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Abstract. We present a review of extended Lagrangian Born–Oppenheimer molecular dynamics and its
most recent development. The molecular dynamics framework is first derived for general Hohenberg–Kohn
density functional theory and it is then presented in explicit forms for thermal Hartree–Fock theory using a
density matrix formalism, for self-consistent charge density functional tight-binding theory, and for general
non-linear charge relaxation models that can be designed and optimized using modern machine learning
methods. Our intention is to give a self-contained but brief and hopefully pedagogical presentation.

1 Introduction

Molecular dynamics (MD) simulations provide a flexi-
ble and intuitively clear way to study materials at the
atomistic level. MD can be highly versatile and powerful
in applications to a broad range of problems in mate-
rials science, chemistry and molecular biology [1–9].
MD simulations are often performed with interatomic
potentials that have been parameterized in advance
based on classical force field models that have been
fitted to high-level first principles theory or experi-
ments. These classical MD methods are highly efficient
computationally and are sometime even applicable to
simulations with hundreds of billions of atoms [10,11].
While classical MD simulations can be powerful in the
study of large-scale materials systems [12], they typ-
ically lack a physical transparency beyond the gener-
ated atomic phase space configurations. Details of the
electronic structure are missing and important features
are therefore often hard or impossible to capture, for
example, quantum size effects, thermal or photo excita-
tions of the electrons, spin-polarization, bond-breaking
with the associated charge transfer, drastic changes in
the electronic structure such as metal-insulator transi-
tions, the volume changes dues to electron localization,
or an insight into various mechanisms such as an altered
balance between the electrostatic energy and the band
energy that may drive a change in the crystalline struc-
ture through a Peirls distortion, or an increased density
of states at the Fermi level that may cause a spin polar-
ization. Even if classical force field models can be tai-
lored to mimic some of these particular effects, at least
if they are anticipated and well understood, they do not
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have the predictive power to capture properties dom-
inated by unexpected changes in the underlying elec-
tronic structure. Without insights into the electronic
structure, an in depth understanding of the mechanisms
behind a dynamical behavior are often not possible. MD
simulations using only classical force fields may there-
fore not only miss important physical properties, but
are also of limited support for our comprehension of
materials at the atomistic scale. This inhibits the use-
fulness of classical MD simulations in the analysis, dis-
covery and design of new materials.

The solution to these limitations with classical MD
simulations may appear obvious. We simply need to
derive the interatomic forces from a quantum mechani-
cal description of the electronic structure in a quantum-
based approach to MD (QMD) simulations. Unfortu-
nately, QMD comes with an enormous computational
overhead. Even if we are able to give a transparent
and detailed description of the electronic structure,
such as quantum-size effects, spin-polarization, excita-
tions, and charge-transfer, we are limited to study only
very small systems over short simulation times. This is
a serious limitation—rendering QMD simulations use-
less for many real-world problems. Accessible compu-
tational processing power is continuing to increase, but
this alone will have little effect on our ability to extend
the applicability of QMD simulations. Sometimes, how-
ever, it is possible to reformulate the underlying physics
of a problem and recast the relevant equations in a
framework that is more suitable to new solvers, algo-
rithms and with data structures that are well adapted
to modern and emerging computer architectures. A dra-
matic acceleration of computations can then often be
achieved. This interdisciplinary form of a coordinated
design approach has proven to be successful throughout
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the history of scientific computing and it is a corner-
stone also for the QMD methodology we will present in
this review.

In this review, we will describe the computational
framework of extended Lagrangian Born–Oppenheimer
molecular dynamics (XL-BOMD) [13–31]. XL-BOMD
was introduced to reduce the computational overhead
of QMD simulations within the Born–Oppenheimer
approximation. In this way the range of applications for
practical QMD simulations can be extended to larger
systems and longer simulation times. XL-BOMD rep-
resents only a single step in a long development of
QMD methods that goes back to the early formulations
of quantum mechanics. The context that initiated the
development of XL-BOMD will help us better under-
stand the new framework. Some background of QMD
and the early forms of XL-BOMD will therefore be dis-
cussed as well as established QMD methods such as
regular, direct Born–Oppenheimer molecular dynam-
ics (BOMD), Ehrenfest molecular dynamics (EMD),
and Car–Parrinello molecular dynamics (CPMD). This
article is not a review over these well-known schemes,
though the success and shortcomings of previous meth-
ods are important for the background and motivation
behind the development of XL-BOMD.

XL-BOMD provides a general framework for molec-
ular dynamics simulations that can be adapted to dif-
ferent levels of theory and descriptions of the elec-
tronic structure. XL-BOMD is based on an extended
Lagrangian formulations, where the electronic degrees
of freedom are propagated as extended dynamical
variables in addition to the nuclear degrees of free-
dom along the molecular trajectories. Various formu-
lations and techniques of XL-BOMD have been used
in a number of software packages, including applica-
tions to density functional theory, semi-empirical elec-
tronic structure theory, polarizable force fields, excited
state dynamics, and superfluidity [16,17,20,21,23,24,
27,32,33,33–49]. In this way, XL-BOMD is similar to
Car–Parrinello molecular dynamics (CPMD) [18,50–
55], which also provides a general framework for QMD
simulations based on an extended Lagrangian approach.
Car–Parrinello MD was originally formulated with the
extended electronic degrees of freedom expressed with
plane-waves [50], but it has been used also with, for
example, the charge density in orbital-free density func-
tional theory [56–58], with the dipole moments in polar-
izable force-fields [59–62], with local atomic orbitals
[63], the density matrix [64–66], and in combination
with correlated electrons [67].

To illustrate the broad applicability of XL-BOMD it
will be derived from general Hohenberg–Kohn density
functional theory, which forms a theoretical basis both
for orbital-free and many orbital-based electronic struc-
ture methods [30]. We will also present three explicit
formulations of XL-BOMD: the first for quantum chem-
istry applications using a density matrix formalism
based on thermal Hartree–Fock theory; the second for
semi-empirical self-consistent-charge density-functional
tight-binding (SCC-DFTB) theory; and the third for
coarse grained charge relaxation models, where the

charge-dependent interatomic potential can be param-
eterized, for example, with modern machine learning
techniques using deep neural networks and large data
sets of pre-calculated data. These examples span a
broad range of possible applications across different
levels of theory. However, we will not go beyond the
single-particle picture of the electrons in our presenta-
tion of XL-BOMD. In contrast to CPMD, which pro-
vides a natural formulation of QMD also for the exact
many-body electronic wavefunction, XL-BOMD is cur-
rently best suited for effective single-particle or mean-
field descriptions of the electrons and for orbital-free
charge relaxation models.

After a brief background of QMD, including estab-
lished alternative methods and earlier forms of XL-
BOMD, the QMD framework of XL-BOMD will be
presented in its most recent form based on a general
Hohenberg–Kohn density functional formulation. We
then present how to integrate the equations of motion
and, in particular, how the integration of the extended
electronic equations of motion can be performed using
a preconditioned low-rank Krylov subspace approach.
A simple driven harmonic oscillator model is used to
illustrate some of the particular challenges that appear
in the integration of the combined nuclear and elec-
tronic degrees of freedom in XL-BOMD. We then give
formulations of XL-BOMD for thermal Hartree–Fock
and SCC-DFTB theory that also can be used to treat
reactive degenerate systems, where the electronic gap
is opening and closing along the molecular trajecto-
ries. Thereafter, we discuss more approximate, non-
linear charge relaxation models that we believe are par-
ticularly suitable for modern machine learning tech-
niques. Each of the three formulations of XL-BOMD
are demonstrated with a simple example. At the end
we discuss some applications of XL-BOMD before giv-
ing a brief summary and an outlook to future challenges
and opportunities.

Atomic units (e = �
2/me = 2πε0 = 1) are used

throughout the article if not otherwise stated.

2 Quantum-based molecular dynamics

2.1 The Born–Oppenheimer approximation

In QMD the Born–Oppenheimer approximation [54,
55,68,69] is of fundamental importance, because it
enables practically feasible simulations by a separation
of the nuclear and the electronic coordinates. In this
way we can combine classical molecular dynamics with
interatomic forces that are generated on-the-fly from
an electronic structure that is determined by a time-
independent theory.

The Born–Oppenheimer approximation can be under-
stood from the intuitive picture that the light and
fast electrons evolve on a much more rapid time scale
compared to the heavier and slower nuclear degrees of
freedom. We therefore assume that electrons are able
to instantaneously respond to the nuclear motion and

123



Eur. Phys. J. B (2021) 94 :164 Page 3 of 27 164

relax to their equilibrated ground state. In this way, the
electronic structure, in each instant of time, behaves
as if it is in a fully relaxed stationary state that is
determined by a time-independent external potential
given by fixed nuclear positions. This allows a sepa-
ration in the solution of the electronic wavefunctions
from the nuclear degrees of freedom, where the poten-
tial energy surface is determined from the relaxed sta-
tionary state of the electrons with fixed atomic posi-
tions. The same separation is possible also when we
assign a thermal distribution to the electrons, i.e. we
assume that the electronic degrees of freedom under-
take an instantaneous thermal equilibration for each
new nuclear configuration for some predefined elec-
tronic temperature. In principle, this assumption goes
beyond the traditional Born–Oppenheimer approxima-
tion, because the electrons are thermally excited and
not in their ground state. However, in this article we will
also use this instantaneous electronic free energy equi-
libration as a part of a generalized Born–Oppenheimer
approximation. The thermal equilibration is of impor-
tance to degenerate systems, because at elevated elec-
tronic temperatures it introduces fractional occupation
numbers that remove instabilities associated with the
ground state solutions and the integer degeneracies.
Apart from the generalized Born–Oppenheimer approx-
imation we will further assume that the nuclear degrees
of freedom are treated classically. However, we should
not forget that the Born–Oppenheimer approximation
has many limitations, though in this article it will be
assumed to be valid unless otherwise stated.

It is interesting to note that the first applica-
tion of the Born–Oppenheimer approximation predates
its theoretical justification by Max Born and Robert
Oppenheimer. Walter Heitler and Fritz London pub-
lished their famous paper on the interatomic potential
energy surface of the hydrogen molecule [68], which was
derived for the relaxed electronic ground state with sta-
tionary nuclear positions, about half a year prior to the
seminal paper by Born and Oppenheimer.

2.2 Ehrenfest molecular dynamics

A practically feasible alternative formulation for QMD
simulations that does not rely on the full Born–
Oppenheimer approximation is Ehrenfest MD [54]. In
Ehrenfest MD the time-dependent Schrödinger equation
is solved for the electronic degrees of freedom in each
time step from which the interatomic forces for the clas-
sical nuclear degrees of freedom are determined on-the-
fly for each new instantaneous electronic state. In this
case the electrons never reach their relaxed ground state
as the atoms are moving. However, as long as the time
scales for the nuclear and electronic degrees of freedom
are well separated, and the electronic degrees of freedom
is in an initial ground state, the electronic wavefunc-
tion will closely follow the fully relaxed ground state
solution along the molecular trajectories. If chemical
reactions (with conical intersections) occur, this sepa-
ration is no longer possible. A major disadvantage with

Ehrenfest MD is the fast time scale of the electronic
degrees of freedom, which requires very short inte-
gration time steps, and an inconsistency between the
description of the time-dependent quantum mechanical
electronic evolution and the classical nuclear degrees of
freedom, where the electronic wavefunction may oscil-
late between different states while the nuclear posi-
tions just follow a single “average” classical path. In
Born–Oppenheimer MD this potential inconsistency is
avoided, because the electronic degrees of freedom fol-
low a single (thermally) relaxed ground state along the
molecular trajectories and the time scale is governed
only by the slower nuclear motion, which allows much
longer integration time steps.

