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Abstract. Over the past decade, inequality has become one of the most complex and troubling challenges
in the global economy. Many scientists are determined to eliminate inequality to achieve full cooperation.
However, our research shows that not all inequalities hinder cooperation. In this article, we study the
effects of inequality by introducing the disassortative mixing of the investment amount and enhancement
factor assigned to certain individuals in the public goods game. Compared with the traditional version,
we find that cooperation can be effectively promoted by aligned inequality, which means that individuals
with the highest (lowest) investment capabilities contribute the greatest (lowest) investment amounts. The
promotion of cooperation mainly depends on the heterogeneous contribution ability of players. Specifically,
cooperators with high contribution ability can maximize collective benefits, causing cooperators with low
contribution ability to form compact clusters and resist invasion by defectors. Our research indicates that
the diversity of individual endowment and productivity may have a non-negligible influence on the evolution
of cooperation among selfish individuals.

1 Introduction

Cooperation among selfish individuals, as a ubiquitous
phenomenon in both biological and social systems, has
always attracted substantial attention [1–3]. To clarify
how cooperation emerges and is maintained, evolution-
ary game theory is considered a useful mathematical
tool and provides a series of classic models, such as
the prisoner’s dilemma game (PDG) [4–6], the snow-
drift game (SDG) [7,8] and the stag hunt game (SHG).
These models are suitable for studying the coopera-
tive behaviour between pairwise interacting individu-
als. However, in the case of group interaction, the pub-
lic goods game (PGG) is the dominant paradigm used
to study cooperation. In the traditional PGG, initially,
each player in a group simultaneously chooses a strat-
egy between cooperation and defection. Cooperators
invest in the public pool, while defectors invest nothing.
Finally, the total investment in the public pool is mul-
tiplied by an enhancement factor r and then equally
divided among all players. Ideally, when all players
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invest, they can maximize collective interests. How-
ever, in reality, there are always players who choose
to free ride for higher personal benefit, causing the sys-
tem to inevitably fall into the social dilemma called the
“tragedy of the commons” [9].

Therefore, numerous mechanisms have been pro-
posed to avoid social dilemmas. Nowak reviewed five
rules for the promotion of cooperation named kin selec-
tion, direct reciprocity, indirect reciprocity, network
reciprocity, and group selection in 2006 [10]. Network
reciprocity, as an effective mechanism to promote coop-
eration by forming cooperative clusters in a spatial net-
work, has encouraged many scientists to study the evo-
lution of cooperation in a network from the following
three main directions: (1) studying the influence of net-
work topology, including regular lattice [11–21], small-
world network [22–24], scale-free network [25–28], and
interdependent network [29–31]; (2) exploring the influ-
ences of various evolution rules, including degree mixing
[32], social diversity [33], personal reputation [34], and
reward and punishment [35–41]; and (3) studying the
coevolution of network topology and game dynamics
[42–44].
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Inequality, as one of the most complex challenges in
the global economy, has received widespread attention
[45,46] in the past decade. Many scientists are commit-
ted to eliminating inequality, which is generally believed
to undermine cooperation and welfare [47–50]. Experi-
mental research has indicated that inequality of indi-
vidual endowments inhibits cooperation. [47,48] and
undermines the social structure of a population [50].
A seminal work by Oliver P. Hauser studied the influ-
ence of inequality on the evolution of cooperation under
the direct reciprocity mechanism [51].

In view of the above situation, we are inspired to dis-
cuss the following question: how does inequality affect
the evolution of cooperation in a spatial structure? In
this paper, we focus on this issue and use the PGG
model on a regular lattice. In a typical PGG, it is
assumed that all players have the same endowments and
productivity levels. Here, we introduce the disassorta-
tive mixing of unequal endowments and productivity
of the players on the network. Through simulation, we
find that aligned inequality promotes cooperation and
that the level of cooperation is a monotonic function of
the correlation coefficient.

