus allowing us to evaluate how large this time step
can be made without affecting observable properties.
The mass-like parameters and friction coefficients of
the stochastic thermostats have the same values for
all atomic degrees of freedom and are computed from
a specified characteristic time τp = 20δtfast = 10 fs,
respectively as Qiα = kBTτ2

p and γiα = τ−1
p .

Our first example is the calculation of a solvation
free energy in the canonical ensemble. Solvation free
energy is an important property whose calculation via
molecular dynamics can be accelerated by the use of
multiple time-stepping. In a previous study [31], we
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Fig. 1 Contribution of van der Waals interactions to the
hydration free energy of phenol. The solute and solvent
were modeled using the GAFF [48] and SPC-Fw [49] force
fields, respectively. The SIN(R) results are those recently
published in Ref. [31]

employed the SIN(R) method to compute hydration
free energies of organic molecules using values up to
90 fs for the outer time step without observing res-
onance artifacts. In Fig. 1, we show that the same
performance is attainable with the simpler, regulated-
dynamics version of the Nosé–Hoover–Langevin algo-
rithms presented in Eq. (19). For this example, we
simulated the alchemical coupling/decoupling of a sin-
gle phenol molecule in a box with constant V =
14.728 nm3 and T = 298.15 K containing 499 water
molecules, totaling n = 500. The modeling was done
using GAFF [48] parameters for phenol and the SPC-
Fw [49] parameters for water. Standard long-range cor-
rections [21] were applied for the Lennard–Jones inter-
actions, and the smooth particle-mesh Ewald (SPME)
method [45] was used for computing electrostatic inter-
actions. The force splitting strategy, as well as the inte-
gration method, were implemented using OpenMM’s
customization features [50].

Figure 1 shows the van der Waals contribution to
the coupling free energy, obtained by applying a soft-
core potential [51] to the solute–solvent interactions.
This potential depends on a coupling parameter λ in
such a way that the Lennard–Jones potential is fully
recovered when λ = 1 and completely vanishes when
λ = 0. Note that the van der Waals contribution is
the most challenging to generate. For each combination
of regulation parameter L and time-step size Δt, we
performed 21 simulations with different λ values evenly
spaced from 0 to 1. Although L can assume non-integer
values, the ones we selected for our tests were 1, 2, and
4, aiming at a direct comparison with previous results
obtained with the SIN(R) method [31]. The total time
of each simulation was 9.6 ns. During the last 80% of
this time and at regular intervals of 960 fs, we com-
puted and stored softcore energies at the λ state in
question and at the 20 additional states as well. The
combined sample resulting from the 21 simulations was
then post-processed according to the Multistate Ben-
nett Acceptance Ratio (MBAR) method [52], thus pro-
ducing a point for Fig. 1 and its corresponding error

bar. The combination of regulation parameters equal to
1, 2, and 4 with outer time-step sizes equal to 1, 3, 6, 12,
24, 48, and 96 fs resulted in ∼ 4.2 μs of simulated time
and allowed us to build the three solid curves of Fig. 1.
The figure also contains dotted curves reproducing the
previously published results for the same system using
isokinetic constraints instead of regulated dynamics as
a means of avoiding resonances [31]. The isokinetic runs
were performed at different values of outer time steps,
specifically, 1, 3, 6, 9, 15, 30, 45, and 90 fs for shorter
simulation times (4.5 ns each). The comparison shows
that both methodologies are similarly effective, with a
variation over the entire range of outer time steps of no
more than a few tenths of a kcal/mol.

We now present results from isothermal–isobaric (i.e.
constant-NPT) simulations carried out with our newly
developed regulated dynamics method described in
Eq. (26). We have implemented the method in the
LAMMPS software package [38,39]. The system stud-
ied is bulk liquid water using the SPC-Fw model [49].
The system consists of n = 700 molecules, and the sim-
ulations are carried out at T = 300 K and P = 1 atm.
All Lennard–Jones interactions, including tail correc-
tions, were neglected beyond the cutoff distance rc.
For electrostatic interactions, we employed the PPPM
Ewald method [44] with parameters and grid spacing
adjusted to yield a relative accuracy of about 10−7

in the force computations. In addition to the ther-
mostats coupled to the atomic degrees of freedom,
we also employ a Nosé–Hoover–Langevin thermostat
to control the temperature of the barostat variable.
The mass-like parameter and friction coefficient of this
additional thermostat are determined using the for-
mulae Qε = (3n + 1)kBTτ2

b and γε = τ−1
b , respec-

tively, where τb is a characteristic time associated with
volume fluctuations. In our simulations, we employed
τb = 200δtfast = 100 fs. Each simulation consisted of
1.2 ns of equilibration, followed by 4.8 ns of production,
with property sampling every 96 fs. Results for average
properties are shown in Fig. 2. Specifically, we show the
average potential energy per molecule, the molar vol-
ume, and the molecular and atomic pressure estimators
across the range of time steps for different values of the
regulation parameter L. For regulated dynamics, the
atomic pressure estimator is given by