2.3 Born–Oppenheimer and Car–Parrinello
molecular dynamics

In regular, or direct Born–Oppenheimer molecular
dynamics, the interatomic forces are calculated on-the-
fly from the potential energy surface that is determined
by the equilibrated stationary solution of the electrons
with fixed nuclear positions in each time step, as moti-
vated by the Born–Oppenheimer approximation. In
density functional or Hartree–Fock theory this instan-
taneously relaxed electronic state is given as a self-
consistent field (SCF) solution to a time-independent,
non-linear, quantum-mechanical eigenvalue equation.
The main computational obstacles in quantum-based
Born–Oppenheimer MD simulations is to find this elec-
tronic ground state solution. The non-linear eigen-
value problem requires an iterative optimization pro-
cedure with repeated diagonalizations that converges
to the relaxed self-consistent solution for the electrons.
Because the self-consistent optimization is expensive,
we usually reuse the ground state solutions from pre-
vious time steps (or some extrapolation from previous
time steps) as an initial guess to the SCF optimization
procedure. This drastically reduces the number of iter-
ations required to reach convergence. However, in prac-
tice the SCF optimization is never complete and always
approximate. This causes some significant problems.
The extrapolation followed by an incomplete SCF opti-
mization leads to a systematic drift in the energy, where
the system is artificially heated up or cooled down. The
energy drift is caused by the broken time-reversal sym-
metry in the underlying fictitious propagation of the
electronic degrees of freedom that is generated by the
extrapolation from previous time steps [13,51,70]. Only
by restarting the SCF optimization from overlapping
atomic charge densities, or by enforcing a very tight
convergence, is it possible to avoid this problem in reg-
ular, direct Born–Oppenheimer MD. This leads to a
significant increase in the computational cost.

Direct BOMD simulations were performed for molec-
ular model systems using approximate electronic struc-
ture methods already in the early 70’s by Karplus and
co-workers [71,72]. These applications of BOMD were
restricted to small systems and short simulations times
[73] with limited impact [54]. However, a revolutionizing
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breakthrough occurred in 1985, when Roberto Car and
Michele Parrinello introduced an extended Lagrangian
approach to first principles molecular dynamics simula-
tions based on density functional theory [18,50–55] that
avoided the non-linear eigenvalue problem and the iter-
ative SCF optimization. Car and Parrinello molecular
dynamics (CPMD) pioneered the application of prac-
tically feasible QMD simulations with true predictive
power with a framework that could be used both for
solids and chemical systems. With CPMD the immense
scientific opportunities of MD simulations derived from
ab initio theory was demonstrated for the first time.
In this way CPMD opened the door to a rapid devel-
opment of improved regular, direct Born–Oppenheimer
MD methods [2,9,54,74,75], which followed in the late
80’s and early 90’s, and it also laid the ground work for
XL-BOMD presented in this review.

CPMD provides a general physical framework for
first principles QMD that is based on an extended
Lagrangian description, where the electronic degrees of
freedom are included as classical dynamical field vari-
ables that are propagated in addition to the nuclear
coordinates and velocities along the molecular trajec-
tories. The concept of an extended Lagrangian frame-
work for MD simulations goes back to Andersen’s
approach to MD simulations at constant temperatures
and pressures [76]. To achieve constant pressure, Ander-
sen introduced the volume as an extended dynamical
variable with a fictitious mass constant and a kinetic
energy term, in addition to the nuclear coordinates,
which allowed a regulation of the pressure within an
isobaric ensemble. The same underlying idea was later
used by Parrinello and Rahman for structural optimiza-
tions [77], where the cell shape was used a dynam-
ical tensor variable, and later by Nose [78] for MD
simulations under constant temperature or pressure.
Car and Parrinello took the concept in a new direc-
tion and with a different purpose. Instead of using the
extended Lagrangian to introduce some external con-
straints for a classical MD simulation, e.g. correspond-
ing to the effect of an external heat bath, they included
the effective single-particle electronic wavefunctions as
extended classical dynamical field variables in a first-
principles molecular dynamics scheme, which originally
was based on Kohn–Sham density functional theory.
In this way, it was possible to avoid the non-linear,
quantum-mechanical, Kohn–Sham eigenvalue problem.
Instead, the interatomic forces could be calculated on-
the-fly from the constrained propagation of the elec-
tronic degrees of freedom with its own mass and kinetic
energy. This approach may appear similar in spirit to
Ehrenfest MD, but CPMD allows longer integration
time steps and a control over the adiabatic separa-
tion between the electronic and nuclear degrees of free-
dom. In CPMD the electronic degrees of freedom are
never at the exact fully relaxed self-consistent solution
that defines the Born–Oppenheimer potential energy
surface, but in practice they can be kept very close.
Though, keep in mind that also in regular direct Born–
Oppenheimer MD simulations, the electronic wavefunc-
tions and the density are never, at least in practice,

at the fully optimized and self-consistent ground state
[51]. In CPMD the non-linear optimization problem
is avoided and the dynamics of the extended elec-
tronic degrees of freedom is given from a physically
correct time-reversible formulation instead of from an
irreversible ad hoc extrapolation approach. Each force
evaluation in CPMD is much faster than in regu-
lar BOMD, though a shorter integration time step is
often required. The time step is determined by the
size of a fictitious electron mass parameter. To ensure
an adiabatic separation between the electronic and
the nuclear degrees of freedom, this mass parameter
needs to be kept small. This is particularly limiting for
systems with a small electronic gap, where the elec-
tron mass parameter needs to be reduced. The smaller
mass requires a shorter integration times steps to cap-
ture the high-frequency dynamics of a lighter electronic
degrees of freedom. Another limitation with CPMD is
an orthonormality condition for the electronic wave-
functions, or the corresponding idempotency condition
for the density matrix. The orthonormality is enforced
through a constrained dynamics, which increases the
cost and can reduce the ability to achieve efficient par-
allelism.

2.4 Time-reversible Born–Oppenheimer molecular
dynamics

So how can we avoid the shortcomings of BOMD and
the limitations of CPMD? Probably the most frequently
used technique for direct BOMD simulations, as men-
tioned above, is based on some form of extrapolation
of the relaxed electron densities or wavefunctions from
previous time steps that can be used as an accurate ini-
tial guess to the electronic ground state optimization
for a new set of atomic positions [70,79–82]. The easi-
est method is to reuse the converged solution from the
previous time step. Unfortunately, as discussed above,
the extrapolation followed by an incomplete SCF opti-
mization leads to the broken time-reversal symmetry
in the fictitious propagation of the underlying elec-
tronic degrees of freedom, where the electrons behave
as a heat source or heat sink and the system is artifi-
cially heated up or cooled down. This unphysical behav-
ior can be avoided by introducing a perfectly time-
reversible extrapolation. A time-reversible extrapola-
tion followed by an SCF optimization is the basis for
time-reversible BOMD [9,13,18,19,83,84]. Because of
the time reversibility in the extrapolation of the ini-
tial guess, the iterative SCF optimization can be kept
approximate without causing any systematic drift in
the total energy, which provides a significant accelera-
tion of QMD simulations.

Shortly after the introduction of time-reversible
BOMD it was discovered how the method could be gen-
erated from the framework of an extended Lagrangian
dynamics, where extended auxiliary electronic degrees
of freedom evolved through an additional harmonic
oscillator that is centered around the fully optimized
Born–Oppenheimer electronic ground state solution.
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The equations of motion were given in a mass zero
limit of the fictitious electron mass parameter of the
extend harmonic oscillator [14]. This initial formula-
tion of XL-BOMD requires only a few SCF iterations
per time step and avoids any systematic drift in the
total energy that otherwise could be caused by a broken
time-reversibility. However, sometimes it seemed pos-
sible to ignore the SCF optimization completely and
use only a single diagonalization or density matrix con-
struction per MD time step [15,21,34,85]. To theoret-
ically justify this form of fully SCF-free XL-BOMD
required some important modifications [22]. An approx-
imate shadow Born–Oppenheimer potential energy sur-
face had to be constructed and a metric tensor was
introduced in the definition of the harmonic well. The
equations of motion were then derived in an adiabatic
limit, where, once again, the electronic mass param-
eter goes to zero at the same time as the frequency
of the extended harmonic well goes to infinity, such
that there is a clear adiabatic separation between the
motion of the extended electronic degrees of freedom
and the fastest nuclear motion. It is this fully SCF-
free and adiabatically decoupled version of XL-BOMD
[22,26,28,30] that is the main focus of this article.

3 Extended Lagrangian Born–Oppenheimer
molecular dynamics

3.1 Regular direct Born–Oppenheimer molecular
dynamics

In Hohenberg–Kohn density functional theory (DFT)
[86–88], the Born–Oppenheimer potential energy, U(R),
for a molecular system is determined from a constrained
minimization of the electronic energy functional,

EDFT[R, ρ] = F [ρ] +
∫

vext(R, r)ρ(r)dr. (1)

The energy functional includes a universal functional,
F [ρ], of the electron density, ρ(r), and an external
potential, vext(R, r), that we will assume is gener-
ated by ions at atomic position R = {RI}, where
RI = [RIx, RIy, RIz]. The constrained minimization of
EDFT[R, ρ] is performed over all v-representable densi-
ties, i.e. only over physically relevant densities that can
be generated by electronic wavefunctions determined
by some underlying potential, which integrates to the
given number of electrons, Ne. The ground state density
that is attained at the energy minimum (or infinum),

ρ0(r) = arg min
ρ∈v

{
EDFT[R, ρ]

∣∣∣∣
∫

ρ(r)dr = Ne

}
, (2)

then defines the Born–Oppenheimer potential energy,

UBO(R)=F [ρ0]+
∫

vext(R, r)ρ0(r)dr + vnn(R), (3)

which also includes the repulsive ion-ion energy term,
vnn(R). A Born–Oppenheimer MD can then be defined
by the Lagrangian,

L(R, Ṙ) =
1
2

∑
I

MI |ṘI |2 − UBO(R), (4)

with the equations of motion derived from Euler–
Lagrange’s equations,

MIR̈I = −∇IUBO(R), (5)

and with the constant of motion,

Etot
BO =

1
2

∑
I

MI |ṘI |2 + UBO(R). (6)

The equations of motion can be integrated step by step
using, for example, the frequently used velocity Verlet
algorithm or other integrations schemes [8,89–96] which
generate the molecular trajectories.

3.2 A shadow Born–Oppenheimer potential

The main cost in a BOMD simulation is the constrained
non-linear optimization in Eq. (2), which has to be
performed in each time step prior to the force evalu-
ations. It is possible to remove the main part of this
cost by replacing the non-linear universal functional,
F [ρ], with some approximate functional that allows a
faster and easier ground state relaxation of the den-
sity. The basic idea, which is the first step in the con-
struction of XL-BOMD, is that instead of calculating
an expensive, yet still approximate ground state den-
sity, ρ0(r), for the exact universal functional, F [ρ], by
an iterative optimization procedure, we construct some
approximate functional, F ≈ F [ρ], for which we can cal-
culate an exact ground state density, �0(r), such that
�0(r) ≈ ρ0(r), in a fast and direct way that fully avoids
or significantly reduces the cost of the iterative opti-
mization. This idea is also the principle behind back-
ward error analysis, which has been used to construct
shadow Hamiltonian methods in classical dynamics [97–
99]. It is important to note that the exact form of the
universal functional, F [ρ], is in general unknown and
that we are limited to use approximate forms such as
the orbital-based Kohn–Sham functional with approxi-
mate exchange correlation terms. Small adjustments to
F [ρ] may therefore be irrelevant in practice. There are,
of course, many possible ways to approximate the uni-
versal functional, F [ρ]. Maybe the most straightforward
way is a linearization of F [ρ] around some approximate
ground state density, n ≈ ρ0, which gives us an approx-
imate and n-dependent “shadow” functional,

F [ρ, n] = F [n] +
∫

δF [ρ]
δρ

∣∣∣∣
ρ=n

(ρ(r) − n(r))dr. (7)
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A more general approximation is given by an implicit
definition of F [ρ, n], where F [ρ, n] is defined such that

F [ρ] = F [ρ, n] + O
(
(ρ0 − n)2

)
, (8)

which allows for mixed expansions, where some part
of F [ρ] can be expended to higher orders in n. This
is needed in the orbital-free formulations to provide a
well-defined stationary solution for the optimized elec-
tronic ground state. The approximate electronic energy
density functional, replacing EDFT[R, ρ] in Eq. (1), is
then given by

EDFT[R, ρ, n] = F [ρ, n] +
∫

vext(R, r)ρ(r)dr. (9)

The corresponding n-dependent optimized ground state
density, �0[n](r), is attained at the lowest stationary
state,

�0[n](r)=arg minρ∈v

{
EDFT[R, ρ, n]

∣∣∫ ρ(r)dr=Ne

}
,

(10)

i.e. as the solution to

δEDFT[R, ρ, n]
δρ

= 0, where
∫

ρ(r)dr = Ne.(11)

With the minimization (min) in Eq. (10) we here mean
the energetically lowest stationary density given as a
solution to Eq. (11). This generalization is necessary to
allow �0[n](r) to be attained also at inflection points
for unbounded energy functionals. The approximate n-
dependent shadow Born–Oppenheimer potential energy
is then given by

UBO(R, n) = F [�0[n], n]

+
∫

vext(R, r)�0[n](r)dr + vnn(R). (12)

3.3 The extended Lagrangian

The error in the shadow potential energy, UBO(R, n),
in Eq. (12), is of second order in the residual functional,
f [n] = �0[n]−n, i.e. the error scales as O

(
|�0[n] − n|2

)
.

