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Abstract. This article considers the application of Langevin dynamics to sampling and investigates how
to choose the damping parameter in Langevin dynamics for the purpose of maximizing thoroughness of
sampling. Also, it considers the computation of measures of sampling thoroughness.

1 Introduction

Langevin dynamics is a popular tool for molecular sim-
ulation. It requires the choice of a damping coefficient,
which is the reciprocal of a diffusion coefficient. (More
generally this might be a diffusion tensor.) The special
case of a constant scalar diffusion coefficient is the topic
of this article. The motivation for this study is a suspi-
cion that proposed novel MCMC propagators based on
Langevin dynamics (in particular, stochastic gradient
methods for machine learning [4,9]) might be obtain-
ing their advantage at the expense of reduced sam-
pling efficiency, as, say, measured by effective sample
size.

For simulations intended to model the dynamics, the
appropriate choice of γ is based on physics. Gener-
ally, the dissipation and fluctuation terms are there
to account for omitted degrees of freedom. In their
common usage as thermostats, they model the effect
of forces due to atoms just outside the set of explic-
itly represented atoms. These are essentially boundary
effects, which disappear in the thermodynamic limit
Natoms → ∞, where Natoms is the number of explic-
itly represented atoms. Since the ratio of the number of
boundary atoms to interior atoms is of order N

−1/3
atoms, it

might be expected that γ is chosen to be proportional
to N

−1/3
atoms.

There is second possible role for the addition of
fluctuation-dissipation terms in a dynamics simulation:
with a small damping coefficient, these terms can also
play a role in stabilizing a numerical integrator [21],
which might be justified if the added terms are small
enough to have an effect no greater than that of the
discretization error.

The bulk of molecular simulations, however, are “sim-
ply” for the purpose of drawing random samples from a
prescribed distribution and this is the application under
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consideration here. The appropriate choice of γ opti-
mizes the efficiency of sampling. A measure of this is
the effective sample size N/τ where N is the number of
samples and τ is the integrated autocorrelation time.
The latter is, however, defined in terms of an observ-
able. An observable is an expectation of a specified func-
tion of the configuration, which for lack of a better term,
is referred to here as a preobservable. As an added com-
plication, the accuracy of an estimate of an integrated
autocorrelation time (IAcT) depends on sampling thor-
oughness [13, Sec. 3], so a conservative approach is indi-
cated. Ref. [13, Sec. 3.1] advocates the use of the maxi-
mum possible IAcT and shows how it might be a surro-
gate for sampling thoroughness. The maximum possible
IAcT is about the same (except for a factor of 2) as the
decorrelation time of Ref. [30], defined to be “the mini-
mum time that must elapse between configurations for
them to become fully decorrelated (i.e., with respect to
any quantity)”.

Therefore, for sampling, it is suggested that γ be cho-
sen to achieve a high level of sampling thoroughness, as
measured by the maximum possible IAcT. An initial
study of this question is reported in Ref. [38, Sec. 5],
and the purpose of the present article is to clarify and
extend these results.

To begin with, we analyse an underdamped Langevin
equation with a quadratic potential energy function.
(See Eq. (12) below.) The main purpose of analyz-
ing this model problem is, of course, to obtain insight
and heuristics that can be applied to general poten-
tial energy functions. Needed for choosing the opti-
mal gamma is a substitute for the lowest frequency.
For the model problem, this can be obtained from
the covariance matrix for the position coordinates,
which is not difficult to compute for a general poten-
tials. And for estimating τq,max, the analysis sug-
gests using the set of all quadratic polynomials, which
can be achieved using the algorithm of reference [13,
Sec. 3.5].

For molecular simulation, the suggestion is that one
might choose linear combinations of functions of the
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form |rj − ri|2 and (rj − ri) · (rk − ri) where each ri

is an atomic position or center of mass of a group of
atoms. Such functions share with the potential energy
function the property of being invariant under a rigid
body movement.

1.1 Results and discussion

Section 5 analyzes integrated autocorrelation times for
the standard model problem of a quadratic potential
energy function. An expression is derived for the IAcT
for any preobservable; this is applied in Sect. 5.2 to
check the accuracy of a method for estimating the
IAcT. In Sect. 5, we also determine the maximum IAcT,
denoted by τq,max, over all preobservables defined on
configurations, as well as the damping coefficient γ∗

that minimizes τq,max. It is shown that it is polyno-
mials of degree ≤ 2 that produce the largest value of
τq,max. And that choosing γ equal to the lowest fre-
quency, which is half of the optimal value of γ for that
frequency, minimizes τq,max. These results extend those
of Ref. [38, Sec. 5], which obtains a (less relevant) result
for preobservables defined on phase space rather than
configuration space.

Sections 6 and 7 test the heuristics derived from
the quadratic potential energy on some simple poten-
tial energy functions giving rise to multimodal distri-
butions.

Results suggest that the heuristics for choosing the
maximizing preobservable and optimal gamma are
effective.

One of the test problems is one constructed by
Ref. [23] to demonstrate the superiority of BAOAB over
other Langevin integrators. Experiments for this prob-
lem in Sect. 6 are consistent with this claim of superi-
ority.

In defining “quasi-reliability” and the notion of thor-
ough sampling, Ref. [13] makes an unmotivated leap
from maximizing over preobservables that are indicator
functions to maximizing over arbitrary preobservables.
The test problem of Sect. 7 provides a cursory look at
this question, though the matter may warrant further
study.

Obtaining reliable estimates of the IAcT without
generating huge sets of samples very much hinders
this investigation. To this end, Sect. 4.1 explores an
intriguing way of calculating an estimate for the phase
space τmax, which avoids the difficult calculation of
IAcTs. For the model problem, it give more accu-
rate results for τmax than estimating IAcTs, due to
the difficulty of finding a set of functions that play
the same role as quadratic polynomials when max-
imizing IAcTs. The literature offers interesting sug-
gestions that might help in the development of bet-
ter schemes for estimating IAcTs, and it may be
fruitful to recast some of these ideas using the for-
malisms employed in this article. In particular, Ref. [30]
offers a novel approach based on determining whether
using every τ th sample creates a set of independent
samples. Additionally, there are several conditions on

covariances [16, Theorem 3.1] that can be checked or
enforced.

