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Abstract. Trust plays an important role in human society. However, how does trust evolve is a huge
challenge. The trust game is a well-known paradigm to measure the evolution of trust in a population.
Reward and punishment as the common types of incentives can be used to improve the trustworthiness.
However, it remains unclear how reward and punishment actually influence the evolutionary dynamics
of trust. Here, we introduce individual reward and punishment into the N -player trust game model in
an infinite well-mixed population, where investors use a part of the returned fund to reward trustworthy
trustees and meanwhile punish untrustworthy trustees. We then investigate the evolutionary dynamics of
trust by means of replicator equations. We show that the introduction of reward and punishment can lead
to the stable coexistence state of investors and trustworthy trustees, which indicates that the evolution
of trust can be greatly promoted. We reveal that the attraction domain of the coexistence state becomes
larger as investors increase the incentive strength from the returned fund for reward and punishment.
In addition, we find that the increase of the reward coefficient can enlarge the attraction domain of the
coexistence state, which implies that reward can better promote the evolution of trust than punishment.

1 Introduction

Trust plays a significant role in the development of
human society [1–7]. With the help of trust, rational
individuals with limited cognitive capacities can man-
age the complex situations [8]. Hence trust can work as
a complexity-reduction mechanism for solving compli-
cated social problems. For example, when people trust
each other, transaction costs can be reduced [9,10].

However, how to understand the evolution of trust
in a population is a huge puzzle. The trust game (TG)
is an effective paradigm to measure the evolution of
trust in quantitative manners [11]. Recently, Abbass
proposed the N -player Trust Game (NTG) in an infi-
nite well-mixed population and revealed that when
the population consists of even the slightest number
of untrustworthy individuals initially, the society con-
verges to the state where there are zero trusters and
many untrustworthy individuals [12]. To promote the
level of trust in the TG, many mechanisms have been
considered [13–16]. For example, Chica et al. consid-
ered the networked structure of populations allowing
interactions and imitation with only neighboring play-
ers and found that trust can be promoted when indi-
viduals play the game on a social network [14,15]. Lim
considered the asymmetric nature of the TG and intro-
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duced a two-population model of the TG with asym-
metric demographic parameters, and it is shown that
stochastic evolutionary dynamics with the asymmetric
parameters can lead to the evolution of high trust and
high trustworthiness [16]. Charness et al. studied the
effect of reputation systems in which investors some-
times have foreknowledge of trustee behavior and found
that reputation about trustees can boost the evolution
of trust and trustworthiness [13].

Reward and punishment, as the common incentive
means, have been extensively used to control the states
of systems in the evolutionary game theory [17–40].
And the threat of punishment or the promise of reward
can effectively induce self-interested players to prefer
actions that promote the level of trust [41–43]. How-
ever, there are few works that have considered the
reward and punishment mechanism into the TG and
it is still not clear how the mechanism of reward and
punishment influences the evolution of trust in the
game from the theoretical perspective. For this pur-
pose, we introduce individual reward and punishment
into the NTG by considering that investors share a part
of the returned fund to reward trustworthy trustees
and meanwhile punish untrustworthy trustees. By using
replicator equations, we find that the introduction of
reward and punishment could induce the stable coexis-
tence state of investors and trustworthy trustees. Fur-
thermore, we investigate the impact of the incentive
strength and reveal that the attraction domain of the
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coexistence state becomes larger with the increase of
the incentive strength. We find that the attraction
domain of the coexistence state is enlarged as the
reward coefficient increases, which implies that reward
can better promote the evolution of trust than punish-
ment.

To make a thorough investigation into the mentioned
problem, the remaining paper is divided into the follow-
ing sections. In Sect. 2, we describe our model about
the NTG with individual reward and punishment in
an infinite well-mixed population. Then we present the
theoretical analysis for our model in Sect. 3 and pro-
vide numerical calculations to illustrate our theoretical
results in Sect. 4. Finally, we make our conclusion in
Sect. 5.