If f [n] = 0 the variationally optimized density �0[n] is
the exact self-consistent solution, because the lineariza-
tion of F [ρ] was performed around n = ρ0. Only if we
can keep n(r) close to the self-consistent exact ground
state, ρ0(r), is the linearization accurate, which there-
fore also means that n(r) should be close to �0[n](r).
We can achieve this by letting n(r) evolve closely to
the exact ground state density, ρ0(r), or at least a best
available approximation to the ground state, as pro-
vided �0[n](r). In XL-BOMD we accomplish this by
introducing n(r) and ṅ(r) as additional classical field
variables that are propagated through an extended har-
monic oscillator, where the oscillations of n(r) are cen-
tered around �0[n](r). In a molecular dynamics sim-
ulation this harmonic oscillator will keep n(r) close

to �0[n](r) and therefore also to ρ0(r). In this way
we can replace the regular Born–Oppenheimer poten-
tial, UBO(R), with the approximate shadow potential,
UBO(R, n).

The extended Born–Oppenheimer Lagrangian [22,26]
that is based on the shadow potential, UBO(R, n), and
that includes n(r) and ṅ(r) as extended dynamical field
variables propagated through the harmonic oscillator
centered around �0[n](r) is defined by

L(R, Ṙ, n, ṅ)

=
1
2

∑
I

MI |ṘI |2 − UBO(R, n) +
μ

2

∫
|ṅ(r)|2dr

−μω2

2

∫
(�0[n](r) − n(r))T (r,r’)(�0[n](r’)

−n(r’))drdr’, (13)

where μ is a fictitious electronic mass parameter and
ω is the frequency of the extended harmonic oscillator.
T (r, r′) is a symmetric positive definite metric tensor
for the harmonic well that is given by

T (r,r’) =
∫

K(r”,r)K(r”,r’)dr”, (14)

for some well-chosen kernel function, K(r,r′). Here we
choose the kernel as the inverse of the Jacobian, J(r,r′),
of the residual functional, f [n] = �0[n] − n, i.e.

J(r,r’) =
δf [n(r)]
δn(r’)

=
δ�0[n](r)
δn(r′)

− δ(r-r’),

K = J−1. (15)

The kernel and the metric tensor are important in
the latest formulations of XL-BOMD as they make
the dynamical variable density, n(r), oscillate around
an even closer approximation to the exact Born–
Oppenheimer ground state density, ρ0(r), than the
optimized ground state, �0[n](r), of the shadow Born–
Oppenheimer potential [22,26].

3.4 Equations of motion

The equations of motion for the nuclear coordinates and
the evolution of the density can be derived from Euler–
Lagrange equations for the extended Lagrangian in Eq.
(13), i.e.

d
dt

(
∂L(R, Ṙ, n, ṅ)

∂ṘI

)
=

∂L(R, Ṙ, n, ṅ)
∂RI

,

d
dt

(
δL(R, Ṙ, n, ṅ)

δṅ

)
=

δL(R, Ṙ, n, ṅ)
δn

. (16)

A straightforward derivation from the Euler–Lagrange
equations leads to a fairly unpractical set of coupled
equations,
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MIR̈I = − ∇IUBO(R, n)|n

− ∇I

(
μω2

2

∫
(�0[n](r)

− n(r))T (r,r’)(�0[n](r’) − n(r’))drdr’
)∣∣∣∣

n

n̈(r) = −ω2

∫
K(r,r’) (�0[n](r’) − n(r’)) dr’

− 1
μ

δUBO(R, n)
δn

. (17)

To avoid the direct coupling between n and R and
the computational complexity of these equations, we
assert an adiabatic separation in the limit where the
harmonic oscillator frequency, ω, of the fast and light
extended electronic degrees of freedom is high com-
pared to the slower and heavier nuclear motion with
a highest frequency, Ω. This can be seen as a classical
analog to the Born–Oppenheimer approximation that
now is applied to decouple also the extended classical
electronic degrees of freedom from the nuclear motion.
In general we can introduce this adiabatic approxima-
tion of Eq. (17) by letting ω → ∞ and μ → 0, while
μω = constant [22]. A similar adiabatic or “mass-zero”
limit was used in the original formulation of XL-BOMD
[14] and was recently also introduced to the equations
of motion in CPMD by including the adiabatic con-
straints through additional Lagrange multipliers [100–
102]. In the asymptotic adiabatic approximation of the
equations of motion in Eq. (17) we assume a 1/ω2 scal-
ing of the residual function, i.e. |�0[n]−n| ∝ 1/ω2, and
that δUBO(R, n)/δn ∝ (�0[n] − n). The ∼ (�0[n] − n)
scaling of δUBO(R, n)/δn is not achieved for any choice
of the shadow potential, though the scaling appears,
for example, in Hartree–Fock and Kohn–Sham den-
sity functional theory if we use the linear expansion
of the energy functionals around n. The relation that
|�0[n]−n| ∝ 1/ω2 is also non-trivial. So far we have only
been able to show this behavior a posteriori in numer-
ical simulations or for simple model systems (e.g. see
Fig. 4), which will be discussed below in Sect. 3.6. Using
these relations in the asymptotically adiabatic limit of
Eq. (17) [22], we get the equations of motion,

MIR̈I = − ∇IUBO(R, n)|n
n̈(r) = −ω2

∫
K(r,r’) (�0[n](r’)−n(r’)) dr’, (18)

with the constant of motion,

Etot
XL=

1
2

∑
I

MI |ṘI |2+UBO(R, n). (19)

These are the key equations that determine the molec-
ular trajectories of XL-BOMD.

Notice, that deriving the adiabatic equations of
motion in the limit when ω → ∞ and μ → 0 is dif-
ferent from simply setting the frequency to be ω = ∞
and the mass value μ = 0. For example, the equations of
motion for the electronic degrees of freedom in Eq. (18)

contains a term that is proportional to |ω2×(�0[n]−n)|,
which will have a finite value even as ω → ∞, because
|�0[n]−n| ∝ 1/ω2. The equations of motion in Eq. (18)
are simply the adiabatic approximation of Eq. (17) in
the asymptotic limit of large values of ω/Ω and a small
extended electron mass value μ. When the equations of
motion are integrated we will always use finite values of
ω, whereas the dependency on the value of μ drops out
and is automatically avoided in Eq. (18). In a molec-
ular dynamics simulation we, therefore, need to make
sure that the electronic frequency, ω, is sufficiently large
compared to the fastest nuclear motion frequency, Ω,
such that the adiabatic separation between the elec-
tronic and the nuclear motion is valid, because this is
the assumption under which we derived the equations
of motion. An analogous requirement also is needed for
regular direct Born–Oppenheimer MD that also assume
a separation in the time scales between the nuclear
and the electronic degrees of freedom in the deriva-
tion of the equations of motion in Eq. (5). As we will
see below in Sect. 3.6 this adiabatic separation in XL-
BOMD is system independent and it is automatically
fulfilled as long as we use integration time steps of the
same order as we normally would use in regular direct
Born–Oppenheimer MD.

We way view the equations of motion in Eq. (18) as
an alternative definition of XL-BOMD in the same way
as we could define regular Born–Oppenheimer MD by
Eq. (5), though that would obscure the origin and the
validity of the dynamics. It would also conceal how XL-
BOMD can be used as a general theoretical framework
for a broad class of applications. The definition of XL-
BOMD through the extended Lagrangian in Eq. (13) is
therefore a more natural and transparent choice, which
motivates the term “XL-BOMD” instead of the earlier
term “time-reversible BOMD” [13,19].

3.5 Integrating the equations of motion

The integration of the equations on motion in Eq. (18)
can be performed with a number of methods, including
a coupling to thermostats both for the nuclear or the
electronic degrees of freedom [24,38,41,43,103]. Regu-
lar leapfrog velocity Verlet integration as well as higher
order quasi-symplectic schemes have been proposed for
the integration [14,45,104,105], where additional dissi-
pative damping terms are used to keep the electronic
degrees of freedom synchronized with the evolution of
the nuclear degrees of freedom and the correspond-
ing exact Born–Oppenheimer ground state density. The
dissipative terms can be seen as a weak friction that bal-
ances the accumulation of intrinsic numerical noise, for
example, due to finite arithmetics, similar to a Langevin
dynamics [15,16,84,106]. Rapid changes in the elec-
tronic structure may also cause energy transfer to the
extended Harmonic well that needs to be cooled down.
The integration method that we have used most fre-
quently in quantum-based XL-BOMD is given by the
modified hybrid leapfrog velocity Verlet algorithm,
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Fig. 1 The oscillatory motion of x(t) around R(t) for the
model system in Eqs. (21)–(26) without any damping, i.e.
for α = 0 in Eq. (26). The initial value of x(t) was set
different from R(t) to exaggerate the error. Without any
dissipation there is no mechanism for the oscillations in x(t)
to decay and to get synchronized with R(t) in a perfectly
time-reversible integration

ṘI(t +
δt

2
) = ṘI(t) +

δt

2
R̈I(t),

RI(t + δt) = RI(t) + δtṘI(t +
δt

2
),

n(t + δt) = 2n(t) − n(t − δt) + δt2n̈(t)

+α

kmax∑
k=0

ckn(t − kδt),

ṘI(t + δt) = ṘI(t +
δt

2
) +

δt

2
R̈I(t + δt), (20)

where the coefficients, α and {ck}kmax
k=0 , as well as a

dimensionless constant, κ = δt2ω2, for various values
of kmax are given in Ref. [84]. In the initial time step
n(t0) and n(t0 − kδt) are all set to the fully converged
regular Born–Oppenheimer ground state density, ρ0(r),
at t0.

The electronic dissipative force term, proportional
to α in Eq. (20), breaks time-reversibility to a higher
odd-order in the integration time step δt. The dissi-
pative force term is constructed to be time reversible
only up to some specific odd-order in δt, i.e. such
that all lower odd-orders in δt are vanishing. In this
way it is similar in spirit to the always stable predic-
tor corrector scheme by Kolafa [81,107] and the Fock
matrix dynamics schemes by Pulay [70,80]. However,
instead of restoring an approximate time-reversal sym-
metry for a time-irreversible extrapolation, the scheme
above breaks time-reversibility in an otherwise perfectly
time-reversible Born–Oppenheimer dynamics [13]. The
hybrid leapfrog velocity Verlet algorithm in Eq. (20) is
in many ways just an ad hoc solution without a rigorous
theoretical underpinning and can therefore be expected
to be replaced by some more justifiable method. Nev-
ertheless, it works surprisingly well.