1.2 Related work

While the major part of the literature on Markov chain
Monte Carlo (MCMC) methods with stochastic differ-
ential equations focuses on the overdamped Langevin
equation (e.g. [3,35] and the references given there),
there have been significant advances, both from an
algorithmic and a theoretical point of view, in under-
standing the underdamped Langevin dynamics [34].
For example, in Refs. [7,39] Langevin dynamics has
been studied from the perspective of thermostatting
and enhancment of specific vibrational modes or cor-
relations, in Refs. [8,17,25] Langevin dynamics has
been used to tackle problems in machine learning and
stochastic optimisation. From a theoretical point of
view, the Langevin equation is more difficult to anal-
yse than its overdamped counterpart, since the noise
term is degenerate and the associated propagator is
non-symmetric; recent work on optimising the fric-
tion coefficient for sampling is due to [4,11,36], the-
oretical analyses using both probabilistic and func-
tional analytical methods have been conducted in [5,
10,12]; see also [27, Secs. 2.3–2.4] and the references
therein.

Relevant in this regard are Refs. [20,26,33], in
which non-reversible perturbations of the overdamped
Langevin equation are proposed, with the aim of
increasing the spectral gap of the propagator or reduc-
ing the asymptotic variance of the sampler. Related
results on decorrelation times for the overdamped
Langevin using properties of the dominant spectrum
of the infinitesimal generator of the associated Markov
process have been proved in [22, Sec. 4].

A key point of this article is that quantities like spec-
tral gaps or asymptotic variances are not easily acces-
sible numerically, therefore computing goal-oriented
autocorrelation times (i.e. for specific observables that
are of interest) that can be computed from simulation
data is a sensible approach. With that being said, it
would be a serious omission not to mention the work of
Ref. [30], which proposes the use of indicator functions
for subsets of configuration space to estimate asymp-
totic variance and effective sample size from autocorre-
lation times using trajectory data.

Finally, we should also mention that many stochas-
tic optimisation methods that are nowadays popular
in the machine learning comminity, like ADAM or
RMSProp, adaptively control the damping coefficient,
though in an ad-hoc way, so as to improve the con-
vergence to a local minimum. They share many fea-
tures with adaptive versions of Langevin thermostats
that are used in moecular dynamics [24], and, there-
fore, it comes as no surprise that the Langevin model is
the basis for the stochastic modified equation approach
that can be used to analyse state of the art momentum-
based stochastic optimisation algorithms like ADAM
[1,28].
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2 Preliminaries

The computational task is to sample from a probabil-
ity density ρq(q) proportional to exp(−βV (q)), where
V (q) is a potential energy function and β is inverse
temperature. In principle, these samples are used to
compute an observable E[u(Q)], where Q is a random
variable from the prescribed distribution and u(q) is
a preobservable (possible an indicator function). The
standard estimate is

E[u(Q)] ≈ ̂UN =
1
N

N−1
∑

n=0

u(Qn),

where the samples Qn are from a Markov chain, for
which ρq(q) (or a close approximation thereof) is the
stationary density. Assume the chain has been equi-
librated, meaning that Q0 is drawn from a distribu-
tion with density ρq(q). An efficient and popular way
to generate such a Markov chain is based on Langevin
dynamics, whose equations are

dQt = M−1Pt dt,

dPt = F (Qt) dt − γPt dt +
√

2γ
β Mh dWt,

(1)

where F (q) = −∇V (q), M is a matrix chosen to com-
press the range of vibrational frequencies, MhM

T
h = M ,

and Wt is a vector of independent standard Wiener
processes. The invariant phase space probability den-
sity ρ(q,p) is given by

ρ(q,p) =
1
Z

exp(−β(V (q) +
1
2
pTM−1p)),

where Z > 0 is a normalisation constant that guaran-
tees that ρ integrates to 1. We call ρq(q) its marginal
density for q. We suppose ρ > 0.

It is common practice in molecular dynamics to use a
numerical integrator, which introduces a modest bias,
that depends on the step size Δt. As an illustration,
consider the BAOAB integrator [23]. Each step of the
integrator consists of the following substeps:

B: Pn+1/4 = Pn + 1
2ΔtF (Qn),

A: Qn+1/2 = Qn + 1
2ΔtM−1Pn+1/4,

O: Pn+3/4 = exp(−γΔt)Pn+1/4 + Rn+1/2,
A: Qn+1 = Qn+1/2 + 1

2ΔtM−1Pn+3/4,
B: Pn+1 = Pn+3/4 + 1

2ΔtF (Qn+1/2),

where Rn+1/2 is a vector of independent Gaussian
random variables with mean 0 and covariance matrix
(1 − exp(−2γΔt)) β−1M .

In the following, we use the shorthand Z = (Q,P)
to denote a phase space vector. It is known [16, Sec. 2]
that the variance of the estimate ̂UN for E[u(Z)] is

Var[̂UN ] ≈ τ

N
Var[u(Z)], (2)

which is exact relative to 1/N in the limit N → ∞.
Here τ is the integrated autocorrelation time (IAcT)

τ = 1 + 2
+∞
∑

k=1

C(k)
C(0)

(3)

and C(k) is the autocovariance at lag k defined by

C(k) = E[(u(Z0) − μ)(u(Zk) − μ)] (4)

with μ = E[u(Z0)] = E[u(Zk). Here and in what follows
the expectation E[·] is understood over all realisations of
the (discretized) Langevin dynamics, with initial condi-
tions Z0 drawn from the equilibrium probability density
function ρ.

2.1 Estimating integrated autocorrelation time

Estimates of the IAcT based on estimating covariances
C(k) suffer from inaccuracy in estimates of C(k) due
to a decreasing number of samples as k increases. To
get reliable estimates, it is necessary to underweight
or omit estimates of C(k) for larger values of k. Many
ways to do this have been proposed. Most attractive
are those [16, Sec. 3.3] that take advantage of the fact
that the time series is a Markov chain.

