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Abstract. Classical molecular dynamics (MD) simulations based on atomic models play an increasingly
important role in a wide range of applications in physics, biology, and chemistry. Nonetheless, generating
genuine knowledge about biological systems using MD simulations remains challenging. Protein tyrosine
kinases are important cellular signaling enzymes that regulate cell growth, proliferation, metabolism, dif-
ferentiation, and migration. Due to the large conformational changes and long timescales involved in their
function, these kinases present particularly challenging problems to modern computational and theoretical
frameworks aimed at elucidating the dynamics of complex biomolecular systems. Markov state models
have achieved limited success in tackling the broader conformational ensemble and biased methods are
often employed to examine specific long timescale events. Recent advances in machine learning continue
to push the limitations of current methodologies and provide notable improvements when integrated with
the existing frameworks. A broad perspective is drawn from a critical review of recent studies.

Introduction

Classical molecular dynamics (MD) simulations based
on atomic models play an increasingly important role
in a wide range of applications in physics, biology,
and chemistry. The approach consists of constructing
detailed atomic models of the macromolecular system
and, having described the microscopic forces with a
potential function, using Newton’s classical equation to
literally “simulate” the dynamical motions of all the
atoms as a function of time. The calculated trajec-
tory, though an approximation to the real world, pro-
vides detailed information about the time course of the
atomic motions, which is impossible to access experi-
mentally. While great progress has been made, produc-
ing genuine knowledge about biological systems using
MD simulations remains challenging. Among the most
difficult problems are the characterization of large con-
formational changes occurring over long timescales that
impact biological function.

In the last decade, a powerful theoretical and compu-
tational paradigm for studying complex biomolecular
systems has emerged. Building on classical statistical
mechanical techniques such as alchemical free energy
perturbation (FEP) [1,2,4] and umbrella sampling (US)
in multiple dimensions [5,6], it consists in combining
various strategies including, transition pathway deter-
mination [7–11] and stochastic Markov modeling [12–
14], together with time-independent component analy-
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sis (TICA) [15,16] and kinetic mapping [15]. Theoreti-
cal frameworks relying on transition path theory (TPT)
[17–20], and on a variational formulation of the transfer
operator [21–24], serve as foundations to expand many
of these novel ideas toward various data-driven machine
learning (ML) techniques [24–30].

Protein tyrosine kinases offer particularly challenging
systems to advance and put to the test this emerging
computational framework. After providing some back-
ground on the structure and function of kinases, we will
broadly review previous computational studies of these
important systems and highlight the main findings. We
will conclude with an outlook on the considerable chal-
lenges that remain and the promise of the most recent
theoretical advances in the treatment of biomolecular
dynamical systems.

Some background on protein tyrosine kinases

Protein kinases are enzymes that catalyze the covalent
transfer of the γ-phosphate of an adenosine triphos-
phate (ATP) molecule onto a tyrosine, serine, threo-
nine, or histidine residue on targeted and specific sub-
strate proteins (including kinases), thereby sending a
“downstream” chemical signal throughout a network
of proteins. Phosphorylation of a substrate protein can
result in a functional change and modification of cellu-
lar localization, with a potential impact on numerous
cellular processes. The human genome encodes more
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Fig. 1 c-Src tyrosine kinase in the autoinhibitory assembled form (PDB 2SRC). The regulatory domains SH3 (yellow)
and SH2 (red) are shown along with the linker (purple) to the kinase domain (white). Important structural features of the
kinase domain have also been highlighted: P-loop (blue), activation loop (green), αC-helix (orange), and c-tail (cyan). An
analogue of ATP (grey sticks) is also shown bound to the kinase domain

than 500 protein kinases, making the kinome one of the
largest gene families [31]. Kinases are important cellu-
lar signaling enzymes that regulate cell growth, pro-
liferation, metabolism, differentiation, and migration.
Unregulated kinase activity and loss of function are
often involved in a wide range of human diseases. For
this reason, these enzymes are major therapeutic tar-
gets, and the discovery of kinase-specific inhibitors has
been intensely pursued by the pharmaceutical industry
for many years [32–37]. Kinases are highly validated
drug targets with a vast amount of available structural
data.