3.6 Harmonic oscillator model

To illustrate the mechanics of the extended Lagrangian
formulation and the modified hybrid leapfrog velocity
Verlet integration scheme in Eq. (20) we can study a
simple (unit-less) toy model, where we let an oscillatory
nuclear motion,

R(t) =
4∑

k=1

Ak cos(Ωkt), (21)

A1 = 1, A2 =
23
17

, A3 = −53
73

, A4 =
17
37

(22)

Ω1 = 1, Ω2 =
17
31

, Ω3 =
127
257

, Ω4 =
19
31

(23)

be accompanied by and auxiliary dynamical variable,
x(t), that follows the motion of R(t) through a har-
monic oscillator centered around R(t). We define this
dynamics for x(t) with the Lagrangian,

L(x, ẋ) =
μ

2
ẋ2(t) − μw2

2
(R(t) − x(t))2 , (24)

which gives us the equation of motion,

ẍ(t) = ω2 (R(t) − x(t)) . (25)

This model system is very similar to what we use in
XL-BOMD, where the density, n(t), which is evolving
around the electronic ground state density determined
by the atomic positions, is replaced by x(t) oscillating
around R(t). The equation of motion for x(t) in Eq.
(25) can, therefore, also be integrated with the damped
Verlet scheme in Eq. (20), where

x(t + δt) = 2x(t) − x(t − δt) + δt2ω2 (R(t) − x(t))

+α

K∑
k=0

ckx(t − kδt). (26)

We can use this harmonic oscillator model and the
integration scheme above to understand the require-
ments for an adiabatic separation between R(t) and
x(t). This separation can be fulfilled for a constant and
system-independent value of the dimensionless variable
κ = δt2ω2 and the fact that we have to choose δt as
some fraction of the fastest period, T , of the nuclear
degrees of freedom, R(t). In this way we can have
a system-independent adiabatic separation between ω
and the fastest nuclear frequency, Ω1 = 1, as long
as the κ-value is sufficiently high. With a constant
κ = δt2ω2 = 1.84 and with ω chosen to be sepa-
rated from Ω1 by a factor of 3, i.e. with ω = 3Ω1 such
that δt =

√
κ/ω2 ≈ 0.452, then the shortest period,

T = 2π/Ω1 of the nuclear motion, R(t), is integrated
in about 14 integration time steps, since T/dt ≈ 13.9.
This is a fairly typical choice for a Verlet integration.
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Fig. 2 The oscillatory motion of x(t) around R(t) for the
model system in Eqs. (21)–(26) with and initial damping
using α = 0.0055 in Eq. (26) in the first 100 MD time steps
(t ≤ 45). The initial value of x(t) was set different from R(t)
to exaggerate the error. The finite damping term reduces the
oscillations in x(t) that get synchronized with R(t) through
the dissipation. The damping term is turned off after the
first 100 MD time steps (t ≈ 45), but the synchronization
is still kept after about 100,000 time steps, as shown in the
right panel

If we instead chose a shorter integration time step, the
adiabatic separation between ω and Ω1 increases with
the value of κ kept fixed. In this way we always have
an automatic separation in the frequencies between the
harmonic oscillator and the fastest nuclear motion as
long as we take normal integration times steps. The
frequency separation would increase if we increased the
value of κ. However, for the Verlet integration scheme
there is an upper stability limit with κ ≤ 2 [84].

To illustrate the properties of the modified Verlet
integration scheme we can look at some simulation
examples for the harmonic oscillator model. For the
parameters we choose the optimized values in Ref. [84],
where κ = 1.84, c0 = −14, c1 = 36, c2 = −27, c3 =
−2, c4 = 12, c5 = −6, c6 = 1 and α = 0.0055. We use
the same integration time step as above, δt =

√
κ/ω2 ≈

0.452, which gives us the frequency separation where
ω = 3Ω1. In Fig. 1 we first show what happens without
the dissipative force term, i.e. when α = 0. Starting
with an initial guess for x(t) 	= R(t) there are signif-
icant oscillations in x(t) around R(t). The integration
is perfectly time reversible and there is no mechanism
for these oscillations to decay. This may indicate a poor
behavior of XL-BOMD [106], but this is not the case if a
more careful integration scheme is used. The left panel
of Fig. 2 shows what happens when the damping term
is turned on with α = 0.0055. The amplitude of the
oscillatory difference between x(t) and R(t) decays and
the trajectory of x(t) becomes synchronized with R(t).
After 100 MD time steps (t ≈ 45) the damping is turned
off. The right panel of Fig. 2 shows how the synchroniza-
tion is still kept after about 100,000 MD time steps. In
quantum based molecular dynamics simulations there is
often a significant amount of numerical noise and with-
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Fig. 3 The oscillatory motion of x(t) around R(t) for the
model system in Eqs. (21)–(26) with an initial damping
using α = 0.0055 in Eq. (26) in the first 100 MD time steps
(t ≤ 45). The initial value of x(t) was set different from R(t)
to exaggerate the error and an additional numerical noise
term, ξ(t) ∈ [−0.1, 0.1], is added to x(t) in each time step.
The damping term is used only during the first 100 MD time
steps, after which it is turned off (t ≈ 45). We then see a
slow but steady increase in the deviation between x(t) and
R(t) because of the noise accumulation
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Fig. 4 The root mean square (RMS) deviation between
the oscillatory motion of x(t) and R(t) for the model system
in Eqs. (21)–(26) as a function of the adiabatic separation
between Ω1 = 1 and ω. The deviation between x(t) and
R(t) scales approximately as |R(t) − x(t)| ∼ 1/ω2 as long
as ω > Ω1 = 1. The black dashed horizontal line shows the
error for ω = 3Ω1

out a continuous damping the synchronization between
the electronic and the nuclear motion will eventually
be lost. This effect is illustrated in Fig. 3, where we
include an additional random (uniformly distributed)
numerical noise term, ξ(t) ∈ [−0.1, 0.1], that is added
to x(t) in each time step. When the initial damping is
turned off after the first 100 MD time steps the error
starts to accumulate. Eventually the synchronization is
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completely lost. Only by keeping some dissipation is it
possible to avoid the noise accumulation.

The three Figs. 1, 2 and 3 illustrates some of the
most important properties of the extended Lagrangian
schemes and the integration of the equations of motion,
where x(t) is following the motion of R(t) through
the evolution of a harmonic oscillator centered around
R(t). Another important property of this toy model
is the scaling of |R(t) − x(t)| ∝ (Ω1/ω)2 in the adi-
abatic limit. This is easy to show through a direct
simulation of the harmonic oscillator model system,
which is illustrated in Fig. 4. The same scaling is found
in XL-BOMD, where the residual function behaves as
|�[n]−n| ∝ 1/ω2, which leads to an error in the shadow
Born–Oppenheimer potential that scales as O(δt4) [26].

Unfortunately, the damping term in the modified
Verlet integration breaks time-reversibility and for long
enough simulations a noticeable systematic drift in the
total energy (not shown) eventually appears. For QMD
simulations this time limit it typically not reached in
practice. However, in applications of XL-BOMD to
polarizable force fields or charge equilibration models
this can become a serious limitation. The UC Berkeley
group headed by Teresa Head-Gordon has made signif-
icant progress trying to overcome some of these limita-
tions with physics based approaches, where, for exam-
ple, the electronic degrees of freedom is thermostated
using Nose–Hoover or a Langevin dynamics [24,43–
45,108].

3.7 Preconditioned Newton–Krylov method

The equations of motion for the extended electronic
degrees of freedom in Eq. (18) include a kernel, K(r,r’),
that acts on the residual function, (�0[n](r’) − n(r′)). In
a discrete matrix-vector generalization the correspond-
ing equation of motion is given by

n̈ = −ω2K (�0[n] − n), (27)

where K ∈ RN×N and �0[n] : RN → RN . If we use the
vector function, f(n) = (�0[n]−n) : RN → RN , for the
residual function, the kernel, K, is given as the matrix
inverse of the Jacobian, J, of f(n), i.e.

Jij =
∂fi(n)
∂nj

,

K = J−1. (28)

The Jacobian matrix elements can be calculated with
quantum perturbation theory [28,109–111], where each
charge perturbation, ni, gives rise to a Coulomb poten-
tial of the linearized electronic density functional, EDFT

in Eq. (9), which generates a response in the optimized
density, �0[n], as in Eq. (10). In this way the Jacobian
matrix can be build column by column and the ker-
nel K is then given by the matrix inversion. The full
calculation of the kernel is computationally expensive,
especially if it would be performed in each time step,

and instead various approximations are used. The easi-
est technique is to approximate the kernel with a scaled
delta-function, where

K(r,r’) = −cδ(r-r’), c ∈ [0, 1]. (29)

This simple approximation works well for a broad range
of problems. However, more advanced approaches are
required for systems that exhibit intrinsic instabilities
with charge sloshing or reactions with opening and clos-
ing of the electronic gap between the highest occupied
molecular orbital (HOMO) and the lowest unoccupied
molecular orbital (LUMO).

The regular definition of the Jacobian in Eq. (28) is
based on partial derivatives with respect to the different
components of n = {nj}. This definition can be general-
ized [28] using a set of arbitrary directional derivatives,

fvi
(n) ≡ ∂f(n + λvi)

∂λ

∣∣∣∣
λ=0

. (30)

We can express the Jacobian in terms of such general-
ized directional derivatives as

J =
N∑

i,j=1

fvi
LijvT

j , (31)

where L = O−1
v is the inverse of the overlap matrix Ov

with matrix elements Ovij = vT
i vj . The n-dependence

in fvi ≡ fvi(n) has been dropped for simplicity. The
generalized Jacobian in Eq. (31) can be used to define
a rank-m approximation of the Jacobian, where

Jm =
m∑

i,j=1

fvi
LijvT

j , m ≤ N, (32)

from which we can construct a low-rank approximation
of the kernel, Km, through a Moore–Penrose pseudoin-
verse of Jm, where

Km =
m∑

i,j=1

viMijfT
vj

, m ≤ N. (33)

The matrix M = O−1
f is here the inverse of the overlap

matrix, Of , with elements Of ij = fT
vi
fvj

. A low-rank
kernel approximation from the inverse of the general-
ized Jacobian can then be used in the integration of
the equations of motion, Eq. (27), where only a few
directional derivatives are used instead of a complete
set of response calculations with respect to {ni} [28].
Each directional response calculation can be performed
using quantum perturbation theory. For systems with
fractional occupation numbers special care is needed
to capture the response also in the occupation and the
chemical potential [28,110,111]. To keep the cost low in
the low-rank kernel approximation in Eq. (33) we need
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to keep the number of directional derivatives as low as
possible. This can be achieved using preconditioning.

If we have access to some approximation to the
inverse Jacobian, K0 ≈ J−1, we may rewrite the equa-
tions of motion, Eq. (27), in an equivalent form,

n̈ = −ω2 (K0J)−1 K0 (�0[n] − n). (34)

Instead of finding some low-rank approximation of K =
J−1 acting on the residual vector f[n] = (�0[n] − n),
we can then calculate a low-rank approximation of
(K0J)−1 acting on the preconditioned residual K0f[n].
The corresponding preconditioned Jacobian is then
given by

K0J ≈
n∑

i,j=1

(K0fvi
) Li,jvT

j ≡
n∑

i,j=1

f̃vi
Li,jvT

j , (35)

with the pseudoinverse

K̃ = (K0J)−1 ≈
m∑

i,j=1

viM̃i,j f̃
T

vj
, m ≤ N, (36)

where M̃ = O−1
˜f

. This preconditioned low-rank approx-
imation of K can then be used in the equations of
motion,

n̈ ≈ −ω2

⎛
⎝ m∑

i,j=1

viM̃i,j f̃
T

vj

⎞
⎠K0 (q[n]-n) , m ≤ N,

(37)

which is exact in the full-rank limit when m = N .
The problem is now how we can choose the directional
derivatives, {vi} and {̃fvj}, in some optimal way such
that the error is small while the rank still can be kept
low. Probably the only reasonable and best possible way
is from an orthogonalized Krylov subspace, K⊥, where

{vi} ∈ K⊥ = span⊥
{
K0f(n), (K0J)K0f(n), (K0J)2K0f(n), . . .

}
.

(38)

Here span⊥ indicates the orthogonalized span, where
for each new vector in the subspace only the orthog-
onal complement to the previous vectors is kept. The
vectors, {vi} and {̃fvj

}, can then be generated using
the relations:

Ju =
∂f(n + λu)

∂λ

∣∣∣∣
λ=0

≡ fu,

f̃u = K0fu. (39)

The low-rank preconditioned Krylov subspace approx-
imation of the kernel provides an efficient approach to

integrate the electronic equations of motion in Eq. (18)
or as in Eq. (27). In combination with fractional occu-
pation numbers it allows stable QMD simulations of
systems that normally would be a major challenge also
for regular direct BOMD simulations [28,29].

The ability to generate low-rank approximations of
the pseudoinverse of a generalized Jacobian with direc-
tional derivatives chosen from a Krylov subspace is a
highly powerful methodology. Applied in combination
with Newton’s method for the solution of non-linear
equations it can be used to derive Broyden’s class of
algorithms, including Anderson and Pulay mixing, and
for linear systems of equations it automatically gener-
ates minimum residual methods [112–117]. In this way,
the low-rank preconditioned Krylov subspace approx-
imation of the generalized inverse Jacobian presented
above provides a transparent and unifying theory for
a number of frequently used methods. A more detailed
discussion in given in Ref. [28].