One that is used in this study is a short computer
program called acor [18] that implements a method
described in Ref. [31]. It recursively reduces the series
to one half its length by summing successive pairs of
terms until the estimate of τ based on the reduced series
is deemed reliable. The definition of “reliable” depends
on heuristically chosen parameters. A greater number of
reductions, called reducs in this paper, employs greater
numbers of covariances, but at the risk of introducing
more noise.

2.2 Helpful formalisms for analyzing MCMC
convergence

It is helpful to introduce the linear operator T defined
by

T u(z) =
∫

ρ(z′|z)u(z′)dz′

where ρ(z′|z) is the transition probability density for
the Markov chain. Then one can express an expectation
of the form E[v(Z0)u(Z1)], arising from a covariance, as

E[v(Z0)u(Z1)] = 〈v, T u〉

where the inner product 〈·, ·〉 is defined by

〈v, u〉 =
∫

v(z)u(z)ρ(z) dz. (5)
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The adjoint operator

T †v(z) =
1

ρ(z)

∫

ρ(z|z′)v(z′)ρ(z′)dz′

is what Ref. [37] calls the forward transfer operator,
because it propagates relative probability densities for-
ward in time. On the other hand, Ref. [29] calls T † the
backward operator and calls T itself the forward oper-
ator. To avoid confusion, use the term transfer operator
for T . The earlier work [13,38] is in terms of the oper-
ator T †. To get an expression for E[v(Z0)u(Zk)], write

E[v(Z0)u(Zk)] =
∫ ∫

v(z)u(z′)ρk(z′|z)ρ(z) dzdz′

where ρk(z′|z) is the iterated transition probability den-
sity function defined recursively by ρ1(z′|z) = ρ(z|z′)
and

ρk(z′|z) =
∫

ρ(z′|z′′)ρk−1(z′′|z)dz′′, k = 2, 3, . . . .

By induction on k

T ku(z) = T T k−1u(z) =
∫

ρk(z′|z)u(z′)dz′,

whence,

E[v(Z0)u(Zk)] = 〈v, T ku〉.

2.2.1 Properties of the transfer operator and IAcT

It is useful to establish some properties of T and the
IAcT that will be used throughout the article. In partic-
ular, we shall provide a formula for τ(u) in terms of the
transfer operator that will be the starting point for sys-
tematic improvements and that will later on allow us to
estimate τ by solving a generalised eigenvalue problem.

Clearly, T 1 = 1, and 1 is an eigenvalue of T .
Here, where the context requires a function, the sym-
bol 1 denotes the constant function that is identically
1. Where the context requires an operator, it denotes
the identity operator. To remove the eigenspace corre-
sponding to the eigenvalue λ = 1 from T , define the
orthogonal projection operator

Eu = 〈1, u〉 1

and consider instead the operator

T0 = T − E .

It is assumed that the eigenvalues λ of T0 satisfy |λ| < 1,
in other words, we assume that the underlying Markov
chain is ergodic. Stationarity of the target density ρ(z)
w.r.t. ρ(z|z′) implies that T † 1 = 1 and that T †T 1 =
1. Therefore, T †T is a stochastic kernel. This implies

that the spectral radius of T †T is 1, and, since it is a
symmetric operator, one has that

〈T u, T u〉 = 〈u, T †T u〉 ≤ 〈u, u〉. (6)

The IAcT, given by Eq. (3), requires autocovariances,
which one can express in terms of T0 as follows:

C(k) = 〈(1 − E)u, (1 − E)T ku〉
= 〈(1 − E)u, (1 − E)T k

0 u〉
= 〈(1 − E)u, T k

0 u〉,
(7)

which follows because E and 1 − E are symmetric. Sub-
stituting Eqs. (7) into (3) gives

τ(u) =
〈(1 − E)u,Du〉
〈(1 − E)u, u〉 , where D = 2 (1 − T0)

−1 − 1.

(8)
It can be readily seen that τ is indeed nonnegative.
With v = (1−T0)−1u, the numerator in Eq. (8) satisfies

〈(1 − E)u,Du〉 = 〈(1 − E)(1 − T0)v, (1 + T0)v〉
= 〈v, v〉 − 〈T v, T v〉
≥ 0.

Therefore, τ(u) ≥ 0 if (1 − E)u 
= 0, where the latter is
equivalent to u 
= E[u] being not a constant.

3 Sampling thoroughness and efficiency

Less than “thorough” sampling can degrade estimates
of an IAcT. Reference [13, Sec. 1] proposes a notion
of “quasi-reliability” to mean the absence of evidence
in existing samples that would suggest a lack of sam-
pling thoroughness. A notion of sampling thoroughness
begins by considering subsets A of configuration space.
The probability that Q ∈ A can be expressed as the
expectation E[1A] where 1A is the indicator function
for A. A criterion for thoroughness might be that

|̂1A − Pr(Q ∈ A)| ≤ tol where ̂1A =
1
N

N
∑

n=1

1A(Qn).

(9)
This is not overly stringent, since it does not require
that there are any samples in sets A of probability ≤ tol.

The next step in the development of this notion is
to replace the requirement |̂1A − Pr(Q ∈ A)| ≤ tol by
something more forgiving of the random error in ̂1A.
For example, we could require instead that

(

Var
[

̂1A

])1/2

≤ 0.5 tol,

which would satisfy Eq. (9) with 95% confidence, sup-
posing an approximate normal distribution for the esti-
mate. (If we are not willing to accept the Gaussian
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assumption, Chebychev’s inequality tells us that we
reach 95% confidence level if we replace the right hand
side by 0.05 tol.)