2 Methods

We consider a multiplayer public goods game, wherein
players receive the greatest personal benefit on a square
lattice of size L× L with periodic boundary conditions
when they all cooperate to maximize collective benefits.
Players are distributed on grid points; thus, every player
is adjacent to four neighbours and participates in five
groups of investments at the same time.

Fig. 1 The frequency of cooperation ρc as a function of the
enhancement factor r for different correlation coefficients.
The traditional public goods game is introduced for com-
parison. For each value of corr, ρc increases with increasing
r. The values of corr are equal to -1, -0.6, 0, 0.6 and 1. The
above result is obtained for K = 0.5 and L = 100

Fig. 2 The frequency of cooperation ρc as a function of
time step t for different correlation coefficients. For compar-
ison, we introduce the traditional public goods game. For
corr = -1, ρc gradually decreases and finally disappears.
For both corr = 0 and corr = 1, the situation is similar to
that of the traditional version. The difference is that ρc of
corr = 0 ultimately fluctuates at 0.6, while ρc of corr = 1
reaches full cooperation. The result is obtained by setting
K = 0.5, L = 100, c ∼ N(1,0.5) and r ∼ N(4,1)

Fig. 3 ρc evolves with the enhancement factor r and the
correlation coefficient corr. For a fixed r, a higher correla-
tion coefficient can promote the cooperation level, and for a
fixed corr, a higher enhancement factor r can promote the
cooperation level. All the results are obtained for K = 0.5,
L = 100

In the traditional PGG, the same investment amount
c and enhancement factor r apply to all players.
To introduce inequality, we set the fixed investment
amount c and the enhancement factor r as ran-
dom numbers assigned to individuals. An investment
amount ci and an enhancement factor ri are randomly
assigned for a certain player i. Without loss of general-
ity, we set ci ∼ N(co, 0.5) with c0 = 1 and ri ∼ N(r0,
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Fig. 4 Evolutionary snapshots of cooperation (red) and defection (blue) for the same prepared initial scenario. From the
top to the bottom, the corresponding corr values are equal to -1, 0, and 1. From left to right, snapshots were taken under
MCS = 0, 100, 300, and 20,000. Simultaneously, all the results are obtained for K = 0.5, L = 100, c ∼ N(1,0.5), and r ∼
N(4,1)

1) with r0 in the interval [3, 5.5] for all players. To intro-
duce the disassortative mixing of unequal endowments
and productivity, the correlation coefficient is used to
change the dependence between investment amount ci
and enhancement factor ri and is set in the interval [-
1,1]. Alignment inequality (i.e., corr > 0) introduces the
tendency for players with the higher (lower) enhance-
ment factor to be assigned a greater (smaller) invest-
ment amount, while misalignment inequality (i.e., corr
< 0) introduces the tendency for players with the lower
(higher) enhancement factor amount to be assigned a
greater (smaller) investment. In this way, the payoff of
the player is asymmetric under the situation described
above. Thus, the final payoff of player i can be calcu-
lated by the following formula:

Pi =
1
n

n∑

j=1

rjcj + (1 − x)ci (1)

On the left side of the equation is the payoff that
player i receives from the common pool, and the right
side of the equation represents the remaining endow-
ment, of which x has only two values: 0 (cooperate)

or 1 (defect). Moreover, j represents the community of
neighbours of player i and itself.

Before the start of each simulation, each player
chooses a strategy between cooperation and defection
with equal probability. Each cooperator contributes his
own product of ri and ci to the common pool, while
defectors contribute nothing. Then, each player obtains
a payoff according to formula (1). Subsequently, the
game uses an asynchronous update method to iterate
forward in time. After each full iteration, player i ran-
domly selects one of his four neighbours and update his
strategy with the following probability by comparing
the respective payoffs, Pi and Pj :

W (si ← sj) =
1

1 + exp[(Pi − Pj)/K]
, (2)

where K = 0.5 denotes the amplitude of noise or its
inverse, the so-called intensity of selection [52,53]. With
different correlation coefficients, the results given below
are obtained by averaging over ten full Monte Carlo
steps (MCSs) on 100 × 100 lattices. Each full Monte
Carlo step requires a total of 2 × 104 steps.
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3 Results

The results using various correlations (corr) are shown
in the figures below.