4 XL-BOMD for thermal Hartree–Fock
theory: a density matrix formulation

XL-BOMD defined by the Lagrangian in Eq. (13) was
presented with a shadow Born–Oppenheimer poten-
tial derived from the universal Hohenberg–Kohn den-
sity functional, F [n], for the electronic energy and with
the electronic density, n(r), as a dynamical field vari-
able. Different forms of XL-BOMD can then be con-
structed by replacing the universal functional with, for
example, the Kohn–Sham formulation [87,88,118] and
the electron density can be substituted with, for exam-
ple, the molecular orbitals [15] or the density matrix
[20,21,34,41]. We may alternatively apply XL-BOMD
together with thermal Hartree–Fock theory with the
electronic degrees of freedom represented by a density
matrix, which will be presented in this section. Hartree–
Fock theory is derived from an ansatz of the many-
body electron wavefunction that is formed by a single
Slater determinant. This leads to an electron-electron
interaction that consists of a mean-field Hartree term
corresponding to the electrostatic Coulomb energy for
the electron density plus an exchange term governed
by the anti-symmetry of the determinant wavefunction.
The many-body wavefunction formulation can then be
cast into a mean-field single-electron picture where the
electronic energy is given from a constrained minimiza-
tion of a density-matrix energy functional [119–121].
Hartree–Fock theory provides a natural example of how
a density matrix can be used to represent the electronic
degrees of freedom instead of the density or the wave-
functions. This makes the Hartree–Fock formalism gen-
erally applicable to a broad range of electronic structure
methods.

To present XL-BOMD based on thermal Hartree–
Fock theory using the density matrix formalism we first
describe the regular Born–Oppenheimer formulation,
where we assume an instantaneous thermal equilibra-
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tion of the electrons using a spin-restricted model. We
then present how XL-BOMD can be constructed. Com-
plementary descriptions are given in Refs. [29,32].

4.1 Born–Oppenheimer MD for thermal
Hartree–Fock theory

The electronic free energy in spin-restricted, thermal
Hartree–Fock theory [87,122], assuming an instanta-
neous thermal equilibration of the electrons for each
new atomic position, can be described in terms of a
density matrix function [119],

EHF(R,D) = 2Tr[hD] + Tr[DG(D)]

−2TeS(D⊥) − μe

(
2Tr[D⊥] − Nocc

)
.

(40)

We here assume a finite basis-set representation of
the operators, Xij = 〈φi|X̂|φj〉 using some underlying
atom-centered finite basis-set, {φi(r)}N

i=1, with over-
lap matrix Sij = 〈φi|φj〉. D ∈ RN×N is the single-
particle density matrix, Te is the electronic tempera-
ture, μe is the chemical potential, Nocc is the num-
ber of occupied orbitals (two electrons in each), h is
the charge independent one-electron Hamiltonian, and
G(D) = 2J(D) − K(D) is the combined Coulomb
and exchange matrix [29,119]. The relation between
the atomic-orbital representation of the density matrix,
D, and its orthogonal representation, D⊥, is given by
D = ZD⊥ZT , where the inverse overlap factoriza-
tion matrix, Z, is determined by the requirement that
ZTSZ = I. For simplicity, we have chosen the entropy
term S(D⊥), in Eq. (40), as a function of the density
matrix in its orthogonal representations, where

S(D⊥) = −kBTr
[
D⊥ lnD⊥ + (I − D⊥) ln(I − D⊥)

]
.

(41)

The Born–Oppenheimer potential energy surface is
given by the stationary minima,

UHF
BO(R) = min

D
{EHF(R,D)} + Vnn(R), (42)

including the nuclear–nuclear repulsion term, Vnn(R).
The ground-state density matrix that minimizes the
free energy in Eq. (42) is given in an implicit form as

D⊥ =
[
eβ(F⊥(D)−μeI) + I

]−1

. (43)

Here β = (kBTe)−1 is the inverse electronic tempera-
ture and the density-matrix dependent Fockian,

F(D) = h + G(D), (44)

is used in its orthogonalized representation, where
F⊥(D) = ZTF(D)Z. The ground-state density matrix

in Eq. (43) is thus given only implicitly and it can only
be constructed by some iterative self-consistent field
optimization procedure, which is costly and in prac-
tice never exact. It is easy to show that the free energy
in Eq. (40) is stationary for the self-consistent solution
in Eq. (43) from the vanishing matrix derivative of the
free energy term,

∂EHF(R,D)
∂D⊥

= 2h⊥ + 2G⊥(D) − 2(F⊥(D) − μeI) − 2μeI = 0,

(45)

where we used the relation that

∂S(D⊥)
∂D⊥ = −kB

(
lnD⊥ + I − ln(I − D⊥) − I

)

= −kB ln

(
D⊥

I − D⊥

)

= −kB ln
(
eβ(F⊥(D)−μeI) + I

)

= βkB(F⊥(D) − μeI). (46)

A thermal Hartree–Fock based Born–Oppenheimer
MD can then be defined with the Lagrangian

L(R, Ṙ) =
1
2

∑
I

MI |ṘI |2 − UHF
BO(R), (47)

with the equations of motion

MIR̈I = −∇RUHF
BO(R). (48)

The potential gradient evaluation that is needed for the
forces,

−∇RUHF
BO(R) = −∇REHF(R,D) − ∇RVnn(R), (49)

requires the gradient of the free energy term,

∇REHF(R,D) = 2Tr[hRD] + 2Tr[hDR] + 2Tr[DRG(D)]

+Tr[DGR(D)] − 2Te∇RS(D⊥) − 2μeTr[D
⊥
R], (50)

where we use the notation, ∇RX = XR. Together with
the entropy gradient,

∇RS(D⊥) = −kBTr
[
D⊥

R lnD⊥ + R⊥
R

−R⊥
R ln(I − D⊥) − D⊥

R

]

= −kBTr

[
D⊥ ln

(
D⊥

I − D⊥

)]

= −kBTr
[
D⊥

R ln
(
eβ(F⊥−μeI)

)]

= βkBTr
[
D⊥

RF
⊥
]
−βkBTr

[
μeD⊥

R

]
, (51)
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and the definition of the Fockian, F = h + G(D), we
find that

∇REHF(R,D) = 2Tr[hRD] + Tr[DGR(D)]

+2Tr[FDR] − 2Tr[F⊥D⊥
R]. (52)

The derivative, DR, in the third term on the right-hand
side of Eq. (52) can then be determined from its orthog-
onal representation, where

DR = ∇R

(
ZD⊥ZT

)

= ZRD⊥ZT + ZD⊥
RZ

T + ZD⊥ZT
R

= −1
2
S−1SRZD⊥ZT + ZD⊥

RZ
T

−1
2
ZD⊥(S−1SRZ)T . (53)

Here we used the non-trivial relation that ZR =
−(1/2)S−1SRZ (see Refs. [123,124]). This means that
in Eq. (52) the third term on the right-hand side can
be rewritten as

2Tr[FDR] = 2Tr[FZD⊥
RZ

T ] − Tr[FS−1SRD]

−Tr[FDSRS−1]

= 2Tr[F⊥D⊥
R] − 2Tr[S−1FDSR], (54)

where we used the commutation relation,
SDF - FDS = 0, or that DFS−1 − S−1FD = 0.
Inserted into Eq. (52), we then get the final expression
for the gradient of the free energy for thermal Hartree–
Fock theory,

− ∇REHF(R,D) = −2Tr[hRD] − Tr[DGR(D)]
+2Tr[S−1FDSR], (55)

where the last term can be seen a generalized Pulay
force term [124–126]. This force term can then be used
to integrate the equations of motion in Eq. (48) for the
Born–Oppenheimer molecular dynamics scheme based
on thermal Hartree–Fock theory. The main cost in each
time step is the self-consistent calculation of the ground
state density matrix in Eq. (43). The main part of this
overhead can be avoided by applying the framework of
XL-BOMD.

4.2 XL-BOMD for thermal Hartree–Fock

To construct XL-BOMD based on the thermal Hartree–
Fock theory presented above, we first need to find an
approximate shadow free energy function, EHF ≈ EHF

[29]. We can achieve this with a linearization of the free
energy expression, EHF(R,D) in Eq. (40), around some
approximate solution, P, to the exact self-consistent
density matrix, which gives us the shadow energy func-
tion

EHF(R,D,P) = 2Tr[hD] + Tr[(2D-P)G(P)]

−2TeS(D⊥) − μe

(
2Tr[D⊥] − Nocc

)
.

(56)

With the P-dependent density matrix, D, given by the
direct explicit construction,

F⊥(P) = ZT (h + G(P))Z,

D⊥[P] =
[
eβ(F⊥(P)−μeI) + I

]−1

,

D[P] = ZD⊥[P]ZT , (57)

it is easy to show that

∂EHF(R,D,P)
∂D⊥

∣∣∣∣
D⊥[P]

= 2h⊥ + 2G⊥(P) − 2(F⊥(P) − μeI) − 2μeI = 0.

(58)

A shadow Born–Oppenheimer potential energy,

UHF
BO(R,P) = min

D
{EHF(R,D,P)} + Vnn(R)} , (59)

can therefore be constructed without any approximate
iterative optimization process. Instead, only a single
direct density-matrix calculation, P → D[P], in Eq.
(57) is needed. As long as P ≈ D[P] we can, there-
fore, calculate a good approximation to the exact self-
consistent Born–Oppenheimer potential in a single step
using the explicit definition of the density matrix in
Eq. (57). We can then define an XL-BOMD with the
Lagrangian,

LXBO(R, Ṙ,X, Ẋ) =
1
2

∑
I

MI |RI |2 − UHF
BO(R,XS−1)

+
1
2
μTr[Ẋ

2
] − 1

2
μω2Tr

[
(D[XS−1]S − X)

T ((D[XS−1]S − X)
]
. (60)

We have here chosen a dynamical variable X = PS and
its time derivative Ẋ. This provides a tensorially more
accurate propagation [20]. In each time step we there-
fore transform X to the density matrix P = XS−1 prior
to the energy and force evaluations. The metric tensor
T = KT K ∈ RN2×N2

is a super matrix that transforms
a matrix into a matrix, which is defined in the same
way as previously from the inverse of the Jacobian of
the residual matrix function, f(X) = (D[XS−1]S − X)
[29]. The equations of motion can then be derived from
the Euler–Lagrange equations in the adiabatic limit as
ω → ∞ and μ → 0 such that μω = constant. In this
adiabatic limit we get the equations of motion,

MIR̈I = −∇RUHF
BO(R,XS−1),

Ẍ = −ω2K
(
D[XS−1]S − X

)
, (61)
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where the gradient of the electronic free energy,
∇REHF(R,D,P), [calculated for the stationary solution
of D = D[P] in Eq. (57)] is given by a modified force
expression similar to Eq. (55),

∇REHF(R,D,P)|D[P]

= 2Tr[hRD] + Tr[(2D − P)GR(XS−1)]

−2Tr[S−1FDSR].
(62)

An extra S−1-dependent gradient term,

2Tr[XS−1
R G(D − XS−1)], (63)

also appears because of the switch of variables from X
to P = XS−1, but this additional Pulay term vanish
in the adiabatic limit as |D − XS−1| ∝ |DS − X| ∝
ω−2. The simple gradient expression in Eq. (62) relies
on the fact that D[P] is a stationary solution to the
shadow energy functional, Eq. (58), for D = D[P]. The
constant of motion in the adiabatic limit is

EHF
XBO =

1
2

∑
I

MI |RI |2 + UHF
BO(R,XS−1), (64)

which closely follows the exact Born–Oppenheimer
total energy as long as X ≈ D[XS−1]S. A detailed algo-
rithm description of this density-matrix based scheme,
including low-rank approximations of the kernel K is
given in Ref. [29]. The low-rank approximations of the
kernel are important, because there is no practical way
to calculate the full kernel, not even a single time, unless
the system is very small. An efficient preconditioner for
the density matrix formulation of XL-BOMD has not
yet been developed.