Now let τA be the integrated autocorrelation time for
1A. Because

Var
[

̂1A

]

≈ τA
1
N

Var [1A(Z)]

= τA
1
N

Pr(Z ∈ A)(1 − Pr(Z ∈ A)) ≤ 1
4N

τA,

it is enough to have (1/4N)τA ≤ (1/4)tol2 for all sets of
configurations A to ensure thorough sampling (assum-
ing again Gaussianity). The definition of good cover-
age might then be expressed in terms of the maximum
τ(1A) over all A. Note that the sample variance may
not be a good criterion if all the candidate sets A have
small probability Pr(Z ∈ A), in which case it is rather
advisable to consider the relative error [6].

Reference [13, Sec 3.1] then makes a leap, for the sake
of simplicity, from considering just indicator functions
to arbitrary functions. This leads to defining τq,max =
supVar[u(Q)]>0 τ(u). The condition Var[u(Q)] > 0 is
equivalent to (1 − E)u 
= 0.

A few remarks on the efficient choice of preobserv-
ables are in order.

Remark 1 Generally, if there are symmetries present in
both the distribution and the preobservables of inter-
est, this may reduce the amount of sampling needed.
Such symmetries can be expressed as bijections ψq for
which u(ψq(q)) = u(q) and ρq(ψq(q)) = ρq(q). Exam-
ples include translational and rotational invariance, as
well as interchangeability of atoms and groups of atoms.
Let Ψq denote the set of all such symmetries. The defi-
nition of good coverage then need only include sets A,
which are invariant under all symmetries ψq ∈ Ψq. The
extension from indicator sets 1A to general functions
leads to considering Wq = {u(q) | u(ψq(q)) = u(q) for
all ψq ∈ Ψq} and defining

τq,max = sup
u∈W 0

q

τ(u)

where W 0
q = {u ∈ Wq | Var[u(Q)] > 0}.

Remark 2 Another consideration that might dramati-
cally reduce the set of relevant preobservables is the
attractiveness of using collective variables ζ = ξ(q) to
characterize structure and dynamics of molecular sys-
tems. This suggests considering only functions defined
on collective variable space, hence, functions of the form
ū(ξ(q)).

4 Computing the maximum IAcT

The difficulty of getting reliable estimates for τ(u) to
compute the maximum IAcT makes it interesting to
consider alternative formulation.

4.1 A transfer operator-based formulation

Although, there is little interest in sampling functions
of auxiliary variables like momenta, it may be useful to
consider phase space sampling efficiency. Specifically,
a maximum over phase space is an upper bound and
it might be easier to estimate. Putting aside exploita-
tion of symmetries, the suggestion is to using τmax =
supVar[u(Z)]>0 τ(u). One has, with a change of variables,
that

τ ((1 − T0) v) = τ2(v)

where

τ2(v) =
〈(1 − T )v, (1 + T )v〉
〈(1 − T )v, (1 − T )v〉 .

This follows from 〈(1 − E)(1 − T0)v, (1 ± T0)v〉 = 〈(1 −
T )v, (1 ± T )v ∓ Ev〉 = 〈(1 − T )v, (1 ± T )v〉. Therefore,

τmax = sup
Var[(1−T0)v(Z)]>0

τ ((1 − T0) v)

= sup
Var[(1−T0)v(Z)]>0

τ2(v) = sup
Var[v(Z)]>0

τ2(v).

The last step follows because (1 − T0) is nonsingular.
Needed for an estimate of τ2(v) is 〈T v, T v〉. To eval-

uate 〈T v, T v〉, proceed as follows: Let Z′
n+1 be an inde-

pendent realization of Zn+1 from Zn. In particular,
repeat the step, but with an independent stochastic
process having the same distribution. Then

E [v (Z1) v (Z′
1)] =

∫ ∫

v(z)v(z′)

×
∫

ρ(z|z′′)ρ(z′|z′′)ρ(z′′)dz′′ dzdz′

= 〈T v, T v〉.
(10)

For certain simple preobservables and propagators
having the simple form of BAOAB, the samples v(Zn)
v(Z′

n) might be obtained at almost no extra cost, and
their accuracy improved and their cost reduced by com-
puting conditional expectations analytically.

This approach has been tested on the model problem
of Sect. 5, a Gaussian process, and found to be signifi-
cantly better than the use of acor. Unfortunately, this
observation is not generalisable: For example, for a dou-
ble well potential, it is difficult to find preobservables
v(z), giving a computable estimate of τmax which comes
close to an estimate from using acor with u(z) = z1.

Another drawback is that the estimates, though com-
putationally inexpensive, require accessing intermedi-
ate values in the calculation of a time step, which are
not normally an output option of an MD program.
Therefore, we will discuss alternatives in the next two
paragraphs.
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4.2 A generalised eigenvalue problem

Let u(z) be a row vector of arbitary basis functions
ui(z), i = 1, 2, . . . , imax that span a closed subspace
of the Hilbert space associated with the inner product
〈·, ·〉 defined by (5) and consider the linear combination
u(z) = u(z)Tx. One has

τ(u) =
〈(1 − E)u,Du〉
〈(1 − E)u, u〉 =

xTDx
xTC0x

where

D = 〈(1 − E)u,DuT〉 and C0 = 〈(1 − E)u,uT〉.

If the span of the basis is sufficiently extensive to
include preobservables having the greatest IAcTs (e.g.
polynomials, radial basis functions, spherical harmon-
ics, etc.), the calculation of τmax reduces to that of max-
imizing xTDx/(xTC0x) over all x, which is equivalent
to solving the symmetric generalized eigenvalue prob-
lem

1
2
(D + DT)x = λC0x. (11)

It should be noted that the maximum over all lin-
ear combinations of the elements of u(z) can be arbi-
trarily greater than use of any of the basis functions
individually. Moreover, in practice, the coefficients in
(11) will be random in that they have to be estimated
from simulation data, which warrants special numerical
techniques. These techniques, including classical vari-
ance reduction methods, Markov State Models or spe-
cialised basis functions, are not the main focus of this
article and we therefore refer to the articles [19,32], and
the references given there.

Remark 3 Appendix B records different notions of
reversibility of the transfer operator that entail specific
restrictions on the admissible basis functions that guar-
antee that the covariance matrices, and thus C0, remain
symmetric.