2 Model

2.1 N -player trust game

We consider the NTG in an infinite well-mixed pop-
ulation. At each time step, N (N > 2) individuals
are randomly chosen to form a group and offered the
opportunity to participate in the game. Each individ-
ual could choose three strategies: being an investor also
called trustor (strategy I), being a trustworthy trustee
(strategy T ), and being an untrustworthy trustee (strat-
egy U). An investor needs to pay tv to trustees, where
tv > 0 represents the trusted value. If there are kI
investors, the total fund contributed by investors is
kItv. Then each trustee receives the same amount of
the fund, which is kItv/kTU, where kTU is the num-
ber of trustees. Here we have kTU = kT + kU, where
kT is the number of trustworthy trustees and kU is
the number of untrustworthy trustees in the group. A
trustworthy trustee then returns the received fund mul-
tiplied by RT to investors and will have RTkItv/kTU.
At the same time, it can also have the same amount of
return as the investor. However, untrustworthy trustees
return nothing to investors and instead keep all they
have for themselves. Each untrustworthy trustee finally
has the received fund RUkItv/kTU, where 1 < RT <
RU < 2RT. For simplicity, in this work we consider the
temptation to defect ratio r ∈ (0, 1) following previous
work [14], which is defined as

r =
RU − RT

RT
(1)

2.2 Reward and punishment

We then consider the mechanism of reward and pun-
ishment into our model. We assume that each investor
shares a part of the returned fund from trustworthy
trustees, pRTkTtv/kTU, which is used to reward T indi-
viduals and punish U individuals in the group. Here
p ∈ [0, 1] represents the incentive strength. For p = 1,
investors contribute all their returned fund as the incen-

tive budget. While for p = 0, they contribute nothing as
the incentive budget. Furthermore, this incentive bud-
get is divided into two parts. The first part is used to
reward T players and each T player in the group can
get a reward αpRTkItv/kTU; the second part is used to
punish U players and each U player in the group can get
a fine (1 − α)pRTkIkTtv/(kTUkU). Here α (0 ≤ α ≤ 1)
represents the reward coefficient. For α = 1, investors
use all the incentive budget to reward T individuals.
While for α = 0, they use all the incentive budget to
punish U individuals in the group.

Accordingly, the payoffs of investors, trustworthy
trustees, and untrustworthy trustees can be respectively
written as

πI =

⎧
⎨

⎩

(1 − p)
RTNT

N − NI − 1
tv − tv, if NI �= N − 1;

0, otherwise
(2)

πT =

⎧
⎨

⎩

(1 + αp)
RTNI

N − NI
tv, if NI �= N ;

0, otherwise
(3)

πU =

⎧
⎨

⎩

RUNI

N − NI
tv − (1 − α)pNINTRT

(N − NI)(NU + 1)
tv, if NI �= N ;

0, otherwise
(4)

where NI, NT, and NU represent the number of
investors, trustworthy trustees, and untrustworthy
trustees among other N−1 players in the group, respec-
tively.

2.3 Replicator equations

The evolutionary behavior of a population playing the
trust game could be studied by replicator dynamics [44–
47]. We let x be the frequency of I players in the pop-
ulation, y be the frequency of T players, and z be the
frequency of U players with x+y+z = 1. The evolution
of trust can be described by the following equations

⎧
⎨

⎩

ẋ = x(fI − φ),
ẏ = y(fT − φ),
ż = z(fU − φ),

(5)

where fi denotes the expected payoff of strategy i (i =
I, T , or U) and φ = xfI + yfT + zfU represents the
average payoff of the whole population.

Here the expected payoff of strategy I is given by

fI =
N−1∑

NI=0

N−1−NI∑

NT=0

(
N − 1

NI

)(
N − 1 − NI

NT

)

×xNIyNTzN−1−NI−NTπI

= tv[
(1 − p)RT(1 − x − z)

1 − x
− 1](1 − xN−1). (6)
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And the expected payoff of strategy T is given by

fT =
N−1∑

NI=0

N−1−NI∑

NT=0

(
N − 1

NI

)(
N − 1 − NI

NT

)

×xNIyNTzN−1−NI−NTπT

=
(1 + αp)RTtvx

1 − x
(1 − xN−1). (7)

Similarly, we can write the expected payoff of strat-
egy U as

fU =
N−1∑

NI=0

N−1−NI∑

NT=0

(
N − 1

NI

)(
N − 1 − NI

NT

)

×xNIyNTzN−1−NI−NTπU

=
(1 + r + p − αp)RTtvx

1 − x
(1 − xN−1)

− (1 − α)pRTtvx

z
[1 − (1 − z)N−1]. (8)

Below, we study the evolutionary dynamics of trust in
the N -player trust game in an infinite well-mixed pop-
ulation by means of theoretical analysis and numerical
calculations.