4.3 Example

The simplest possible example illustrating a QMD sim-
ulation is probably a hydrogen molecule. Figure 5 shows
an example of an XL-BOMD simulation based on ther-
mal Hartree–Fock theory with an electronic tempera-
ture set to Te = 1500 K, and where the hydrogen is
released from a stretched configuration with the two
atoms initially separated at about twice the equilib-
rium bond length, which significantly reduces the size
of the estimated electronic gap. The gap is here esti-
mated from the energy eigenvalue difference between
the HOMO and LUMO states, i.e. as if the states had
integer occupation numbers. The upper panel shows the
interatomic distance, R(t), as a function of time. The
middle panel shows the fluctuations in the total energy
and the lower panel shows the fluctuations in the elec-
tronic HOMO-LUMO gap corresponding to the integer
occupation at zero electronic temperature. An adap-
tive low-rank approximation of the kernel was used as
described in Ref. [29]. The integration time step was
0.25 fs and the total energy remains stable without
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Fig. 5 QMD simulation of a hydrogen molecule using XL-
BOMD based on thermal Hartree–Fock theory. A basis set
of 8 uncontracted primitive Gaussian functions were used
[127]. The electronic temperature was set to 1500 K and
a time step of 0.25 fs was used, in combination with the
modified Verlet integration scheme in Eq. (20)

any visible systematic drift, although the oscillations
have sharp turning points around R(t) ≈ 1 Bohr radius.
As the molecule is stretched the electronic gap is suf-
ficiently small such that the “LUMO” state becomes
fractionally occupied. Its LUMO fractional occupation
oscillates between the stretched and compressed turn-
ing points from about 0.2–0.02.

5 XL-BOMD for SCC-DFTB

XL-BOMD can be adapted to a broad set of elec-
tronic structure models based on density-functional and
Hartree–Fock theory, including semi-empirical meth-
ods [16,17,27,37,49]. Semi-empirical electronic struc-
ture calculations [128–134] are typically 2–3 orders
of magnitude faster compared to ab initio calcula-
tions using density functional theory. The speedup is
achieved using simplified approximate electronic struc-
ture models combined with flexible efficient parame-
terizations. By optimizing the parameterization based
on experimental or high-level theoretical calculations
using genetic algorithms [135,136], it is often possible to
achieve an accuracy at a comparable level to high-level
first principles methods. Modern machine learning tools
[137–151] may further improve these techniques with
the promise of an almost ideal combination of physi-
cally transparent and highly accurate models that allow
computationally efficient simulations at only a fraction
of the cost of current state-of-the-art ab initio methods.

A popular class of semi-empirical methods is den-
sity functional tight-binding (DFTB) theory [37,130,
136,152–158]. DFTB theory can be seen as a framework
for different levels of model approximations of density
functional theory. A frequently used DFTB model is
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given by a second-order expansion in the charge den-
sity fluctuations of the DFT energy functional, Eq.
(1), around a reference density of overlapping neutral
atomic charge distributions, where atomic net Mulliken
charges are used to describe the long-range electrostatic
interactions. The fluctuating charges are optimized self-
consistently to account for interatomic charge transfer
and the response to the electrostatic interactions. XL-
BOMD works very well in combination with this level
of second-order self-consistent charge density functional
based tight-binding (SCC-DFTB) theory. Here we will
give some background of this semi-empirical theory and
how it can be combined with XL-BOMD.

5.1 SCC-DFTB theory

In SCC-DFTB theory a second-order expansion of the
electronic density functional, EDFT[R, ρ] in Eq. (1),
is performed in the fluctuations, Δρ(r), around a ref-
erence electron density, ρref(r), of overlapping neu-
tral atomic densities. With the net charge density,
ρ(r) = ρref(r) + Δρ(r), the second-order expansion
of EDFT[R, ρ], including the nuclear–nuclear repulsion,
vnn(R), is given by

EDFT[R, ρ] + vnn(R) = F [ρ]

+
∫

vext(R,r)ρ(r)dr + vnn(R)

= F [ρref ] +
∫

vext(R, r)ρref(r)dr + vnn(R)

+
∫ (

δF [ρ]
δρ

∣∣∣∣
ρref

+ vext(R,r)

)
Δρ(r)dr

+
1
2

∫∫
Δρ(r)

δ2F [ρ]
δρ2

∣∣∣∣
ρref

Δρ(r’)drdr’ + O(Δρ3).

(65)

Because ρref(r) is a superposition of neutral atomic den-
sities, the first two terms and the ion-ion repulsion,
vnn(R), only depend on the atomic configuration, R.
We may therefore collect these three terms in a Δρ-
independent reference energy term,

Eref(R) ≡ F [ρref ] +
∫

vext(R,r)ρref(r)dr + vnn(R).

(66)

We can then define a second-order DFTB energy
expression of the electronic energy, EDFTB(R, ρ), includ-
ing the nuclear repulsion term, where

EDFTB(R, ρ) = Eref(R)

+
∫ (

δF [ρ]
δρ

∣∣∣∣
ρref

+ vext(R,r)

)
Δρ(r)dr

+
1
2

∫∫
Δρ(r)

δ2F [ρ]
δρ2

∣∣∣∣
ρref

Δρ(r’)drdr’. (67)

This approximate energy expression forms the basis
for second-order SCC-DFTB theory and it has several
desirable properties that makes it easy to parameterize
for fast and accurate electronic structure calculations.
To use this second-order energy expression we first need
to determine how to represent the electron density and
then how to parameterize and approximate the different
energy terms.

In any electronic structure calculation the net elec-
tron density must be positive, ρ(r) ≥ 0. This is a par-
ticularly important constraint in a variationally opti-
mized formulation of the Born–Oppenheimer potential.
The condition of a positive density can be met with an
ansatz where the density, ρ(r), is given as a sum of the
square of normalized single-particle molecular orbitals,
{Ψn(r)}, where

ρ(r) = 2
Nocc∑
n=1

ρn(r) = 2
Nocc∑
n=1

Ψ∗
n(r)Ψn(r),

∫
ρn(r)dr =

∫
Ψ∗

n(r)Ψn(r)dr = 1, ∀n, (68)

for some general functions describing the normal-
ized orbitals, {Ψn(r)}, and their corresponding single-
electron densities, {ρn(r)}. The single-electron molecu-
lar orbitals allow a fine-grained description of the elec-
tronic structure that is aligned with well-established
chemical intuition and provide an accurate kinetic
energy expression in the Kohn–Sham formulation of
the universal functional, F [ρ]. Notice, that we assume
a spin-unpolarized system with double occupancy of
each orbital, where Nocc is the number of occupied
orbitals, which therefore is half the total number of elec-
trons, Ne. Using some finite basis set, {φ

(n)
i (r)}N

i=1, of
atom-centered functions we can then approximate each
molecular orbital by

Ψn(r) =
∑N

i=1 c
(n)
i φ

(n)
i (r). (69)

The positive electron density, ρ(r) ≥ 0, can then be gen-
erated in terms of these atom-centered functions using
a density matrix representation, where

ρ(r) = 2
Nocc∑
n=1

Ψ∗
n(r)Ψn(r)

= 2

(
N∑

i=1

c
(n)
i φi(r)

)∗⎛
⎝ N∑

j=1

c
(n)
j φj(r)

⎞
⎠

= 2
Nocc∑
n=1

N∑
i,j=1

(c(n)i )∗c(n)j φ∗
i (r)φj(r)

= 2
Nocc∑
n=1

N∑
i,j=1

�
(n)
ij φ∗

i (r)φj(r) = 2
N∑

i,j=1

�ijφ
∗
i (r)φj(r).

(70)
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Here �ij ≡
∑

n(c(n)i )∗c(n)j is the density matrix, �. We
can use this density matrix formalism in Eq. (70), to
represent the density difference, Δρ(r) = ρ(r)−ρref(r),
with the density matrix difference, Δ� = �−�ref , such
that an underlying positivity in the net density auto-
matically is enforced with ρ(r) ≥ 0. We can then write
the second-order DFTB energy expression in Eq. (67)
as a density matrix function,

EDFTB(R,�) = Eref(R) + 2Tr
[
H(0)Δ�

]

+2Tr
[
Δ�Γ refΔ�

]
, (71)

where we use the tensor and matrix notation,

{Γ ref}ijkl =

∫∫
φ∗

i (r)φj(r)

(
δ2F [ρ]

δρ(r’)δρ(r)

∣∣∣∣
ρref

)

×φ∗
k(r’)φl(r

′)drdr’,

{Γ refΔ�}ij =
∑
kl

{Γ ref}ijklΔ�kl,

H
(0)
ij =

∫
φ∗

i (r)

(
δF [ρ]

δρ(r)

∣∣∣∣
ρref

+ vext(R,r)

)
φj(r)dr.

(72)

Here Γ ref contains what can be referred to as the two-
electron integrals. The functional derivatives are all
evaluated at the reference density, i.e. at ρ(r) = ρref(r),
around which the second-order density expansions is
performed. In SCC-DFTB we then use a Kohn–Sham
energy expression for the universal functional, F [ρ],
where

δF [ρ]
δρ(r)

= −1
2
∇2 +

∫
ρ(r’)

|r − r′|dr’ + Vxc[ρ](r), (73)

which uses an orbital-dependent kinetic energy term,
a mean-field Hartree potential, and some approxima-
tion for the remaining exchange correlation potential,
Vxc[ρ](r) = δExc[ρ]/δρ(r). Here Exc[ρ] is the exchange-
correlation energy functional for which various approx-
imations are used [87,88]. In this case, the Hamiltonian
matrix elements of H(0) in Eq. (72) are given by

H
(0)
ij =

∫
φ∗

i (r)
(

−1
2
∇2 +

∫
ρref(r’)
|r-r’| dr’

+ Vxc[ρref ] + vext(R,r)
)

φj(r)dr. (74)

With the reference charge density of overlapping neu-
tral atomic densities the external potential from the
atomic nuclei, vext(R,r), is screened already at a fairly
short distance. In SCC-DFTB this screening is used
to neglect three-center integrals, which allows an effi-
cient two-center Slater–Koster parameterization of the
Hamiltonian matrix elements of H(0) [136]. This pro-
vides an efficient and accurate parameterization for off-

diagonal blocks of the reference Kohn–Sham Hamilto-
nian matrix, H(0). The diagonal on-site Hamiltonian
matrix blocks are usually approximated by the diago-
nal atomic matrix components of the isolated neutral
atoms, for which we assume the basis functions are close
to their eigenstates. The same form of pairwise Slater–
Koster parameterization is used also for the calculation
of the overlap matrix, Sij = 〈φi|φj〉. In this way each
matrix element can be calculated at a speed similar to
a classical local force field calculation.

In Kohn–Sham based SCC-DFTB theory we also
approximate the two-electron Coulomb interaction term,
including the exchange correlation, Exc[ρ], i.e. the term

2Tr
[
Δ�Γ refΔ�

]

=
1
2

∫∫
Δρ(r)

δ2F [ρ]
δρ(r’)δρ(r)

∣∣∣∣
ρref

Δρ(r’)drdr’,

=
1
2

∫∫
Δρ(r)

(
1

|r-r’| +
δ2Exc[ρ]

δρ(r’)δρ(r)

∣∣∣∣
ρref

)

×Δρ(r’)drdr′, (75)

using a monopole expansion over net Mulliken popula-
tions, {qI}, for each atom, I, such that

2Tr
[
Δ�Γ refΔ�

]
≈ 1

2

∑
IJ

qIγIJqJ

qI = 2
∑
i∈I,j

Δ�ijSji, (76)

where I, J indicate each atom with positions RI and
γIJ is a screened Coulomb interaction [136]. The sum-
mation over the orbital index i ∈ I is performed only
over orbitals centered at atom I, such that {qI} corre-
spond to the net Mulliken charges. Higher order mul-
tipoles could also be used in a straightforward gener-
alization [159]. The monopole interaction matrix, γIJ ,
captures the interaction of overlapping atomic charge
densities, e.g. Gaussian charge distributions [130]. γIJ

therefore decays as 1/|RI −RJ | at large distances, but
in the short-range limit it is screened and chosen to con-
verge to the atomic Hubbard-U term for the onsite, γII ,
interactions corresponding to the chemical hardness.