Patom =
1

3V

N∑

i=1

(pi · vi + ri · Fi) − ∂U

∂V
. (33)

The error bars on the molecular pressure estimator
panel represent 95% confidence intervals obtained from
correlation times estimated by an integrated autocor-
relation function method [53]. The horizontal lines in
the panels showing the potential energy per molecule
and molar volume are results from a single time-step
run using the NHL thermostat with a 0.5 fs time step
(10 ns of production after 2 ns of equilibration). In the
panels showing the molecular and atomic pressure esti-
mators, the horizontal line is placed at 1 atm, which is
the value specified for the external applied pressure.
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Fig. 2 Isothermal–isobaric simulation results for SPC-Fw water at T = 300 K and P = 1 atm

Fig. 3 Intermolecular radial distribution functions obtained from isothermal–isobaric simulations of 700 SPC-Fw [49]
water molecules (under periodic boundary conditions) at T = 300 K and P = 1 atm

Figure 2 shows that even at the largest time steps, the
molar volume changes by no more than a few percent,
and the average potential energy per molecule changes
by only a few hundredths of a kcal/mol. Molecular pres-
sures change by a few atmospheres but still lie within
the error bars of each other across the full range of
time steps. Note, however, as alluded to earlier, changes
in the atomic pressure estimator are significantly more
dramatic as a function of outer time step.

To assess how the sensitivities in the quantities shown
in Fig. 2 affect an actual observable, we show the water
radial distribution functions (RDFs), gOO(r), gOH(r),
and gHH(r) for different values of L across the range
of time steps shown in Fig. 3. The top three panels
show that all RDFs are nearly indistinguishable from
each other. The bottom three panels show the various
distributions in a manner that is easier to distinguish
the results at different time steps and different values of
L, and it is clear that there is only negligible variation
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Table 1 Isothermal–isobaric simulation speeds of the reg-
ulated NHL method with various outer time-step size (Δt)
and regulation parameter (L) values, as well as that of the
standard NHL method with Δt = 0.5 fs. The same code and
parallelization protocol were applied for all simulations, exe-
cuted in multiple nodes of a uniform computer cluster

Δt (fs) Execution speed (ns/day)

0.5 3.05

(L=1) (L=2) (L=4)
1 6.12 5.83 5.50
3 13.7 15.0 15.7
6 25.5 24.2 25.9
12 36.9 33.4 36.8
24 40.9 48.6 46.5
48 55.9 56.5 55.4
96 60.8 62.2 61.4

in these distribution functions across all time steps and
L values employed.

It is worth noting that in our LAMMPS implemen-
tation, the savings in computational time when a 96 fs
outer time step is employed is roughly a factor of 20
over a single time-step benchmark run with a time step
of 0.5 fs. This factor is essentially unchanged over all
values of L, as reported in Table 1.

5 Avoiding resonances using a
colored-noise Langevin equation

Recently, generalized Langevin equations (GLEs) have
been employed to create bath models for MD simu-
lations [54] that accomplish a variety of tasks includ-
ing mimicking quantum effects [55,56], reducing the
bead number in path-integral calculations [57,58], and
staving off the resonances that plague MTS methods [9].
In this section, we will conclude our discussion of MTS
methodology by providing a brief review of the general
framework for “designer” memory kernels [54] and then
showing how a kernel capable of mollifying resonances
in multiple time-step MD can be designed.

The generalized Langevin equation for a coordinate
rα and momentum pα with associated mass mα can be
written as

drα =
pα

mα
dt

dpα = Fα(r)dt

−
[∫ t

0

d τ pα(τ)K(t − τ)
]

dt + σαdwα,(34)

for t ≥ 0. In this section, we will assume the mem-
ory kernel K(t) is a combination of exponential and
δ-function forms

K(t) = ζ0δ(t) − γ̃Te−|t|Γγ (35)

which is defined for t ∈ (−∞,∞). Here ζ0 is a con-
stant, γ is a column vector having ν components, γ̃T is
an ν-component row vector, and Γ is an ν × ν matrix.
By adding more exponential terms, the parameter ν
adds flexibility to the design of memory kernels given
Eq. (35). For this particular form of the friction ker-
nel, the GLE can be written in the form of a standard
Langevin equation in an extended phase space with ν
additional variables s1, ..., sν ≡ s. This extended phase-
space formulation of the Langevin equation takes the
form

drα =
pα

mα
dt

d
(

pα

s

)
=

(
Fα(r)