3 Theoretical analysis

Since we have y = 1 − x − z, thus the system equation
can be rewritten as

{
ẋ = x[(1 − x)(fI − fT) + z(fT − fU)],
ż = z[(1 − z)(fU − fT) + x(fT − fI)],

(9)

where

fI − fT = tv[
(1 − p)(1 − z)RT − (2 + αp − p)RTx

1 − x
− 1]

× (1 − xN−1)

and

fT − fU =
(2αp − r − p)RTtvx

1 − x
(1 − xN−1)

+
(1 − α)pRTtvx

z
[1 − (1 − z)N−1].

Solving fI = fT results in

z =
(1 − p)RT − 1 − [(2 + αp − p)RT − 1]x

(1 − p)RT
. (10)

Based on the above analysis, we have Theorem 1
about the equilibrium points in the system equation.

Theorem 1 For 0 < r < 1, 0 ≤ p ≤ 1, 0 ≤ α ≤
1, and (1 − p)RT > 1, the system (5) or (9) has
a continuum of fixed points (x, y, z) = (0,m, 1 − m)
on the TU edge and a unique fixed point (x, y, z) =
( (1−p)RT−1
(2+αp−p)RT−1 , (1+αp)RT

(2+αp−p)RT−1 , 0) on the IT edge.
Besides, there are three vertex fixed points, namely,
(x, y, z) = (1, 0, 0), (0, 1, 0), and (0, 0, 1).

Proof (1) On the edge of TU, we have x = 0, resulting
in fT = fU = 0. Thus regardless of the value of z, we
have ẋ ≡ 0 and ż ≡ 0. So there exists a continuum
of fixed points (x, y, z) = (0,m, 1 − m) on the TU
edge.

(2) On the edge of IT, we have z = 0. By solving the
equation fI = fT, we get

⎧
⎪⎪⎨

⎪⎪⎩

x =
(1 − p)RT − 1

(2 + αp − p)RT − 1
,

y =
(1 + αp)RT

(2 + αp − p)RT − 1
.

(11)

Thus, we have a unique fixed point (x, y, z) =
( (1−p)RT−1
(2+αp−p)RT−1 , (1+αp)RT

(2+αp−p)RT−1 , 0) on the IT edge.
(3) On the edge of IU, since y = 0 and x + z = 1, we

have ż = z(1 − z)(fU − fI) > 0. Thus, the direction
of the dynamics goes from I to U and there is no
fixed point on the IU edge.

(4) For the vertex points, it is obvious to find that
the three points (1, 0, 0), (0, 1, 0), and (0, 0, 1) can
always make ẋ = 0 and ż = 0, which hence are the
fixed points. ��

Since the mathematical expressions of the payoffs of
strategies in the population are high-order and nonlin-
ear, it is extremely difficult to obtain the interior equi-
librium points for the system equation. Here we only
give a sufficient condition in which the interior equilib-
rium points do not exist, which is described by Lemma
1.

Lemma 1 In the system (5) or (9), there is no interior
equilibrium point when αp > r is satisfied.

Proof Since x ∈ [0, 1], z ∈ [0, 1], 1 − z ≥ x, and 1 −
xN−1 = (1 − x)

∑N−2
k=0 xk, we have

fT − fU =
(2αp − r − p)RTtvx

1 − x
(1 − xN−1)

+
(1 − α)pRTtvx

z
[1 − (1 − z)N−1]

= (2αp − r − p)RTtvx
N−2∑

k=0

xk

+ (1 − α)pRTtvx

N−2∑

k=0

(1 − z)k

≥ (αp − r)RTtvx

N−2∑

k=0

xk

≥ 0
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When x = 0, we have fT = fU = 0. So when αp > r,
fT − fU > 0 if x > 0. Correspondingly, there is no
interior equilibrium point in this condition. ��

Furthermore, in order to study the fixed points in the
system and do the stability analysis, we define that

{
f(x, z) = x[(1 − x)(fI − fT) + z(fT − fU)],
g(x, z) = z[(1 − z)(fU − fT) + x(fT − fI)].

(12)

Then the Jacobian matrix of the system is

J =

[
∂f(x,z)

∂x
∂f(x,z)

∂z

∂g(x,z)
∂x

∂g(x,z)
∂z

]

, (13)

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂f(x, z)
∂x

= [(1 − x)(fI − fT) + z(fT − fU)]

+ x[−(fI − fT) + (1 − x)
∂

∂x
(fI − fT)

+ z
∂

∂x
(fT − fU)],

∂f(x, z)
∂z

= x[fT − fU + (1 − x)
∂

∂z
(fI − fT)

+ z
∂

∂z
(fT − fU)],

∂g(x, z)
∂x

= z[fT − fI + (1 − z)
∂

∂x
(fU − fT)

+ x
∂

∂x
(fT − fI)],

∂g(x, z)
∂z

= [(1 − z)(fU − fT) + x(fT − fI)]

+ z[−(fU − fT) + (1 − z)
∂

∂z
(fU − fT)

+ x
∂

∂z
(fT − fI)].