The monopole approximation in Eq. (76) can alter-
natively be seen as a low-rank tensor approximation of
the two-electron integral, where

1
2

∑
IJ

qIγIJqJ =2
∑
IJ

⎛
⎝ ∑

i∈I,k;j∈J,l

Δ�ikSkiγIJΔ�jlSlj

⎞
⎠ ,

(77)

which means that we represent the two-electron integral
Γ ref by

Γ ref
ijkl ≈ SijγikSkl, (78)
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where γik ≡ γIK when i ∈ I and k ∈ K. Higher
order multipole expansions for the approximation of the
two-electron energy term would generate more accurate
high-rank approximations. Alternative solutions based
on the resolution of identity and other low-rank approx-
imations could possibly also be applied. The tensor
approximation of the two-electron integrals also indi-
cates the direct coupling to semi-empirical Hartree–
Fock theory and how, for example, an exchange term
could be introduced by switching indices for the gamma
term, Γijkl → Γikjl.

With these approximations the DFTB energy approx-
imation is

EDFTB(R,�) = Eref(R) + 2Tr
[
H(0)Δ�

]

+
1
2

∑
IJ

qIγIJqJ . (79)

The remaining term that we need to represent in
SCC-DFTB theory is the reference energy, Eref(R),
explicitly expressed in Eq. (66). For this term we may
also include the Δ-charge independent reference energy
term, 2Tr[H(0)�ref ], in 2Tr[H(0)Δ�] = 2Tr[H(0)(� −
�ref)], or we may subtract the total energy of the
non-interacting atoms such that Eref(R) corresponds
to the formation energy. No matter which choice we
make, Eref(R) is typically used as an adjustable charge-
independent energy term for which we can use different
parameterizations, e.g. pair or many-body potentials,
and optimizations based on data from first-principles
electronic structure calculations [33,135,136,147,160,
161].

Using the orbital-based Kohn–Sham density func-
tional expression, the Slater–Koster parameterization
of the matrix elements for H(0) and the overlap matrix
in combination with the monopole approximation for
the two-electron integral, and the parameterization of
the reference energy, we arrive at the regular formula-
tion of second-order SCC-DFTB theory. For this level of
theory the Born–Oppenheimer potential energy is given
from the constrained minimization over the charge fluc-
tuations,

UDFTB(R) = Eref(R)

+ min
Δ�

{
2Tr

[
H(0)

KSΔ�
]
+

1
2

∑
IJ

qIγIJqJ

∣∣∣∣∣Tr [�nS] = 1

}
.

(80)

The minimization is achieved by solving the non-linear
eigenvalue problem

Hcn = εnScn, n = 1, 2, . . . , Nocc, (81)

where

H = Href
KS +

1
2

(VCS + SVC) ,

{VC}ij = δi,j ×
∑

J

γIJqJ , ∀i, j ∈ I

� =
∑

n

cncT
n , ρ(r) = 2

∑
ij

�ijφ
∗
i (r)φj(r),

qI = 2
∑
i∈I,j

Δ�ijSji = 2
∑
i∈I,j

(�ij − �refij )Sji.

(82)

Here VC is a diagonal Coulomb matrix with different
values for each atomic site, but which is equal for each
orbital on any given atomic site.

It is interesting to note that the 1
2 (VCS + SVC)

term in Eq. (82) can be seen as a trapezoidal-like inte-
gral approximation of three-center integrals that arise
from the electrostatic potential of distant atoms with
net Mulliken charges. For the reference system of over-
lapping neutral atoms densities, these long-range con-
tributions are not present.

5.2 XL-BOMD for SCC-DFTB

To construct an XL-BOMD based on SCC-DFTB
theory we can view the DFTB energy expression,
EDFTB(R,�) in Eq. (79), as a density matrix function
and design an approximate shadow potential using a
linearization around an approximate ground-state den-
sity matrix, in the same way as we did for Hartree–Fock
theory in Eq. (56). However, this is not the most effi-
cient way of constructing a shadow Born–Oppenheimer
potential for XL-BOMD. Instead of the density matrix,
we can use the net Mulliken charges, q = {qI}, that
indirectly define the effective single-particle Hamilto-
nian, H in Eq. (82), and therefore also the relaxed
ground state solution, Δ�min, which minimizes the
energy for the Born–Oppenheimer potential in Eq. (80).
The corresponding ground state net Mulliken charges
are qmin = {qmin

I }. Our choice of approximate shadow
energy functional, EDFTB(R,q,n) ≈ EDFTB(R,�), is
then given from a linearization of EDFTB(R,�) in Eq.
(79) around an approximate set of net Mulliken charges,
n ≈ qmin, where

EDFTB(R,q,n) = Eref(R) + 2Tr
[
H(0)

KSΔ�
]

+
1
2

∑
IJ

(2qI − nI)γIJnJ . (83)

The corresponding n-dependent shadow
Born–Oppenheimer potential is then

UDFTB(R,n) = Eref(R) + min
q

{
2Tr

[
H(0)

KSΔ�
]

+
1
2

∑
IJ

(2qI − nI)γIJnJ

∣∣∣∣∣ Tr [�nS] = 1

}
, (84)
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with the optimized charges, q0[n], attained at the low-
est stationary solution,

q0[n] = arg min
q

{
2Tr

[
H(0)

KSΔ�
]

+
1
2

∑
IJ

(2qI − nI)γIJnJ

∣∣∣∣∣ Tr [�nS] = 1

}
.

(85)

We can then construct our XL-BOMD by defining the
extended Lagrangian

LXBO(R, Ṙ, n, ṅ) =
1
2

∑
I

MI |ṘI |2 − UDFTB(R,n)

+
1
2
μ
∑

I

ṅ2
I − 1

2
μω2

∑
IJ

(q0I [n]−nI) TIJ (q0J [n]−nJ ) ,

(86)

where the evolution of the dynamical variable charges,
n(t), is driven by a harmonic oscillator centered around
the optimized charges, q0[n], for the shadow Born–
Oppenheimer potential. As discussed previously, the
matrix, T = KTK = {TIJ}, is a metric tensor that
is given by the kernel, K, which is defined as the
inverse of the Jacobian, J, of the residual function,
f(n) = q0[n] − n, i.e.

JIJ =
∂fI(n)
∂nJ

,

K = J−1. (87)

In the same way as before, μ is also a fictitious electron
mass parameters and ω is the frequency of the extended
harmonic oscillator.

In the adiabatic limit as μ → 0 and ω → ∞ such that
μω = constant, Euler–Lagrange equations give us the
equations of motion,

MIR̈I = −∇RI
UDFTB(R,n)|n ,

n̈ = −ω2K (q0[n] − n) . (88)

The corresponding constant of motion is

EDFTB
XBO = 1

2

∑
I MI |ṘI |2 + UDFTB(R,n). (89)

The presentation above does not account for frac-
tional occupation numbers or the corresponding entropy
term, but these can be included in the same way as
for thermal Hartree–Fock theory. This is of particular
importance if we simulate degenerate systems or sys-
tems with charge sloshing and metals. A demonstration
of such a system is given in the example below.
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Fig. 6 XL-BOMD simulations of amorphous carbon (55
atoms with periodic boundary conditions) based on SCC-
DFTB theory. Fractional occupation numbers correspond-
ing to an electronic temperature of 500 K was used. The
integration time step was 0.75 fs. The upper panel shows
the statistical temperature, the middle panel the fluctua-
tions in the total energy, and the lower panel shows the
electronic gap corresponding to the HOMO-LUMO gap for
integer occupation numbers at a zero electronic temperature

5.3 Example

One of the more challenging forms of QMD simulations
is for reactive systems, where the electronic gap is open-
ing and closing along the molecular trajectories. Amor-
phous carbon is an example with this behavior. Figure
6 shows the results of an XL-BOMD simulation based
on SCC-DFTB theory [28,135,162], including fractional
occupation numbers, which also is using the precondi-
tioned Krylov subspace approximation of the Kernel
in the integration of the electronic degrees of freedom
that are represented by the net Mulliken charges [28].
The system starts from a non-equilibrium configuration
with stationary carbon atoms. Initially, the statistical
temperature is rapidly increasing to about 400 K dur-
ing the first 100 fs, shown in the upper panel, while the
electronic gap, shown in the lower panel, is opening and
closing. Shortly before 2 ps there is an exothermic reac-
tion noticed in a rapid increase in the temperature and
decrease in the gap. The increased temperature is also
noticed in an increased amplitude of the fluctuations in
the total energy, shown in the mid panel.

6 XL-BOMD for a non-linear charge
relaxation model

If we apply XL-BOMD to orbital-independent mod-
els such as polarizable force fields or charge relaxation
models [59–62,163–172] we need a modified formulation
from the orbital-based models discussed above [30]. In
particular, instead of performing a linearization of the

123



Eur. Phys. J. B (2021) 94 :164 Page 19 of 27 164

energy functional around some approximate density,
n(r), we perform a mixed expansion, which is possible
with the more general shadow functional definition in
Eq. (8). The energy functional is expanded to second
order around n(r) for diagonal on-site charge energy
terms and to first order for all other terms including
the long-range Coulomb interaction energy. The theory
was recently developed and presented in some detail in
Ref. [30]. To demonstrate how this works we use the
general non-linear monopole charge relaxation model,

E(R,q)=V (R)+Es(R,q)+
1
2

∑
i,j(i�=j)

qiγij(R)qj , (90)

where Es(R,q) is some non-linear charge-dependent
energy term, but only with short-range (s) interac-
tions between atom-centered net monopole charges,
q = {qi}, for each atom i. All the long-range interac-
tions are instead included through the Coulomb inter-
action between atom centered net charge densities,
which is governed by the screened Coulomb interaction
terms, {γij} ≡ γ(R). The V (R) is a charge indepen-
dent interaction term, which is included separately from
Es(R,q) because it may also include long-range inter-
actions. Generalization to more flexible atom-centered
charges, besides the atomic net monopole charges are
straightforward, including dipoles and quadrupoles, at
least in principle [30]. In this case q in E(R,q) would
represent a vector that also contains the higher order
multipoles and γij(R) would represent the long-range
monopole-monopole, dipole-monopole, dipole–dipole,
and monopole-quadrupole interactions or higher order
terms. Van der Waals interactions can also be included
separately to the energy expression in Eq. (90). The
discussion below is only focused on monopole charges,
but should follow analogous for higher order multi-
pole moments and Van der Waals interactions. The
charge relaxation models represented by E(R,q) in Eq.
(90) could potentially be constructed and optimized
using machine-learning based on pre-calculated data
using high-level ab initio theory [142,144,173]. Alter-
natively, we can derive the expression for E(R,q) from
Hohenberg–Kohn DFT using an expansion of the DFT
functional around overlapping neutral atomic densities
and a density tight-binding approximation that repre-
sents the local atomic deformations [30]. Other sim-
plified charge equilibration models can also be used
[30,142,164,165,171,173].

The Born–Oppenheimer potential energy surface,
UBO(R), and the relaxed ground state charges, qmin,
determined by the monopole charge relaxation model
in Eq. (90) are given by the constrained non-linear opti-
mizations,

UBO(R) = min
q

{
E(R,q)

∣∣∣∣∣
∑
i∈α

qi = Qα

}
,

qmin = arg min
q

{
E(R,q)

∣∣∣∣∣
∑
i∈α

qi = Qα

}
. (91)

We have here introduced multiple charge constraints for
different parts, {α}, of the system. The charges Qα can
be identified, for example, as the net charge of separate
fragments, α, that may form during an MD simulation.
If no overlap to other fragments exists, we may assume
that the net charge of each fragment, α, is conserved,
which can be enforced by Lagrangian multipliers, {λα}.
The constrained optimization requires a solution of a
system of non-linear equations,

∂E(R,q)
∂qi

= 0,

∑
i∈α

qi = Qα, α = a, b, . . . , (92)

which can be solved, for example, using some iterative
Newton based scheme. This is computationally expen-
sive and similar in complexity to the non-linear eigen-
value equation in orbital-based electronic structure the-
ory.