0

)
dt − Z

(
pα

s

)
dt + Bαdξα,

(36)

where dξα(t) is a vector of infinitesimal Wiener pro-
cesses, Z is a (ν + 1) × (ν + 1) matrix

Z =
(

ζ0 γ̃T

γ Γ

)
(37)

known as the damping matrix or drift matrix, and Bα

is a (ν + 1) × (ν + 1) diffusion matrix. The equivalence
between Eq. (36) and (34) with memory kernel given by
Eq. (35) can be seen by solving Eq. (36) for s(t) in terms
of pα(t) and then substituting the result into Eq. (34).
The second fluctuation dissipation theorem allows us to
derive a relation between the matrices B and ζ. This
connection takes the form of a matrix equation

mαkT
(
Z + ZT

)
= BT

αBα. (38)

Equation (38) implies that Z+ZT, which is the symmet-
ric part of Z, must be positive definite. Since Eq. (36)
is an ordinary Langevin equation in the extended
phase space, it can be integrated using the Matthews–
Leimkuhler algorithm [59]. Nevertheless, it encodes the
memory of Eq. (35), which can be chosen a priori
to model a colored-noise bath with features that influ-
ence a simulation in a desired manner. In other words,
Eq. (36) allows us to design memory kernels for per-
forming specific types of simulations while retaining the
simplicity of the Langevin equation.

Because the elements of Z are contained in the gen-
eral exponential memory kernel of Eq. (35), designing a
kernel for a specific task is tantamount to customizing
the drift matrix Z. Based on the framework presented,
we can glean several important restrictions on possible
choices of Z. From Eq. (35), it is clear that the Z11 ele-
ment is simply the white-noise term and that the time
dependence, hence the memory component, is encoded
in the matrix Γ. Given this, it is important to note
that Eq. (36) will only be able to recover an equilib-
rium ensemble as t → ∞ provided K(t) has a finite
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Fig. 4 Desired behavior of the Fourier transform of the
memory kernel

decay time, and this, therefore, requires that the real
part of the eigenvalues of Γ be positive. Choosing drift
matrices that satisfy requirements such as these can be
nontrivial, and each choice should be carefully tested
for its compliance with the requirements and its ability
to produce stable dynamics.

With these caveats in mind, let us consider how we
might design a kernel to mollify resonance behavior
in MTS MD simulations. Recall that resonances occur
from the influence of high-frequency motion, integrated
using the smallest (inner) time steps, on intermedi-
ate and long timescales, integrated using larger (outer)
time steps. Thus, the key feature that a bath model
should have is strong coupling to the highest frequen-
cies, leading to strong damping of these frequencies,
and weaker coupling or small perturbation of lower fre-
quencies. These considerations suggest that our starting
point should be to identify the frequency dependence
of the memory kernel, i.e., we should start with the
Fourier transform of K(t):

K̂(ω) =
1√
2π

∫ ∞

−∞
K(t)e−iωt dt. (39)

Based on the desire for the friction to couple strongly to
high frequencies and weakly to low frequencies, we can
intuit what the general shape of K̂(ω) should be, and
we show this general behavior illustratively in Fig. 4.

Since K̂(ω) determines the strength of the coupling
at a given value of ω, it can be seen that at the extremes,
where |ω| is large, K̂(ω) is large as well, while near
ω ≈ 0, K̂(ω) ≈ 0. While there are many functional
forms that could, in principle, produce the behavior in
Fig. 4, we need a functional form that is consistent with
a Fourier transform of Eq. (35), and since Eq. (35) is a
sum of simple exponentials, K̂(ω) should be composed
of Lorentzian functions. For example, consider K̂(ω) in
the form

K̂(ω) =
√

2πζ0

−ζ0

2

[
ω̃2

3
4 ω̃2 +

(
ω − ω̃

2

)2 +
ω̃2

3
4 ω̃2 +

(
ω + ω̃

2

)2

]

.

(40)

This kernel is a sum of two Lorentzian functions cen-
tered at ω = ±ω̃/2 subtracted from a constant

√
2πζ0.

The corresponding memory kernel K(t) is

K(t) = ζ0δ(t) −
√

2π

3
ω̃ζ0e

−√
3ω̃|t|/2 cos (ω̃t/2) . (41)

Given the fact that K(t) contains two exponentials
(which becomes clear when cos(ω̃t/2) is written as
(exp(iω̃t/2) + exp(−iω̃t/2))/2), we then need ν = 2
extended variables s1 and s2, which means that the
drift matrix Γ is a 3×3 matrix. The 2×2 submatrix Γ
must have eigenvalues (ω̃

√
3/2) ± (iω̃/2), and a 2×2

matrix that gives us these is

Γ =
(

ω̃
√

3 ω̃
−ω̃ 0

)
. (42)

The vectors γ̃T and γ have components proportional
to (ζ0ω̃)1/2, i.e., γ̃T = (ζ0ω̃)1/2(a b) and γT =
(ζ0ω̃)1/2(a − b), where a and b are simple numeri-
cal constants.