Accordingly, we have some following results about the
stability of the fixed points described by Theorem 2.

Theorem 2 For 0 < r < 1, 0 ≤ p ≤ 1, 0 ≤ α ≤ 1, and
(1 − p)RT > 1, the equilibrium points (1, 0, 0),(0, 1, 0)
are unstable and the equilibrium point (0, 0, 1) is sta-
ble. And when αp > r, the boundary equilibrium point
(x, y, z) = ( (1−p)RT−1

(2−p+αp)RT−1 , (1+αp)RT
(2−p+αp)RT−1 , 0) is stable.

Besides, when m > 1
(1−p)RT

, the continuum of equi-
librium points on the TU edge is unstable.

Proof (1) For (x, y, z) = (1, 0, 0), the Jacobian is

J(1, 0, 0) =
[
fT − fI fT − fU

0 fU − fI

]

, (14)

where fT − fI = (1 + αp)RTtv(N − 1) > 0, thus the
fixed point is unstable.

(2) For (x, y, z) = (0, 1, 0), the Jacobian is

J(0, 1, 0) =
[
[(1 − p)RT − 1]tv 0

0 0

]

. (15)

Because (1−p)RT > 1, thus the fixed point is unsta-
ble.

(3) For (x, y, z) = (0, 0, 1), the Jacobian is

J(0, 0, 1) =
[−tv 0

tv 0

]

. (16)

For fixed point (0, 0, 1), because fT − fI > 0 always
holds with the condition z → 1−, which leads to
ż = z[(1 − z)(fU − fT) + x(fT − fI)] > 0 in the
interior space near the equilibrium point (0, 0, 1).
Thus, z will always evolve into the z = 1 state for
small perturbations at fixed point (0, 0, 1) [48,49].
So the fixed point (0, 0, 1) is stable.

(4) For (x, y, z) = ( (1−p)RT−1
(2−p+αp)RT−1 , (1+αp)RT

(2−p+αp)RT−1 , 0),
referred to as (x0, y0, 0), the corresponding Jacobian
is

J(x0, y0, 0) =
[
a11 a12

0 a22

]

, (17)

where

a11 =
∂f

∂x
(x0, z0)

= [(1− p)RT − 1][(
(1− p)RT − 1

(2 + αp − p)RT − 1
)N−1 − 1]tv < 0,

a12 =
∂f

∂z
(x0, z0)

=
(1− p)RT[(1− p)RT − 1](1− xN−1

0 )tv

(2 + αp − p)RT − 1

− [(1− p)RT − 1]2tv

[(2 + αp − p)RT − 1]2
(1− α)(1− N)pRT

− [(1− p)RT − 1]2(1− xN−1
0 )tv

(1 + αp)[(2 + αp − p)RT − 1]
(p + r − 2αp),

and

a22 =
∂g

∂z
(x0, z0)

= fU − fT

=
(p + r − 2αp)RTtvx0

1 − x0
(1 − xN−1

0 )

− [(1 − p)RT − 1](1 − α)pRTtv
(2 + αp − p)RT − 1

(N − 1).

When αp > r is satisfied, we have a22 = fU−fT < 0
according to the Lemma 1. Thus, the fixed point
(x, y, z) = ( (1−p)RT−1

(2−p+αp)RT−1 , (1+αp)RT
(2−p+αp)RT−1 , 0) is sta-

ble. In particular, for very large N , the positive or
negative sign of a22 will be determined by the second
term of right side − [(1−p)RT−1](1−α)pRTtv

(2+αp−p)RT−1 (N −1). In
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Fig. 1 Evolutionary dynamics of the population with investors (I), trustworthy trustees (T ), and untrustworthy trustees
(U) in the S3 for different values of incentive strength p. The triangle represents the state space S3 = {(x, y, z) : x, y, z ≥
0, x + y + z = 1}, where x, y, and z are the frequencies of I, T , and U , respectively. Open circles represent unstable
equilibrium points and filled circles represent stable equilibrium points. Other parameter values: N = 20, α = 0.5, r = 1

3
,

RT = 6, and tv = 1

Fig. 2 Evolutionary dynamics of the population with investors (I), trustworthy trustees (T ), and untrustworthy trustees
(U) in the S3 for different reward coefficient values α. The triangle represents the state space S3 = {(x, y, z) : x, y, z ≥
0, x + y + z = 1}, where x, y, and z are the frequencies of I, T , and U , respectively. Open circles represent unstable
equilibrium points and filled circles represent stable equilibrium points. Other parameter values: N = 20, p = 0.5, r = 1

3
,

RT = 6, and tv = 1

this case, we also have a22 < 0 and accordingly the
fixed point is stable.