The members of the Src family of protein tyrosine
kinases represent prototypical model systems of great
interest to study the regulation mechanisms. All nine
members of the Src family (Src, Yes, Fyn, Lyn, Lck,
Blk, Hck, Fgr, and Yrk) are highly homologous pro-
teins with a similar regulatory mechanism sharing a
multidomain architecture illustrated in Fig. 1 that com-
prises a catalytic tyrosine kinase domain (grey), pre-
ceded by two peptide-binding regulatory modules, the
Src-homology domains SH2 (red) and SH3 (yellow) [38].
The kinase members of the Src family are allosteric
molecular switches. Their catalytic activity can be mod-
ulated in response to cellular signals. Phosphorylation
of the protein kinase is especially crucial to the regula-
tion of the catalytic activity.

Molecular dynamics studies

Molecular dynamics (MD) simulations provide one
important avenue to better understand protein kinases.

Many computational studies focused on the confor-
mational transition taking place within the catalytic
domain, which is from an inactive to its catalytically
competent active state [39,40]. Characterizing the prop-
erties of the isolated catalytic domain without the SH2
and SH3 regulatory domains has also been of consid-
erable interest [41], as it is known to be constitutively
active in solution according to experiment [39]. Smaller
conformational transitions have also attracted interest,
in particular, a 3-residue motif comprised of Asp-Phe-
Gly (DFG) near the N-terminus of the activation (A–)
loop covering the catalytic site is involved in the acti-
vation process and its conformation is known to be
critical for binding some kinase inhibitors [42–44]. An
understanding of how the conformational ensemble of
kinases is influenced by ligand binding, phosphoryla-
tion, autoinhibition, and drug resistant mutations is of
keen interest, and there is a long history of MD stud-
ies investigating the effects of these phenomena on the
conformational landscape of kinases. In one of the ear-
liest studies, Young et al. examined the effect of muta-
tions on the structural fluctuations within the multi-
domain c-Src kinase [45]. Suenaga et al. observed the
effect of phosphorylation on the structural flexibility
of Shc kinase [46]. Kuriyan and co-workers observed
a Src-like inactive conformation in the Abl tyrosine
kinase domain [47]. Dixit et al. examined the activation
mechanisms in the catalytic domain of Abl and EGFR
kinases [48]. In time, computational studies became
ever more ambitious. Cambran et al. studied the effect
of myristoylation, phosphorylation, and ligand binding
on the conformational ensemble of protein kinase A
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Fig. 2 Four main structural elements in Abl kinase. (Left) Crystal structure of Abl kinase (PDB 2HYY) highlighting
the P-loop (blue), DFG motif (purple), activation loop (green), αC-helix (orange), and the bound ligand imatinib (yellow).
(Right) Alternative conformations of structural elements from three Abl kinase experimental structures (PDB 2HYY, 2G1T,
6XR6), illustrating the broad conformational space of the binding site

(PKA) [49,50], whilst Boras et al. conducted a similar
study focusing on the autoinhibition by the regulatory
domains [51]. Lopez et al. used an array of methods
to assess the impact of phosphorylation on the confor-
mation of ERK2 [52]. In a study of the Janus kinase 2
(JAK2) tyrosine kinase [53], the DESRES team led by
David Shaw used unbiased MD simulations to investi-
gate autoinhibition. Similar characterizations have also
been conducted on the conformation of the epidermal
growth factor receptor (EGFR) and its changes due to
dimerization and mutations [54–59]. Yan et al. stud-
ied the hepatocyte growth factor receptor (HGFR, also
known as c-Met) [60], and found that the allosteric
inhibitor tivantinib caused a transition from the DFG-
in to DFG-out state in a sub-microsecond timescale
allowing them to observe the DFG-flip during several
250 ns simulations.