We start by investigating the impact of inequality
in the public goods game described above. Figure 1
shows how the frequency of cooperation evolves with
the enhancement factor r for several different values
of the correlation coefficient. For comparison, we intro-
duce the traditional public goods game, whose cooper-
ation emerges at approximately r = 3.75 and reaches
full cooperation at approximately r = 5.5. In gen-
eral, we can observe that the frequency of coopera-
tion is considerably promoted as the correlation coef-
ficient increases from 0 to 1. Particularly, when corr
= 0, although the distributions of enhancement factor
r and investment amount c have no correlation, they
are still heterogeneous. Cooperation emerges around
the value of r = 3.6 and eventually reaches full coop-
eration around the value of r = 4.7. The overall con-
dition is obviously better than that of the traditional
version. When corr = 1, the individual enhancement
factor r and cost c are absolutely symmetrical, which
means that individuals with the highest (lowest) invest-
ment capability have the greatest (lowest) investment
amount. Evidently, this promotes cooperation to the
greatest extent. When corr decreases, the frequency of
cooperation also decreases, as shown when corr = -0.6
and corr = -1. Particularly, when corr = -1, individ-
uals with the highest (lowest) investment capabilities
contribute the smallest (greatest) investment amount.
In this case, cooperation does not emerge until r = 4.3,
which is far larger than 3.75, the threshold at which
cooperation emerges in the traditional version of the
PGG.

Next, we further examine the time evolution of
cooperation density for different values of the correla-
tion coefficient. Figure 2 suggests how the frequency
of cooperation evolves for different correlation coeffi-
cients. For comparison, we introduce the traditional
public goods game, whose cooperation level decreases
first at the beginning and then gradually increases
to a steady state, hovering around the value of 0.5
when r = 4. For corr = -1, the frequency of coop-
eration continuously decreases and finally disappears.
We find that a negative corr makes the investment
amount and ability assigned to all players very low,
so the payoff of cooperation is always less than that
of defection, and cooperation cannot be maintained.
For both corr = 0 and corr = 1, the frequency of
cooperation qualitatively evolves in the same way as
for the traditional version. For corr = 0, the fre-
quency of cooperation ultimately hovers around the
value of 0.6, which is larger than that of the tradi-
tional version. For corr = 1, the fraction of coopera-
tion increases faster and finally reaches full coopera-
tion.

To study the joint effects of the enhancement factor r
and the correlation coefficient corr, we present Fig. 3.
For fixed corr = 0, when r < 3.6, defection occupies the

whole network. When r ≥ 3.6, cooperation emerges and
coexists with defection; eventually, cooperation occu-
pies the entire system as r increases. For a fixed r,
cooperation gradually disappears as the inequality coef-
ficient corr decreases and cannot reappear unless r is
large enough. In contrast, as corr increases, cooperation
emerges even at a smaller r. In brief, the frequency of
cooperation increases as the enhancement factor r and
the correlation coefficient corr increase together.

Figure 4 depicts the evolution snapshots of different
strategy invasion processes for the same prepared ini-
tial scenario on the regular lattice. For all values of
corr, we set the same initial strategy distribution sce-
nario as in the first column. For corr = -1, coopera-
tors are quickly invaded by defectors, cooperators (and
cooperative clusters) gradually disappear, and eventu-
ally, defectors occupy most of the system. The reason
for this is that the introduction of misaligned inequal-
ity makes cooperative clusters unsustainable. For corr
= 0 and corr = 1, the cooperators on the boundary
are dominant and can invade the defectors. Coopera-
tors (and cooperative clusters) rapidly spread and then
reach a steady state. At the end of the evolution pro-
cess, we find that cooperation coexists with defection
for corr = 0 and occupies the entire network for corr
= 1. These results strongly prove our hypothesis once
again.