(5) For (x, y, z) = (0,m, 1 − m), the Jacobian matrix is

J(0,m, 1 − m) =
[
a11 0
a21 0

]

, (18)

where

a11 =
∂f

∂x
(x, z)

= [(1 − p)RTm − 1]tv

and

a21 =
∂g

∂x
(x, z)

= z[−fI + (1 − z)
∂

∂x
(fU − fT)]

= (1 − m)tv − mtvRT(1 + αp − r − p)

−m2tvRT[−1 + r + p(α − 1)(2 − mN−2)].

When (1 − p)RTm > 1, we have a11 > 0, in this case
the corresponding fixed points are unstable. Based on
Refs. [50–52], we can know that the segment consisting
of the fixed points is stable. ��

4 Numerical calculations

We now present some numerical calculations to confirm
our theoretical results shown above. As shown in Figs. 1
and 2, we can see that there are three vertex equilibrium
points, that is, all I (x = 1), all T (y = 1), and all U
(z = 1), corresponding to three vertices of the simplex
S3, respectively. We can find that only the fixed point
corresponding to the U vertex is stable. On the edge IT,
there exists a stable boundary fixed point (see Figs. 1b,
1c, and 2), which indicates that the evolution of trust
can be greatly promoted. When p = 0, the mechanism
of reward and punishment does not work and the sys-
tem converges to the state without investors and with
many untrustworthy individuals (see Fig. 1a). Besides,
on the edge TU there exists a continuum of unstable
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Fig. 3 The attraction domain of the coexistence state of
investors and trustworthy trustees as a function of incentive
strength p. Other parameter values: N = 20, r = 1

3
, RT = 6,

α = 0.5, and tv = 1

Fig. 4 The attraction domain of the coexistence state of
investors and trustworthy trustees as a function of reward
coefficient α. Other parameter values: N = 20, r = 1

5
, RT =

6, p = 0.5, and tv = 1

equilibrium points (see Figs. 1 and 2). These numerical
results agree well with the theoretical findings presented
in Theorems 1 and 2.

In order to better illustrate the role of the considered
reward and punishment in the evolutionary outcomes,
we first present the attraction domain of the coexis-
tence state as a function of incentive strength, as shown
in Fig. 3. We can see that the attraction domain of
the coexistence state becomes larger with the increase
of the incentive strength. This reflects that the evolu-
tion of trust can be better promoted when investors
are willing to give more returns to trustees. Further-
more, we investigate how the reward coefficient influ-
ences the attraction domain of the coexistence state.
As shown in Fig. 4, we present the attraction domain in

dependence of the reward coefficient α. We find that the
attraction domain of the coexistence state is enlarged
as the reward coefficient increases, which implies that in
our model when investors allocate more incentive bud-
get as the reward, the evolution of trust can be better
enhanced and indicates that reward can perform better
than punishment for the evolution of trust. Indeed this
result can be understood intuitively since the promise
of reward is more attractive for trustees and reward
could lead to a win-win situation for both sides [39].

5 Conclusion

In this study, we have introduced the mechanism of
reward and punishment into an infinite well-mixed pop-
ulation of agents who play the N -player trust game, and
then investigated the evolutionary dynamics of trust by
means of replicator equations. We have shown that the
introduction of reward and punishment can lead to the
coexistence of investors and trustworthy trustees, which
indicates that the evolution of trust can be greatly pro-
moted and accordingly the system can reach a rational
and optimal social state. We have also investigated the
effect of incentive strength and found that the attrac-
tion domain of the coexistence state becomes larger
as investors increase the incentive strength from the
returned fund for reward and punishment. In addi-
tion, we have revealed that compared with punishment
reward can perform better for the evolution of trust.
Finally, we would like to stress that we focus on well-
mixed populations in our present study where individ-
uals perform rand interactions. However, the interac-
tions among individuals are typically not random but
rather that they are limited to a set of neighbors in
a structured population [27]. Accordingly, our present
results which are valid in well-mixed populations may
be changed in structured populations, which is worth
investigating for future study.
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