4.3 The use of acor

It is not obvious how to use an IAcT estimator to
construct matrix off-diagonal elements Dij = 〈(1 −
E)ui,DuT

j 〉, j 
= i, from the time series {u(Zm)}. Nev-
ertheless, it makes sense to use arcor as a preprocess-
ing or predictor step to generate an initial guess for
an IAcT. The acor estimate for a scalar preobservable
u(z) has the form

τ̂ = ̂D/ ̂C0,

where

̂C0 = ̂C0

(

{u (Zn) − Û}, {u (Zn) − Û}
)

,

and

̂D = ̂D
(

{u (Zn) − Û},
{

u (Zn) − Û
})

,

are bilinear functions of their arguments that depend
on the number of reductions reducs where Û denotes
the empirical mean of {u(Zm)}.

The tests reported in Sects. 5–7 then use the following
algorithm. (In what follows we assume that {u(Zm)}
has been centred by subtracting the empirical mean.)

Algorithm 1 Computing the IAcT
For each basis function, compute τ̂ , and record the
number of reductions, set reducs to the maximum of
these.
Then compute D = (Dij)ij from ̂D({ui(zm)},
{uj(zn)}) with a number of reductions equal to
reducs.
if D + DT has a non-positive eigenvalue then

redo the calculation using reducs − 1 reductions.
end if

Ref. [13, Sec. 3.5] uses a slightly different algorithm
that proceeds as follows:

Algorithm 2 Computing the IAcT as in [13, Sec. 3.5]
Set reducs to the value of reducs for the basis function
having the largest estimated IAcT.
Then run acor with a number of reductions equal to
reducs to determine a revised D and a maximizing
x.
For uTx, determine the number of reductions reducs ′.
if reducs ′ < reducs then,

redo the calculation with reducs = reducs ′ and
repeat until the value of reducs no longer decreases.
end if

In the experiments reported here, the original algo-
rithm sometimes does one reduction fewer than the new
algorithm.

Remark 4 Theoretically, the matrix D + DT is posi-
tive definite. If it is not, that suggests that the value
of reducs is not sufficiently conservative, in which case
reducs needs to be reduced. A negative eigenvalue might
also arise if the Markov chain does not converge due to
a stepsize Δt that is too large. This can be confirmed
by seeing whether the negative eigenvalue persists for a
larger number of samples.
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5 Analytical result for the model problem

The question of optimal choice for the damping coeffi-
cient is addressed in Ref. [38, Sec. 5.] for the standard
model problem F (q) = −Kq, where K is symmetric
positive definite, for which the Langevin equation is

dQt = M−1Pt dt,

dPt = −KQt dt − γPt dt +
√

2γ
β Mh dWt.

(12)

Changing variables Q′ = MT
h Q and P′ = M−1

h P and
dropping the primes gives dQt = Pt dt,

dPt = −M−1
h KM−T

h Qt dt − γPt dt +
√

2γ/β dWt.

With an orthogonal change of variables, this decouples
into scalar equations, each of which has the form

dQt = Pt dt, dPt = −ω2Qt dt − γPt dt +
√

2γ/β dWt

where ω2 is an eigenvalue of M−1
h KM−T

h , or, equiv-
alently, an eigenvalue of M−1K. Changing to dimen-
sionless variables t′ = ωt, γ′ = γ/ω, Q′ = (βm)1/2ωQ,
P ′ = (β/m)1/2P , and dropping the primes gives

dQt = Pt dt, dPt = −Qt dt−γPt dt+
√

2γ dWt. (13)

For an MCMC propagator, assume exact integration
with step size Δt.

From Ref. [38, Sec. 5.1], one has T = (eΔtL)† =
exp(Δt
L†) where

L†f = p
∂

∂q
f − q

∂

∂p
f − γp

∂

∂p
f + γ

∂2

∂p2
f.

The Hilbert space defined by the inner product from
Eq. (5) has, in this case, a decomposition into linear
subspaces Pk = span{Hem(q)Hen(p) | m + n = k}
(denoted by P

′
k in Ref. [38, Sec. 5.3]). Let

uT
k = [Hek(q)He0(p), Hek−1(q)He1(p), . . . , He0(q)Hek(p)] ,

and, in particular,

uT
1 = [q, p],

uT
2 =

[

q2 − 1, qp, p2 − 1
]

,

uT
3 =

[

q3 − 3q,
(

q2 − 1
)

p, q
(

p2 − 1
)

, p3 − 3p
]

,

uT
4 =

[

q4 − 6q2 + 3,
(

q3 − 3q
)

p,
(

q2 − 1
) (

p2 − 1
)

,

q
(

p3 − 3p
)

, p4 − 6p + 3
]

.

With a change of notation from Ref. [38, Sec. 5.3],
LuT

k = uT
kAk, with Ak given by

Ak =

⎡

⎢

⎢

⎢

⎣

0 1

−k −γ
. . .

. . . . . . k
−1 −kγ

⎤

⎥

⎥

⎥

⎦

. (14)

One can show, using arguments similar to those in [38,
Sec. 5.3], that Pk closed under application of L†. There-
fore, L†uT

k = uT
kBk for some k + 1 by k + 1 matrix

Bk. Forming the inner product of uk with each side
of this equation gives Bk = C−1

k,0〈uk,L†uT
k 〉 where

Ck,0 = 〈uk,uT
k 〉. It follows that

Bk = C−1
k,0〈uk,L†uT

k 〉 = C−1
k,0〈Luk,uT

k 〉

and

L†uT
k = uT

kC
−1
k,0A

T
kCk,0.

The Hermite polynomials uk are orthogonal and

Ck,0 = diag (k!0!, (k − 1)!1!, . . . , 0!k!) .

Also, EuT
k = 0T. Accordingly,

T0uT
k = T uT

k = uT
kC

−1
k,0 exp

(

ΔtAT
k

)

Ck,0,

and
DuT

k = uT
kC

−1
k,0Dk, (15)

where

Dk = Ck,0

(

2
(

I − C−1
k,0 exp

(

ΔtAT
k

)

Ck,0

)−1

− I

)

= − coth
(

Δt

2
AT

k

)

Ck,0.