Conformation of the DFG motif

As mentioned above, the orientation of the small DFG
motif plays a role in the inhibition mechanism of the
Abelson tyrosine kinase (Abl) by the anticancer drug
imatinib [43]. Imatinib displays a much lower inhibitory
effect on c-Src, even though these two kinases display a
high level of sequence identity (47%) and similar struc-
tural features [43,61,62]. The similarity of binding site
residues between the two kinases, combined with the
idea that imatinib binds exclusively to a DFG-out con-
formation, led to the view that there was a “confor-
mational selection” mechanism of binding specificity.
But the crystal structure of imatinib in complex with

the c-Src kinase domain subsequently showed that it
also adopted the same inactive DFG-out conformation
[61,63,64]. This led to the view that there must be some
“thermodynamic penalty” associated with the DFG-
out conformation [65]. Because of its great importance,
the conformational transition of the DFG motif and its
impact on the binding specificity of inhibitors has been
the subject of many computational studies [2,60,62,66–
70]. Researchers from DESRES characterized the con-
formation of Abl kinase [62], identifying multiple fac-
tors that contributed to the stability of the DFG-in
or DFG-out poses, including a pH dependence in the
conformation of the DFG motif that they attributed
to electrostatic changes during the catalytic cycle. An
analysis of the kinetics of imatinib binding in this same
study reinforced that imatinib selectively bound to the
DFG-out conformation and estimated the timescale of
the DFG-flip to be in the DFG-flip to be in the order
of 10 s of milliseconds.

The DFG-flip conformational transition and its ther-
modynamic impact specifically regarding the selectiv-
ity of imatinib has also been the subject of several
computational studies [2–4,48,62,66,68–72]. Lovera et
al. calculated a free energy landscape of the DFG-flip
transition in c-Abl and c-Src using meta-dynamics MD
simulations with the AMBER force field [68], yield-
ing free energy differences 4.0 and 6.0 kcal/mol in
Abl and c-Src, respectively. Roux and co-workers esti-
mated the same quantity using umbrella sampling with
the CHARMM force field and obtained 1.4 and 5.4
kcal/mol in Abl and c-Src, respectively [2,69]. Further-
more, computations based on alchemical free energy
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perturbation demonstrate that different hidden factors
(e.g. DFG-flip, intrinsic affinity, steric clashes with the
P-loop) that are not readily detectable by experiments
partly cancel one another to explain the observed Kd

of imatinib and of a related inhibitor G6G [4]. Lovera
et al. investigated the free energy landscape of sev-
eral widespread drug-resistant mutations of Abl kinase,
finding a category of mutations that reduced imatinib
affinity by favoring the DFG-in conformations of Abl
[67]. All these studies indicate that the DFG-flip can
happen for both Abl and c-Src, but the latter simply
incurs a larger “thermodynamic penalty”. Such findings
are not unique to Abl, and similar studies have been
conducted across the kinome [73,74]. Nonetheless, the
issue is not settled, as an alternative model to explain
these observations was recently proposed by Kern and
co-workers, who found from their kinetic experiments
that imatinib bound in a two-step process which dif-
fered significantly in kinetics between Abl and Src [75].

Activation pathways and string method

Because the timescales for the conformational changes
leading to activation and inactivation are very long,
many of the early studies relied on some type of non-
equilibrium perturbation to accelerate transitions of
interest, such as targeted-MD driven by the root-mean-
square deviations [45,76–79], the half quadratic biasing
for positive selection of spontaneous fluctuations [80–
82], or chemical perturbation (protonation of titratable
residues) [62]. While these efforts provided some useful
mechanistic insight, the path generated by these biased
methods must be considered with caution because it
generally depends on the choice of progress variable
used to move the system between the initial and final
states [83].

While such driven (biased) simulations based on non-
equilibrium trahectories can generate useful informa-
tion to characterize conformational transition path-
ways, they are often insufficient to tackle slow con-
formational transitions occurring on long timescales.
These issues are resolved with the more rigorous compu-
tational framework provided by the string method [7,8].
The string method represents the pathway as a chain
of M “images” (copies of the full system) in the mul-
tidimensional space of the set of collective variables Z,
e.g., the pathway is given as

{
Z(1), Z(2), . . . , Z(M)

}
. In

the string method with swarms-of-trajectories [9], the
transition pathway is iteratively refined starting from
an initial guess by using the mean drift of short unbi-
ased simulations launched from each of the M images.
Because all these simulations are uncorrelated, the pro-
cedure can be efficiently scaled up to a very large num-
ber of CPUs using the general multiple-copy algorithm
framework implemented in NAMD [84]. It is also possi-
ble to accelerate the convergence of the iterative refine-
ment using a multi-scale pre-conditioner [85].