In Ref. [9], the authors considered a flexible model of
water [60], for which the colored-noise Langevin scheme
is used to compute the diffusion constant using a three
time-step multiple time-stepping scheme. Since diffu-
sion is dominated by low-frequency motion, the strong
coupling between high-frequency modes to the bath
should allow a large outer time step without affecting
the diffusion constant. In this scheme, a time step of
0.5 fs is used for bonded interactions, non-bonded inter-
actions within 9 Å are integrated with a 2 fs time step,
and the outer time step is varied. The correct diffusion
constant for the model is 0.25 Å2/ps. When the col-
ored noise scheme is used with outer time steps of 12 fs,
16 fs, and 20 fs, the resulting diffusion constants are 0.24
Å2/ps, 0.20 Å2/ps, and 0.16 Å2/ps, respectively [9]. By
contrast, when a simple white-noise Langevin scheme is
used with a friction value of 1 ps−1, the resulting diffu-
sion constants for outer time steps of 12 fs, 16 fs, and
20 fs are 0.095 Å2/ps, 0.044 Å2/ps, and 0.019 Å2/ps,
respectively. This example illustrates how effective the
colored-noise method is at mollifying resonances, allow-
ing an outer time step of 12 fs to be achieved with
minimal perturbation to the rate of diffusion, showing
that it is possible, within the colored-noise framework,
to preserve certain dynamical properties, specifically,
those associated with the low-frequency modes of a sys-
tem.

123



Eur. Phys. J. B (2021) 94 :231 Page 11 of 13 231

6 Discussion and conclusions

MTS algorithms have advanced through the decades
from early attempts that failed to preserve time-
reversibility [61–66] to reversible, symplectic algorithms
[1–3] limited by resonance artifacts [4–6] and, ulti-
mately, to the resonance-free methods discussed in
this article that finally realize the large time steps
that the force decompositions discussed here should
allow [9,13,17,29,31,67]. MTS algorithms have been
applied to increase the efficiency of path-integral sim-
ulations [23,68], ab initio molecular dynamics simu-
lations in which the interatomic forces are computed
“on the fly” from electronic structure calculations [68–
71], to related polarizable force field calculations in
which polarization forces are computed “on the fly”
from charges and local dipoles [29,30,72], and to coarse-
grained models [73].

Although the achievements of MTS algorithms are
notable, significant challenges are on the horizon. The
advent of machine learning potentials [74] brings new
questions about how to decompose the forces derived
from these non-physics-based forms into fast and slow
components. Given the higher computational overhead
associated with these machine learning potentials over
conventional fixed-charge physics-based force fields,
increasing the efficiency of simulations employing these
potentials is highly desirable. One potential approach
for developing MTS algorithms for machine learning
potentials is to employ a computationally cheaper force
field as the reference system and use the machine learn-
ing potential to derive a presumably slowly varying
correction via Fs = FML − Fff . This approach could
be applied for both non-reactive and reactive systems.
For neural network potentials, it may also be pos-
sible to identify rapidly and slowly varying subnet-
works [75], thus allowing direct decomposition of forces.
Machine learning techniques can also be leveraged to
design MTS algorithms through analysis of the actual
time series [76] or, perhaps, to parameterize memory
kernels for improvement of the colored-noise (GLE)
approach described in the previous section. In addition
to paradigm-shifting machine learning models of phys-
ical interactions, advances in high-performance com-
puting hardware also bring new challenges for MTS
algorithms. Graphical processing units (GPUs) change
the load balance and computational overhead associ-
ated with certain parts of a force calculation, e.g., non-
bonded forces, compared to CPUs. Therefore, devising
MTS algorithms that map well to GPUs [77] remains a
key challenge.

The immediate future will likely see harvesting of
low-hanging fruits such as extension of the isobaric reg-
ulated dynamics for anisotropic cell fluctuations, com-
bining SIN(R) and regulated dynamics with aggressive
thermostats such as the generalized Gaussian moment
algorithm [78], and testing the Hamiltonian of regulated
dynamics for its ability to describe dynamical proper-
ties without significantly compromising the time-step
gains by means of the L parameter.

To conclude, we note that MTS algorithms have influ-
enced essentially all flavors of MD simulations for the
past three decades, and their universal nature and ubiq-
uity of timescale separation in physical systems means
that they will likely continue to do so going forward. In
this article, we have reviewed the basic MTS approach
and have shown how several creative schemes have
greatly enhanced their performance. We have alluded
to the new challenges that will confront MTS algo-
rithms in the near future. We hope that the range of
approaches described in this article gives a sense of the
kind of thinking that will be needed to address these
challenges for next-generation MTS methods.
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