A formula for τ(u) is possible if u(q) can be expanded
in Hermite polynomials as u =

∑∞
k=1 ckHek. Then,

from Eq. (15), DHek ∈ Pk, not to mention Hek ∈ Pk.
Using these facts and the mutual orthogonality of the
subspaces Pk, it can be shown that

τ(u) =
∑∞

k=1 k!c2kτ(Hek)
∑∞

k=1 k!c2k
. (16)

From this, it follows that maxu τ(u) = maxk τ(Hek).
Since Hek = uT

kx with x = [1, 0, . . . , 0]T, one has

τ (Hek) = (Dk)11 / (Ck,0)11 =
(

coth
(

−Δt

2
Ak

))

11

.

(17)
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Fig. 1 From top to bottom on the right Tk(γ) vs. γ, k =
1, 2, 3, 4

Asymptotically τ(Hek) = −(2/Δt)(A−1
k )11, in the

limit as Δt → 0. In particular,

A−1
1 =

[

−γ −1
1 0

]

(18)

and

A−1
2 = − 1

2γ

⎡

⎣

γ2 + 1 −2γ 1
γ 0 0
1 0 1

⎤

⎦ . (19)

Writing τ(Hek) as an expansion in powers of Δt,

τ(Hek) = Tk(γ)/Δt + O(Δt),

one has T1(γ) = 2γ and T2(γ) = γ + 1/γ. Fig. 1
plots Tk(γ), k = 1, 2, 3, 4, 1/2 ≤ γ ≤ 4. Empirically,
maxk Tk = Tmax

def= max{T1, T2}.
Restoring the original variables, one has

τq,max = Tmax(γ/ω)/(ωΔt) + O(ωΔt).

The leading term increases as ω decreases, so τq,max

depends on the lowest frequency ω1. And τq,max is min-
imized at γ = ω1, which is half of the critical value
γ = 2ω1. Contrast this with the result [38, Sec. 5.] for
the phase space maximum IAcT, which is minimized
for γ = (

√
6/2)ω1.

Remark 5 The result is consistent with related results
from [4,12] that consider optimal damping coefficients
that maximise the speed of convergence measured in
relative entropy. Specifically, calling ηt = N (μt, Σt)
the law of the solution to (13), with initial conditions
(Qt, Pt) = (q, p); see Appendix A for details. Then,
using [2, Thm. 4.9], we have

KL (ηt, ρ) ≤ M exp(−2αt),

where M ∈ (1,∞) and α denotes the spectral abcissa
of the matrix A in Appendix A, i.e. the negative real
part of the eigenvalue that is closest to the imaginary
axis. Here

KL(f, g) =
∫

log
f(z)
g(z)

f(z) dz,

denotes the relative entropy (or: Kullback–Leibler diver-
gence) between two phase space probability densities f
and g, assuming that

∫

{g(z)=0}
f(z)dz = 0.

(Otherwise we set KL(f, g) = ∞.)
It is a straightforward calculation to show that the

maximum value for α (that gives the fastest decay of
KL(ηt, ρ)) is attained at γ = 2, which is in agreement
with the IAcT analysis. For analogous statements on
the multidimensional case, we refer to [4].

We should mention that that there may be cases, in
which the optimal damping coefficient may lead to a
stiff Langevin equation, depending on the eigenvalue
spectrum of the Hessian of the potential energy func-
tion. As a consequence, optimizing the damping coeffi-
cient may reduce the maximum stable step size Δt that
can be used in numerical simulations.

5.1 Application to more general distributions

Note that for the model problem, the matrix K can be
extracted from the covariance matrix

Cov[Q] = (1/β)K−1.

Therefore, as a surrogate for the lowest frequency ω1,
and as a recommended value for γ, consider using

γ∗ =
(

λmin

(

M−1K
))1/2

= (βλmax (Cov[Q]M))−1/2
.

5.2 Sanity check

As a test of the accuracy of acor and the analytical
expression (16), the IAcT is calculated by acor for a
time series generated by the exact analytical propagator
(given in Appendix A) for the reduced model problem
given by Eq. (12). For the preobservable, we choose

u(q) = He3(q)/
√

3! − He2(q)/
√

2!,

where He2(q) = q2 − 1 and He3(q) = q3 − 3q are Her-
mite polynomials of degree 2 and 3; as damping coeffi-
cient, we choose γ = 2, which is the critical value; the
time increment is Δt = 0.5, which is about 1/12 th of a
period.

In this and the other results reported here, equili-
brated initial values are obtained by running for 50000
burn-in steps.
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Fig. 2 Relative error in estimated IAcT τ as a function of
sample size N . The relative error δN =

√
Var[τ ]/E[τ ] has

been computed by averaging over M = 103 independent
realisations of each simulation

As the dependence of the estimate on N is of interest
here, we run M = 103 independent realisations for each
value of N , from which we can estimate the relative
error

δN (τ(u)) =

√

Var[τ(u)]
E[τ(u)]

,

which we expect to decay as N−1/2. Figure 2 shows the
relative error in the estimated IAcT τ(u) for N = 213,
214, . . . , 222. The least-squares fit of the log relative
error as a function of log N has slope m = 0.4908. Thus
we observe a nearly perfect N−1/2 decay of the relative
error, in accordance with the theoretical prediction.

6 A simple example

The procedure to determine the optimal damping coeffi-
cient in the previous section is based on linear Langevin
systems. Even though the considerations of Sect. 5 do
not readily generalize to nonlinear systems, it is plau-
sible to use the harmonic approximation as a proxy for
more general systems, since large IAcT values are often
due to noise-induced metastability, in which case local
harmonic approximations inside metastable regions are
suitable.

For estimating the maximum IAcT, the model prob-
lem therefore suggests the use of linear, quadratic and
cubic functions of the coordinates, where the latter is
suitable to capture the possible non-harmonicity of the
potential energy wells in the metastable regime.