The first application of the string method with
swarms-of-trajectories was to determine the activation
pathway in the isolated catalytic domain of Src kinase

[86]. A subsequent study reported a very ambitious
characterization of the activation pathway of the cat-
alytic domain in the presence of the SH2 and SH3 reg-
ulatory domains [87]. Alternative approaches to the
string method have also been used to study confor-
mational transition in kinases, including the adaptively
biased path optimization (ABPO) method to determine
the principal curve defining a conformational transi-
tion between two known end states [10]. Post and co-
workers used ABPO to examine the transitions within
the catalytic domain of c-Src and CDK2 kinase [88–90].
This analysis highlighted the importance of a previ-
ously identified switched electrostatic network [81,82]
with respect to the αC helix and the activation loop
motions [88–90]. The string method was also used to
determine the transition pathway of the DFG-flip [69].
Another pathway algorithm developed by Levy and
Elber, the “Rock-Climbing” method, was to character-
ize the DFG-flip transition in Abl kinase [11,91].

Umbrella sampling and free energy landscape

Umbrella sampling simulations were used to calculate
the potential of mean force (PMF) along selected collec-
tive coordinates to examine the free energy landscape
associated with various processes [10,69,77,87,92–95].
Studies included the conformational equilibrium of the
N-terminus of the catalytic domain [77], the DFG-flip
[69], and the complete transition from the inactive to
the active state in the catalytic domain [10,87,92,93].
In a number of cases, the transition pathway was
exploited as a basis to map the free energy landscape
for these conformational changes. In one of the earli-
est efforts, Yang et al. constructed a low resolution free
energy landscape for the activation of Hck kinase from
unbiased equilibrium MD simulations initiated along
a TMD transition pathway, revealing the existence of
intermediate conformations along the activation path-
way [92]. Sampling strategies relying on the curvilin-
ear transition pathways also include the Milestoning
method [96], with a recent application to the DFG-flip
transition in Abl kinase [91]. To enhance the sampling,
many of these PMF calculations were carried out using
a multiple-copies replica-exchange algorithm [84]. The
ABPO method was used compute the PMF along the
curvilinear activation transition pathway of Src [90].
Metadynamics is also a possible avenue that has been
used to enhance the sampling capability of MD simula-
tions in studies of kinases [54,68,97].

Alchemical FEP

Alchemical free energy perturbation (FEP) MD sim-
ulations (FEP/MD) is a method that can be used to
calculate the equilibrium binding free energy of ligands
to their target receptor [98]. The method is generally
considered to be accurate to approximately 1 kcal/mol,
and the cancellation of errors between similar binding
sites has been shown to result in increased accuracy
when predicting selectivity for kinases [99]. Alchemical
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FEP/MD simulations were used to examine the binding
free energy of kinase inhibitors [2–4]. While these cal-
culations are mainly focused on the binding affinity of a
ligand to a given protein conformation, the critical issue
of conformational diversity cannot be avoided, even if
it does not appear directly in alchemical FEP/MD sim-
ulations. For example, the “in” or “out” conformation
of the DFG motif is critical to ascertain the binding
specificity of imatinib to Abl and c-Src kinases [2]. The
general take-home message of alchemical FEP/MD is
that the method is useful, but the underlying issue of
conformational diversity must be resolved, at least par-
tially, in order to draw meaningful conclusions.

Coarse-grained models

In part to circumvent the nearly insurmountable sam-
pling problems associated with a large, complex pro-
tein, a number of studies have resorted to a simpler
coarse-grained (CG) representation of the kinase. Yang
and Roux used a multistate coarse-grained Gõ-like
model to simulate the activation of the catalytic domain
of Hck kinase [100]. A similar multistate Gõ-like model
of Lyn kinase was exploited to search the optimal path
for the same transition using the maximum flux transi-
tion path (MFTP) method [88]. Simplified CG models
have also been used to test algorithms to determine
conformational pathways [10], and examine the com-
putational feasibility of Markov state models (MSMs)
[100]. While it is clear that detailed all-atom models
are more realistic, simplified CG models have played
an important role to test and illustrate new algorithms
in the context of kinase structures. This type of CG
model also played a useful role in the interpretation
of experimental data from small angle X-ray scattering
(SAXS) of Hck kinase in solution [92,101].