Figure 5 displays the characteristic snapshots of
strategy distributions for different types of players on
the regular lattice. To further scrutinize the reasons for
the evolution of cooperation, we separate players into
four types by VRC, which measures the contribution
ability of an individual, that is, the value of individual
investment amount c multiplied by enhancement factor
r. When corr = -1, we can find that defectors occupy
the entire network. When corr = 0 and corr = 1, we can
observe that cooperators with high contribution abil-
ity become the centre of the cooperative clusters, while
cooperators with low contribution ability surround the
former and eventually form cooperative clusters. For
corr = 0, cooperators coexist with defectors, and each
occupies approximately half of the system. While corr
= 1, cooperators succeed in continuing to expand until
they occupy an overwhelming majority of the system.

Combined with the observations of Figs. 1, 2, 3, 4 and
5, it is evident that the correlation coefficient signifi-
cantly affects cooperation. To further explore the poten-
tial reason for this phenomenon, we present Figs. 6 and
7. Figure 6 depicts the distribution of VRC of all play-
ers for different values of corr. We can observe that
the distribution of VRC has visible differences for dif-
ferent corr. Figure 7 depicts the relationship between
the variance of VRC and the correlation coefficient.
As the correlation coefficient increases, the variance of
VRC keeps increasing, which means that the inequal-
ity of the contribution ability increases. Thus, it can be
easily inferred that such inequality promotes coopera-
tion, which is consistent with previous studies that have
found that diversity promotes cooperation [33,51,54].
Specifically, individuals with high VRC play a vital role
in the evolution of cooperation, as they attract individ-

123



Eur. Phys. J. B (2021) 94 :167 Page 5 of 7 167

Fig. 5 Characteristic snapshots of strategy distributions for different types of players on the regular lattice. We separate
players into four types by the product of individual investment amount c multiplied by enhancement factor r: cooperators
with a high product (light red) and a low product (red), and defectors with a high product (light blue) and a low product
(blue). From left to right, the values of corr are equal to -1, 0 and 1. The snapshots were taken at MCS = 20,000. All results
are obtained for K = 0.5, L = 100, c ∼ N(1,0.5), and r ∼ N(4,1)

Fig. 6 Distribution of different values of VRC. From left to right, the values of corr are equal to -1, 0 and 1

Fig. 7 The relationship between the variance of VRC and the correlation coefficient. The above two figures are obtained
for K = 0.5, L = 100, c ∼ N(1,0.5), and r ∼ N(4,1)

uals with low VRC to be more cooperative. The greater
the inequality, the more players there are with high
VRC . As a result, cooperation can dominate the sys-
tem.

4 Conclusions

Most previous studies did not focus on the inequality of
individual attributes. In most previous models of net-
work reciprocity, individuals are sufficiently equal in all
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relevant aspects. Inspired by the fact that individuals
are heterogeneous in reality, we have introduced and
examined the effect of inequality on the evolution of
cooperation in the public goods game. Specifically, we
introduce the disassortative mixing of individual invest-
ment amount c and enhancement factor r. Through
numerical simulation, we have found that individual
inequality obviously affects cooperation, which can be
promoted by a higher positive correlation coefficient
and suppressed by a lower negative correlation coef-
ficient. In detail, investment amount c and enhance-
ment factor r together determine the individual contri-
bution ability. Players with a high contribution ability
can effectively drive cooperation by attracting players
with low contribution ability to form compact clusters.
The larger the correlation coefficient is, the more play-
ers with high VRC and the higher the level of coopera-
tion. Therefore, cooperative behaviour can be promoted
to the greatest extent when corr = 1. Our research has
shown that not all inequalities hinder cooperation. In
contrast, aligned inequality can promote cooperation.
We hope that this work can provide some insights into
understanding the emergence of cooperative behaviour
under inequality and a theoretical basis for how to man-
age inequality in the future.
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