The first test problem, which is from Ref. [23], pos-
sesses an asymmetric multimodal distribution. It uses
U(q) = 1

4q4 + sin(1 + 5q) and β = 1, and it generates
samples using BAOAB with a step size Δt = 0.2, which

Fig. 3 In dotted lines is the unnormalized probability den-
sity function. From top to bottom on the right are the cubic,
quintic, and septic polynomials that maximize the IAcT
over all polynomials of equal degree

is representative of step sizes used in Ref. [23]. Figure 3
plots with dotted lines the unnormalized probability
density function.

6.1 Choice of basis

A first step is to find a preobservable that produces a
large IAcT. It would be typical of actual practice to
try to select a good value for γ. To this end, choose
γ = γ∗ = 1.276,

To obtain this value, do a run of sample size N =
2 · 106 using γ = 1, as in one of the tests in Ref. [23].

With a sample size N = 107, the maximum IAcT
is calculated for polynomials of increasing degree using
the approach described in Sects. 4.2–4.3. Odd degrees
produces somewhat greater maxima than even degrees.
For cubic, quintic, and septic polynomials, τmax has
values 59.9, 63.9, 65.8, respectively. As a check that
the sample size is adequate, the calculations are redone
with half the sample size.

Figure 3 shows how the maximizing polynomial
evolves as its degree increases from 3 to 5 to 7.

6.2 Optimal choice of damping coefficient

The preceding results indicate that septic polynomials
are a reasonable set of functions for estimating τq,max.
For 25 values of γ, ranging from 0.2 to 5, the value
of τq,max was thus estimated, each run consisting of
N = 107 samples.

The optimal value is γ = 1.8 = 1.4γ∗, which is close
the heuristic choice γ∗ for a damping coefficient. Fig-
ure 4 plots τq,max vs. the ratio γ/γ∗.

With respect to this example, Ref. [23, Sec. 5] states,
“We were concerned that the improved accuracy seen
in the high γ regime might come at the price of a slower
convergence to equilibrium”. The foregoing results indi-
cate that the value γ = 1 used in one of the tests is near
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Fig. 4 τq,max vs. γ/γ∗ using septic polynomials as preob-
servables

the apparent optimal value γ = 1.8. Hence, the supe-
rior accuracy of BAOAB over other methods observed
in the low γ regime does not come at the price of slower
convergence.

7 Sum of three Gaussians

The next, perhaps more challenging, test problem uses
the sum of three (equidistant) Gaussians for the distri-
bution, namely.

exp(−V (x, y))

= exp
(

−((x − d)2 + y2)/2
)

+ exp
(

−
(

(x + d/2)2 +
(

y −
√

3d/2
)2

)

/2
)

+ exp
(

−
(

(x + d/2)2 +
(

y +
√

3d/2
)2

)

/2
))

,

where d is a parameter that measures the distance of
the three local minima from the origin. Integrating the
Langevin system using BAOAB with a step size Δt =
0.5 as for the model problem, which is what V (x, y)
becomes if d = 0.

Shown in Fig. 5 are the first 8 · 104 points of a tra-
jectory where d = 4.8.

7.1 Choice of basis

To compare τmax for different sets of preobservables,
choose γ = γ∗ = 0.261, and with γ so chosen, run the
simulation with d = 4.8 for N = 107 steps. To compute
γ∗, run the simulation for N = 2 · 106 steps with γ = 1
(which is optimal for d = 0).

Here are the different sets of preobservables and the
resulting values of τmax:

Fig. 5 A typical time series for a sum of three Gaussians

1. linear polynomials of x and y, for which τmax =
18774,

2. quadratic polynomials of x and y, for which τmax =
19408,

3. linear combinations of indicator functions {1A,
1B , 1C} for the three conformations

A = {(x, y) : |y| ≤
√

3x},

B = {(x, y) : y ≥ 0 and y ≥
√

3x},

C = {(x, y) : y ≤ 0 and y ≤ −
√

3x},

for which τmax = 18492,
4. 1A alone, for which τ = 12087,
5. 1B alone, for which τ = 5056,
6. 1C alone, for which τ = 4521.

As consequence of these results, the following section
uses quadratic polynomials to estimate τq,max.

Fig. 6 τq,max vs. the ratio γ/γ∗
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7.2 Optimal choice of damping coefficient

Shown in Fig. 6 is a plot of τq,max vs. the ratio γ/γ∗.
To limit the computing time, we set the parameter to
d = 4.4 rather than 4.8 as in Sect. 7.1; for d = 4.4, we
have γ� = 0.285, obtained using the same protocol as
does Sect. 7.1.

We consider 0.05 ≤ γ ≤ 2.2 in increments of 0.01
from 0.05 to 0.2, and in increments of 0.1 from 0.2 to
2.2. Each data point is based on a run of N = 2 · 107
time steps. Even though the variance of the estimator is
not negligible for our choice of simulation parameters, it
is clearly visible that the minimum of τq,max is attained
at γ ≈ γ∗.

8 Conclusions

We have discussed the question of how to choose
the damping coefficient in (underdamped) Langevin
dynamics that leads to efficient sampling of the sta-
tionary probability distribution or expectations of cer-
tain observables with respect to this distribution. Here,
efficient sampling is understood as minimizing the max-
imum possible (worst case) integrated autocorrelation
time (IAcT). We propose a numerical method that is
based on the concept of phase space preobservables that
span a function space over which the worst-case IAcT is
computed using trajectory data; the optimal damping
coefficient can then chosen on the basis of this informa-
tion.

Based on heuristics derived from a linear Langevin
equation, we derive rules of thumb for choosing good
preobservables for more complicated dynamics. The
results for the linear model problem are in agreement
with recent theoretical results on Ornstein–Uhlenbeck
processes with degenerate noise, and they are shown to
be a good starting point for a systematic analysis of
nonlinear Langevin samplers.
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Appendix A: Analytical propagator for
reduced model problem

This section derives the analytical propagator for Eq. (13).
In vector form, the equation is

dZt = AZdt + bdWt where A =

[
0 1

−1 −γ

]
,

and b = [0,
√

2γ]T. The variation of parameters solution is

Zt = etAZ0 + Rt where Rt =

∫ t

0

e(t−s)Ab dt.