Markov state models

Markov state models (MSMs) provide a powerful com-
putational strategy combining the information accu-
mulated from a large number of MD simulations [12].
Building an MSM involves splitting up a system’s con-
formational space into a set of microstates, running
independent trajectories visiting each of those regions,
and then tabulating the observed state-to-state tran-
sitions into a Markov matrix of transition probabil-
ities [12–14,102–104]. Traditionally, MSMs have been
constructed from aggregate MD simulation data from
multiple trajectories. With the tremendous progress in
accelerating classical MD simulations on inexpensive
graphics processing units (GPUs) [105–108] the simula-
tion of tens of thousands of short, independent trajecto-
ries can be executed with relative ease using OpenMM
[105–107] or AMBER-GPU [108]. Sophisticated analy-
sis software packages MSMBuilder (http://msmbuilder.
org) [13,109] and PyEMMA [110] play an important
role for a sustained progress in the field. The approach
was used to characterize the activating transition in
the catalytic domain of c-Src kinase [94]. The quali-

tative conclusions confirmed the existence of a puta-
tive intermediate state along the activation pathway, as
previously revealed [92]. The MSMs thus constructed,
enabled a transition path theory (TPT) [19] analysis
of the nature of the “reaction tube” supporting the
conformational change for the activation of c-Src [111].
Sultan et al. used MSMs to analyze 1.7 ms of unbi-
ased simulations of BTK kinase to construct a MSM
that captured the DFG-flip [112]. This methodology
was later expanded with a further aggregate 4 ms of
MD data across 6 Src-family kinases that was com-
bined into single MSM, establishing a common confor-
mational ensemble [113].

It is clear that the large number of conformations
accessible to kinases poses a special challenge to efforts
aimed at designing inhibitors binding to a given kinase
with high specificity and affinity. Conventional dock-
ing algorithms can produce native like complex struc-
tures when a number of conditions are satisfied (e.g.,
if a deep binding pocket has a single dominant con-
formation) [114]. However, they often fall short when
a protein is flexible and can adopt multiple conforma-
tions. Analysis based on a single non-dominant struc-
ture, whether it is from X-ray crystallography or from
homology modeling, can lead to an erroneous SBDD
strategy. For kinases structural elements near the bind-
ing pocket (A-loop, P-loop, DFG motif, catalytic spine,
etc.) are able to adopt multiple conformations (see
Fig. 2). These structural elements affect the shape and
properties of the binding pocket. As a consequence, it
becomes highly difficult to ascertain which of those con-
formations should be considered in a drug discovery
project. For example, the DFG motif can point inward
(DFG-in) or outward (DFG-out), which strongly affects
the type of inhibitors that can bind to the pocket; the
A-loop and P-loop can adopt a variety of conforma-
tions, creating a large number of combinatorial possi-
bilities. In an effort to try to consider multiple confor-
mations, one can try to harvest the possible conforma-
tions from similar proteins in the PDB, or by compu-
tational sampling (such as Rosetta) to generate alter-
native structures. Nevertheless, such knowledge-based
heuristic approaches are not guaranteed to discover all
accessible conformations of the various structural ele-
ments for the protein of interest. More importantly, it
does not provide information about the relative impor-
tance of multiple different conformations of the target
protein (the frequency of conformations in the PDB is
not a measure of energetic stability). In large part to
explore this issue, the MSM framework was also used
to examine the conformational diversity of Abl kinase
in the absence of any ligand [115]. The efforts showed
that it is feasible to discover and identify most of the
most relevant conformations of the catalytic domain of
a kinase, although ranking them in terms of their equi-
librium population is harder and more uncertain. While
these states are likely to be metastable, a characteriza-
tion of the kinetic timescales is extremely difficult [116].
Even with a little over 100 μs of aggregate MD data,
the eigenvalues of the transition matrix remain highly
uncertain. Similar issues are also present when trying
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to characterize the binding of a specific ligand such as
imatinib to Abl kinase [117].

Relating computational studies to functional assays

Relating the results of computational studies to exper-
imental observation about kinases also presents some
special challenges. The activity of signaling enzymes
is often measured indirectly via cellular assays that
reveal small but biologically meaningful trends on
macroscopic timescales [45]. For this reason, validat-
ing the results of computational studies with respect
to kinase function is not always straightforward. Gen-
erally, it is clear that microscopic factors that stabi-
lize the down-regulated inactive conformation of the
kinase should reduce activity [40]. Correspondingly, fac-
tors that destabilize the inactive state should appear as
increased kinase activity in experimental assays. But
this näıve understanding rapidly encounters difficulties.
For example, the isolated catalytic domain (without
its regulatory domains) is known to be constitutively
active according to experiments [39]. Presumably, the
active catalytic domain is trans-phosphorylated via a
bimolecular encounter with another kinase in order to
stabilize the fully active state. Indeed, the calculated
free energy landscape shows that phosphorylation of
Y416 in the A-loop essentially “locks” the kinase into
its catalytically competent conformation [93]. Nonethe-
less, while this conceptual framework is reasonable, it
is unclear whether it can be reconciled with experi-
mental observations: the timescale of the interconver-
sion between the inactive and active state from the
MSM is on the order of 100 μs whereas the exper-
imentally observed timescale for Src-family tyrosine
kinase autophosphorylation at residue Tyr416 is on the
order of minutes. It was possible to relate these vastly
disparate timescales by constructing a simple kinetic
model using the data extracted from atomistic simula-
tions as well as a reasonable estimate for the bimolec-
ular rate of kinase phosphorylation [94]. A similar con-
ceptual framework was used to explain the functional
behavior of the activating W260A mutant [118]. At first
glance, the computational result seems to be inconsis-
tent with experiments: while the W260A mutation in
c-Src is markedly up-regulated [119], the free energy
cost to reach the active-like unphosphorylated state A
is only slightly smaller in the W260A mutant compared
with WT [118]. Nonetheless, such a small difference in
stability accounts for the large increase in the activ-
ity of the mutant that is observed experimentally [118].
Furthermore, umbrella sampling computations indicate
that the configuration of the SH2 and SH3 regula-
tory domains, greatly affects the ability of the catalytic
domain to adopt the active or inactive conformation
[87]. Conversely, individual inhibitors binding to the
catalytic domain can have differing allosteric effects on
whether the regulatory domains adopt a closed or open
conformation [120]. Computational methods based on
simplified CG models have played a useful role to inter-
pret SAXS data on Hck kinase in solution in terms of

the configuration of the multi-domain kinase [92,101].
For instance, MSM one can observe the organization
of the SH2, SH3, and catalytic domain in response to
different external factors [92], or mutations [101]. This
type of strategy has also been useful to interpret data
about the membrane anchoring tail of Hck kinase from
neutron reflectometry [121]. Xie et al. used NMR to
identify conformational states occupied by Abl kinase
and were then able to fit their chemical exchange data
to a model in order to predict populations and kinetics
of those states for the wildtype and various mutants
[122]. MD simulations have also been important to
develop a perspective on substrate recognition integrat-
ing information from NMR [123].

Binding of inhibitors

There is also considerable interest in using computa-
tional methods to understand experimental data about
the binding of specific kinase inhibitors. One of the most
studied prototypical systems in this case is the binding
of imatinib and how it is affected by the conformation
of the DFG motif [43,75,124–126]. The tryptophan flu-
orescence quenching experiments of Agafonov et al. [75]
revealed that the ligand imatinib (L) binds to the Abl
kinase protein (P ) via a two-step process: P + L →
P ∼ L → PL. While the first step is a concentration-
dependent bimolecular association leading to the for-
mation of a protein-ligand intermediate, the second
step corresponds to a slow concentration-independent
unimolecular rearrangement that ultimately leads this
intermediate to the strongly bound protein-ligand com-
plex. The authors interpreted this as evidence for an
induced-fit conformational change of the protein kinase
that is directly responsible for the binding specificity.
However, an extensive MSM study indicates that there
exists a large number of metastable states correspond-
ing to non-specific association of imatinib with Abl
kinase along two main pathways leading imatinib to
the binding pocket [117]. The MSM analysis based
on more than 500 μs of aggregate MD data strongly
supports the notion that the interconversion from the
metastable binding modes of the ligand to the fully
bound state is extremely slow, suggesting that the set
of metastable binding modes of imatinib could rea-
sonably give rise to the long-lived intermediate state
revealed by the tryptophan fluorescence data [75]. In
that sense, the picture emerging from the MSM analy-
sis is consistent with the actual experimental observa-
tion of a slow concentration-independent unimolecular
rearrangement leading to the final complex. This pic-
ture departs from the traditional view of the induced-
fit mechanism, where an initial weakly bound protein-
ligand complex induces some conformational changes
in the protein that leads to a strongly bound protein-
ligand complex, while the computational results rather
point to the slow rearrangement of the ligand toward
its correct binding pocket from a multitude of long-lived
metastable states that underlies the slow step detected
in the fluorescence experiment. More generally, kinases
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are viewed as highly flexible allosteric proteins with
multiple moving parts that can adopt different confor-
mations, which clearly impacts on our ability to design
small molecule inhibitors binding with high specificity.
In Fig. 2, four structural elements in Abl kinase dis-
playing multiple conformational variations—the P-loop
(blue), the DFG motif (purple), the A-loop (green), and
the αC-helix (orange)—are illustrated. Those confor-
mational variants affect the binding pocket. While a
large amount of attention has been devoted to the fea-
tures of the isolated catalytic domain by itself, under-
standing the influence of the regulatory SH2 and SH3
domains is tremendously important for the biological
cellular signaling function [87,101,127], and membrane
co-localization [121].