The stochastic process Rt is Gaussian with mean zero and
covariance matrix

Σ = E[RtR
T
t ] =

∫ t

0

e(t−s)AbbTe(t−s)AT

dWt.

To evaluate this expressions, use A = XΛX−1 where

X =

[
1 1

−γ− −γ+

]
, X−1 =

1

δ

[
γ+ 1

−γ− −1

]
,

Λ = diag(−γ−, −γ+),

γ± =
1

2
(γ ± δ), and δ =

√
γ2 − 4ω2.

Noting that exp(−γ±t) = exp(−γt/2)(cosh(δt/2) ∓ sinh
(δt/2)), one has

etA = e−γt/2 cosh
δt

2

[
1 0
0 1

]
+ e−γt/2 t

2
sinhc

δt

2

[
γ 2

−2 −γ

]
,

where sinhc s = (sinh s)/s.
Then

Σ = X

∫ t

0

e(t−s)ΛX−1bbTX−Te(t−s)Λ dtXT

=
2γ

δ2
X

∫ t

0

e(t−s)Λ

[
1 −1

−1 1

]
e(t−s)Λ dtXT

=
2γ

δ2
X

⎡

⎢⎢
⎣

1 − e−2γ−t

2γ−
−1 − e−γt

γ

−1 − eγt

γ

1 − e−2γ+t

2γ+

⎤

⎥⎥
⎦ XT.

Noting that exp(−2γ±t) = exp(−γt)(1 + 2 sinh2(δt/2)) ∓
2 sinh(δt/2) cosh(δt/2)), one has

Σ = (1 − e−γt)

[
1 0
0 1

]
− γt2

2
e−γt(sinhc

δt

2
)2

[
γ −2

−2 γ

]

+ γte−γtsinhc
δt

2
cosh

δt

2

[
−1 0
0 1

]
.

Appendix B: Different notions of reversibil-
ity

We briefly mention earlier work and discuss different
reversiblity concepts for transfer operators.
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Appendix B.1: Quasi-reversibility

Reference [13, Sec. 3.4] introduces a notion of quasi-
reversibility. A transfer operator T is quasi-reversible if

T † = R†T R
where R is an operator such that R2 = 1. This somewhat
generalizes the (suitably modified) definitions in Refs. [13,
38]. The principal example of such an operator is Ru = u◦R
where R is a bijection such that R ◦ R = id and u ◦ R = u
for u ∈ W , e.g, momenta flipping.

The value of the notion of quasi-reversibility is that it
enables the construction of basis functions that lead to a
matrix of covariances that possesses a type of symmet-
ric structure [38, Sec. 3.1]. This property is possessed by
“adjusted” schemes that employ an acceptance test, and
by the limiting case Δt → 0 of unadjusted methods like
BAOAB.

Appendix B.2: Modified detailed balance

A quite different generalization of reversibility, termed
“modified detailed balance”, is proposed in Ref. [14] as a
tool for making it a bit easier to prove stationarity.

Modified detailed balance is introduced in Ref. [14] as a
concept to make it easier to prove stationarity. In terms of
the transfer operator, showing stationarity means showing
that F 1 = 1, where 1 is the constant function 1.

Reference [14, Eq. (15)] defines modified detailed balance
in terms of transition probabilities. The definition is equiv-
alent to F = R−1F†R−1 under the assumption that R pre-
serves the stationary distribution. This readily generalizes
to

F = R2F†R1 (20)
where R1 and R2 are arbitrary except for the assumption
that each of them preserve the stationary distribution. Sta-
tionarity follows from Eq. (20) because F† 1 = 1 for any
adjoint transfer operator and R1 1 = R2 1 = 1 by assump-
tion.

Reference [14] has errors, which are corrected in Ref. [15].

References

1. J. An, J. Lu, L. Ying, Stochastic modified equations
for the asynchronous stochastic gradient descent. Inf.
Inference 11, iaz030 (2019)

2. A. Arnold, J. Erb. Sharp entropy decay for hypocoercive
and non-symmetric Fokker-Planck equations with linear
drift. arXiv:1409.5425, (2014)

3. M. Betancourt, The convergence of Markov chain Monte
Carlo methods: from the Metropolis method to Hamil-
tonian Monte Carlo. Ann. Phys. 531(3), 1700214 (2019)

4. T. Breiten, C. Hartmann, U. Sharma. Stochastic
gradient descent and fast relaxation to thermody-
namic equilibrium: a stochastic control approach.
arXiv:2103.05096, (2021)

5. Y. Cao, J. Lu, L. Wang. On explicit L2-convergence rate
estimate for underdamped Langevin dynamics. arXiv e-
prints, page arXiv:1908.04746, (2019)

6. V. Caron, A. Guyader, M.M. Zuniga, B. Tuffin, Some
recent results in rare event estimation. ESAIM Proc.
44, 239–259 (2014)

7. M. Ceriotti, G. Bussi, M. Parrinello, Colored-noise ther-
mostats á la carte. J. Chem. Theory Comput. 6(4),
1170–1180 (2010)

8. X. Cheng, N. Chatterji, P. Bartlett, M. Jordan. Under-
damped Langevin MCMC: A non-asymptotic analysis,
ed. by S. Bubeck, V. Perchet, P. Rigollet, Proceedings
of Machine Learning Research, vol. 75. PMLR, (2018),
pp 300–323

9. N. Ding, Y. Fang, R. Babbush, C. Chen, R. Skeel,
H. Neven, Bayesian sampling using stochastic gradient
thermostats, Advances in Neural Information Processing
Systems 27: Annual Conference on Neural Information
Processing Systems 2014, December 8–13 2014, Mon-
treal, Quebec, Canada, (2014), pp. 32303–3211

10. J. Dolbeault, C. Mouhot, C. Schmeiser, Hypocoerciv-
ity for kinetic equations with linear relaxation terms.
Comptes Rendus Mathematique 347(9), 511–516 (2009)
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