Overall assessment of computational methods

At the present time, Markov state models (MSM) per-
haps represent the richest and most powerful compu-
tational framework to characterize the dynamics of
complex biomolecular systems [12–14]. Yet, in spite
of a huge amount of aggregate MD data, our own
efforts with kinase proteins were only partial successes
[94,115–117]. One of the fundamental difficulties and an
important requirement for the construction of a reliable
and accurate MSM is the definition of “states”, dynam-
ically meaningful regions of conformational space that
must correctly map out the behavior of the system.
Several structural elements of kinases display great
flexibility. Ultimately, it is important to realize that
MSMs only provide a model of the explored confor-
mational space. There are several slow processes that
may not be well sampled, even with a millisecond of
data. In our MSM analysis, dimensionality reduction of
the full configurational space was carried out via the
time-lagged independent component analysis (TICA)
[15,16], applied to pre-identified structural regions dis-
playing high conformational variability, e.g., the A-
loop, the αC-helix, the DFG motif, and the P-loop
[115,116]. The ideas of Taylor and co-workers to sub-
divide a kinase structure into contiguous “communi-
ties” that exhibit internally correlated motions provide
some interesting directions worth exploring to improve
the identification of relevant structural protein regions
and select appropriate “features” for the MSM analy-
sis [128]. These limitations notwithstanding, the MSM
framework was undoubtedly invaluable in exploring
the conformational landscape of apo-Abl kinase [115],
allowing us to identify and rank the metastability of
novel states. Further analysis of these states by com-
paring them to kinase crystal structures available in the
PDB. Paul et al. [116] revealed high similarity between
our identified apo-Abl conformations and ligand-bound
structures across other kinase families. This analysis
provided remarkable insight into both the similarities
in conformational behavior across kinase families, and
the druggability of our identified conformations. Nev-
ertheless, despite the 800 μs of MD simulation used
in these studies, we still fell short of reproducing the

correct kinetics or thermodynamics of the molecular
system. MSMs are prone to discretization error aris-
ing during the clustering steps that causes underesti-
mation of energy, and error due to under-sampling of
rare transitions that can cause overestimation of the
same barriers. Shütte and collaborators have developed
approaches for estimating the discretization error in
MSM and address this issue [129–131].

Understanding the binding of specific kinase inhibitors
is likely to remain an important objective for many
years to come. In some cases, when the binding process
is fairly fast, it has been possible to construct an accu-
rate MSM from the aggregate data of unbiased MD sim-
ulations [132,133]. For example, to study the binding
of trypsin and its competitive inhibitor benzamidine,
Buch et al. [132]. used 495 unbiased MD of 100 ns each
for a total of 49 μs. For slower binding processes where
slow induced-fit conformational changes occur concert-
edly during the binding process, this direct strategy
would not be practical. It is unlikely that brute-force
MD could simulate the complete unbinding (koff) of
a slow kinase inhibitor such as imatinib, which takes
place over ∼ 40 ms. From a more mundane point
of view, improving the accuracy of the atomic force
field will also be needed. For reliable computational
studies, the force field for the ligand inhibitors must
be obtained in an objective manner, using a protocol
with no direct manipulation by the users, e.g. GAFF
[134], CGENFF [135], or built from the general auto-
mated atomic model parameterization (GAAMP) pro-
tocol [136]. Another new frontier to tackle is the binding
of covalent inhibitors, which are the focus of increased
interest following the recent clinical success of drugs
such as ibrutinib [137]. Properly optimized covalent
inhibition offers potential for longer on target residency
time and selectivity. The design of accurate computa-
tional treatments is very challenging because the action
of covalent inhibitors involves a variety of microscopic
processes that take place on timescales that are far
beyond the reach of standard MD simulations. Fur-
thermore, because the formation of a covalent bond
is a quantum mechanical (QM) process it is necessary
to go beyond classical force fields. While simulating
the formation of the covalent bond requires a quantum
mechanical/molecular mechanical (QM/MM) represen-
tation of the system, the rate for the process itself can
naturally be incorporated into the MSM framework. In
fact, MSM is arguably the only framework by which the
covalent bond formation can be incorporated into the
kinetics of the slower diffusion processes.

Future outlook

Many of the theoretical frameworks used to extract
kinetics from MD simulations find their underpinning in
transition path theory (TPT) [17–20], which considers a
reaction across a rugged energy landscape via the path-
ways of highest flux of probability between two states.
This method has been expanded upon through a vari-
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ational approach to molecular kinetics [21–24], which
has been more suitable to machine learning approaches
and led to methods such as VAMPnets [26]. Klus et al.
used an alternative kernel-based approach and achieved
a competitive result [138]. Boltzmann generators are
a different strategy that bypasses the required sam-
pling of rare events by drawing statistically indepen-
dent samples from a prior distribution and reversibly
mapping them to a “latent space” where pathways
can be linearly interpolated between minima and then
mapped back into configuration space with an associ-
ated probability [29]. The length of most simulations,
which is orders of magnitudes smaller than that of the
processes of interest, is likely to remain a key limi-
tation. Previous applications show that efficient sam-
pling of rare events remain the greatest challenge in
extracting useful kinetic information from MD simula-
tions; these events are the most relevant to the kinet-
ics but also the most likely to be undersampled. The
information from unbiased and biased MD trajectories
may be combined to improve the statistical robustness
and convergence of the MSM, either using the dynam-
ical weighted histogram analysis (DHAM) [139], or the
discrete transition-based reweighting analysis method
(dTRAM) [140,141].

Some promising advancements in this area may be
provided by machine learning (ML). As an exam-
ple, Wang et al. approached the sampling problem
by utilizing machine learning to design a coarse-grain
force field for their system [142]. The recent success
of ML techniques suggests that they may be capa-
ble of approximating high-dimensional functions with
controllably small errors [27,28,30,143–146]. They may
assist in solving the sampling problem by combining
these approaches with some aspects of importance sam-
pling methods for data acquisition to focus the com-
putational resources on the critical part of a problem.
One approach has been to leverage information from
the string method to construct models focused on indi-
vidual pathways [96,147].

The problem of accurately defining a state space
for the MSM also has promising solutions in machine
learning. VAMPnets [26] combine the optimization of
hyperparameters with the featurization, dimensional-
ity reduction, and clustering of the system into a single
machine learning pipeline, thereby eliminating many
sources of error. We have applied this methodology
to the imatinib-Abl system [117], and demonstrated
its ability to identify metastable states of the protein,
although it does not solve undersampling problems.
Ung et al. used machine learning to classify the con-
formation of all kinase structures in the PDB and a
similar approach could be applied to simulation data
[148].

While these methods, particularly in the area of ML,
represent a significant advancement in the amounts of
simulation data we can effectively utilize, and the accu-
racy of the analysis we can perform, they are not yet
closing the gap between the timescales of what we can
access, and the events we are interested in. This is
largely because the methods endeavor to be unbiased

and undirected, if we wish to close the gap faster than
waiting for the gradual improvement of hardware, we
will need methods that are more integrated with data
generation. Fortunately, there is every indication that
this is an active field with a huge potential for innova-
tion.
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