An XL-BOMD based on the charge relaxation model
can be designed by first constructing an approximate
shadow functional, E(R,q,n) ≈ E(R,q), that is close to
the energy functional in Eq. (90). If n ≈ qmin, we may
define this shadow functional by a mixed expansion,

E(R,q,n) = V (R) + Es(R,n)

+
∑

i

(qi − ni)
∂Es(R,q)

∂qi

∣∣∣∣
n

+
1
2

∑
i

(qi − ni)2
∂2Es(R,q)

∂q2i

∣∣∣∣
n

+
1
2

∑
i,j(i�=j)

(2qi − ni)γijnj , (93)

where we only expand the diagonal part of the short-
range energy term to second order. All other terms are
expanded only to linear order in (q - n). The corre-
sponding shadow Born–Oppenheimer potential energy
surface and the relaxed charges are then given from the
constrained linear optimizations,

UBO(R,n) = min
q

{
E(R,q,n)

∣∣∣∣∣
∑
i∈α

qi = Qα

}
,

q0[n] = arg min
q

{
E(R,q,n)

∣∣∣∣∣
∑
i∈α

qi = Qα

}
,

(94)

where we search for the lowest stationary solutions. The
charge constraints can be included through Lagrangian
multipliers. Assuming we have two net charge con-
strains, where q1+q2 = Qa and q3+q4+ . . .+qN = Qb,
the relaxed charge equilibrium is given by the solution
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to the quasi-diagonal linear system of equations,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Λ11 0 0 . . . 0 −1 0
0 Λ22 0 . . . 0 −1 0
0 0 Λ33 . . . 0 0 −1
...

...
...

. . .
...

...
...

0 0 0 . . . ΛNN 0 −1
1 1 0 . . . 0 0 0
0 0 1 . . . 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

q01
q02
q03
...

q0N
λ1

λ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1
v2
v3
...

vN

Qa

Qb

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(95)

where

Λii =
∂2Es(R,q)

∂q2i

∣∣∣∣
n

,

vi ≡ vi[n] = Λiini −
∑
j �=i

γijnj − ∂Es(R,q)
∂qi

∣∣∣∣
n

.

(96)

This system of linear equations has a trivial analytical
solution,

λα =

(
Qα −

∑
i∈α

viΛ
−1
ii

)(∑
i∈α

Λ−1
ii

)−1

,

q0i[n] = Λ−1
ii (λα + vi), i ∈ α. (97)

The difference in the computational cost to solve the
full non-linear system of equations in Eq. (92) compared
to the straightforward analytical solution in Eq. (97)
is therefore significant, in particular for larger systems
with maybe tens of thousands of atoms.

The shadow Born–Oppenheimer potential, UBO(R,n),
can then be used in an extended Lagrangian formula-
tion, where n is included as a dynamical vector vari-
able,

L(R, Ṙ, n, ṅ) =
1
2

∑
i

Mi|Ṙi|2 − UBO(R,n),

+
μ

2

∑
i

ṅ2
i − μω2

2
(q0[n] − n)TT(q0[n] − n),

(98)

in the same way as for orbital-dependent XL-BOMD.
Here T = KTK is a metric tensor, μ is the fictitious
mass parameter of the electronic degrees of freedom and
ω is the frequency of the extended harmonic oscilla-
tor. We can then derive the equations and constant of
motion in the adiabatic limit, which defines the XL-
BOMD for the charge relaxation model in Eq. (93). For
this adiabatic limit the ∼ 1/ω2 scaling is important
such that

∂E(r,q,n)
∂n

∝ |q - n| ∝ ω−2, (99)

which is fulfilled by E(r,q,n) in Eq. (93). In the adi-
abatic limit, as ω → ∞ and μ → 0 such that μω =
constant, the Euler–Lagrange equations of motion are
given by

MiR̈i = − ∇Ri
UBO(R,n)|n ,

n̈ = −ω2K (q0[n] − n) . (100)

The kernel, K, can be calculated from the inverse Jaco-
bian of the residual function, f(n) = (q0[n] −n), where
q0[n] is given from n by the linear relation in Eq. (97)
[30]. The integration can then be performed as in Eq.
(20).

6.1 Example

A simplified example of the more general non-linear
charge relaxation model in Eq. (90) is the charge equi-
libration model by Rappe and Goddard [165], where

E(R,q) = V (R) +
∑

i

χiqi +
1
2

∑
i

q2i Ui

+
1
2

∑
i,j(i�=j)

qiγij(R)qj . (101)

The short-ranged energy term in Eq. (90) is here
replaced by a linear term in the energy as a func-
tion of the net charge on each atom with {χi} deter-
mined by the atomic electronegativities and a quadratic
term, where {Ui} correspond to the chemical hardness
or Hubbard-U parameters. The corresponding shadow
energy function becomes,

E(R,q,n) = V (R) +
∑

i

χiqi +
1
2

∑
i

q2i Ui

+
1
2

∑
i,j(i�=j)

(2qi − ni)γij(R)nj ,

(102)

where the vector for the net atomic charges, n(t), is
used as a dynamical vector variable in the extended
Lagrangian formulation in Eq. (98). The the equili-
brated charges and the Born–Oppenheimer potential
energy surface are then given from the solution of a
quasi-diagonal, linear system of equations as in Eq.
(95).

A demonstration of an XL-BOMD simulation based
on the charge equilibration model in Eq. (102) with
periodic boundary conditions is shown in Fig. 7 for a
simple three-atom molecular system, with the atomic
masses corresponding to oxygen and two hydrogen
atoms (where one of the hydrogen atoms has an extra
neutron). The electronegativities, {χi}, the chemical
hardness or Hubbard-U parameters, {Ui}, and the
charge-independent interatomic potential, V (R), were
not optimized for water. The three-atom system is
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Fig. 7 XL-BOMD simulations for a water-like molecule in a 5 Å cubic box with periodic boundary conditions described
by the charge equilibrium model in Eq. (101). The time step was set to 0.4 fs. The left-side panels show the initial part of
the simulation and the right-hand panels show the results after about 4 ps of simulation time. The upper panels show the
fluctuations in the total energy, the middle panels the fluctuations in the dynamical charge, nq(t), for the “oxygen” atom in
comparison to its exact Born–Oppenheimer charge, q2(t), in each time step. The lower panels show the fractional error in
the potential energy, |UBO(t) − UBO(t)|/UBO(t), in comparison to the exact Born–Oppenheimer potential, UBO(t), in each
time step. The sampling of the Born–Oppenheimer potential energy surface is virtually exact

therefore only a water-like molecule. The modified Ver-
let scheme in Eq. (20) was used to integrate the equa-
tions of motion together with a fixed constant kernel
[30]. The left panels shows the initial part of the simu-
lation, whereas the panels on the right-hand side show
the results after about 4 ps of simulation time. The error
in the charges (mid panels) and in the sampling of the
potential energy surface (bottom panels) are negligible
without any visible drift in total energy (upper panel).

The ability to perform MD simulations for charge
equilibration models without repeated Coulomb sum-
mations in each time step provides a significant accel-
eration. This is of particular interest to the applica-
tion of modern machine learning tools that show an
exceptional promise in the accurate parametrization of
short-range interatomic potentials. A remaining chal-
lenge however, is to include long-range force terms gov-
erned by the Coulomb interactions and the correspond-
ing charge relaxations, without a drastic increase in the
computational cost. XL-BOMD provides an approach
to avoid this potential shortcoming as demonstrated in
Fig. 7.

7 Applications

Various forms of XL-BOMD have been used in a
number of software packages, including density func-
tional theory, semi-empirical electronic structure the-

ory, polarizable force fields, excited state dynamics, and
superfluidity [16,17,20,21,23,27,32,33,33–49]. A few of
those will be discussed below. However, most appli-
cations have so far been focused on earlier versions
of XL-BOMD and do not take full advantage of the
shadow Born–Oppenheimer potential and the equations
of motion in the full adiabatic limit that is achieved
with the generalized metric tensor of the harmonic oscil-
lator extension. Some XL-BOMD applications to indus-
trial problems with focus on linear scaling methods was
recently presented in Ref. [31].

7.1 Improving QMD in electronic structure codes

XL-BOMD, both in its earlier form of time-reversible
Born–Oppenheimer MD and in its shadow Lagrangian
formulation presented here, can be used to acceler-
ate quantum-based Born–Oppenheimer simulations. As
such it has been implemented in electronic structure
codes, including FreeON [174,175], TeraChem [36],
LATTE [162], SCC-DFTB [16,33,37], UQuantChem
[35], ONETEP [38,176], CONQUEST [20,41,177],
NEXMD [178], and PYSEQM [49].

7.2 Linear scaling electronic structure theory

Linear scaling electronic structure theory uses approx-
imate solvers that avoid the full diagonalization of the
quantum mechanical eigenvalue problem, which has a
computational cost that scales cubically with the sys-
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tem size. Instead, divide and conquer approaches or
numerically thresholded sparse matrix algebra tech-
niques are used [179,180]. With these techniques the
computational complexity can be reduced such that
the computational cost only increases linearly with the
system size. A major problem with linear scaling elec-
tronic structure theory is the ability to reach a suffi-
ciently high degree of SCF convergence. Attempts to
achieve linear scaling complexity in combination with
QMD simulations have, therefore, often lead to signif-
icant drifts in the total energy because of an under-
lying broken time-reversal symmetry [181–184]. XL-
BOMD avoids this systematic drift and makes it pos-
sible to achieve stable energy conserving, linear scal-
ing Born–Oppenheimer molecular dynamics simula-
tions [17,20,25,31,38,41,185,186].

7.3 Thermostated XL-BOMD

A main shortcoming of regular Born–Oppenheimer MD
simulations is the systematic drift in the total energy
if we combine an electronic extrapolation from previ-
ous ground state solutions as an initial guess to the
SCF optimization with an incomplete convergence. But,
what happens when we go beyond microcanonical NVE
simulations? For example, if we perform canonical simu-
lations with thermostats, where we rescale the velocities
or apply random noise to the forces as in a Langevin
dynamics, then the total energy is not even conserved
and we may expect that the original problem might sim-
ply disappear. In applications of XL-BOMD to canon-
ical QMD simulations, we find that even if the total
energy is not conserved, properties such as the distri-
bution of the thermal fluctuations are of key importance
[103]. Without tightly converged forces in regular direct
Born–Oppenheimer MD, the thermal fluctuations are
unphysical. Properties such as diffusion, the heat capac-
ity, the thermal conductivity, or the frequency of rare
events, will therefore not be represented correctly. With
thermostated XL-BOMD it can be demonstrated that
these shortcomings are avoided [41,103].

7.4 Reactive unstable systems

If a system has SCF instabilities with charge sloshing
or a closed degenerate HOMO-LUMO gap, any form
of Born–Oppenheimer molecular dynamics simulations
may run into problems. This is also the case for XL-
BOMD. A simple scaled delta-function approximation
of the kernel in the electronic equations of motion is no
longer possible and fractional occupation numbers have
to be included to account for degenerate states if the
HOMO-LUMO gap is closing. With the generalization
of XL-BOMD that includes the electronic free-energy
and preconditioned Krylov subspace approximations of
the kernel with adaptive rank-m updates [26,28,29,32],
it is possible to treat systems that normally would be
very challenging, as was illustrated by the example in
Fig. 6.

7.5 Excited states

An extended Lagrangian formulations for time-depen-
dent self-consistent field theory is also possible [27].
In this case we can dynamically propagate transition
matrices that describe the excited states in combi-
nation with the evolution of the electronic ground
state. The molecular trajectories are then generated by
interatomic forces that are determined by the excited
state potential energy surface. However, so far, this
extended Lagrangian approach has not been able to
take full advantage of the most recent formulations of
XL-BOMD, but the speedup can still be significant [27].

7.6 Superfluidity

The application to time-dependent self-consistent field
theory can also be extended to superfluidity [46], where
the shadow energy functional is replaced by a shadow
Lagrangian that represents a time-dependent non-linear
Schrödinger-like equation, such as the Gross–Pitaevskii
equation. The shadow Lagrangian formulation leads to
two coupled equations that both are linear in their time-
derivative variables. This allows the application of effi-
cient and stable implicit time integration schemes, with-
out having to solve a non-linear equation in each time
step.

7.7 Charge equilibration and polarizable field models

Polarizable force fields and charge equilibration mod-
els are frequently used to study a broad range of
materials—in particular bio-molecular systems. These
models can be derived as coarse grained formulations
of orbital-free DFT, where the electron density are
described by atom-centered charge deformations that
are approximated by multipoles. Because of the long-
range (all-to-all) electrostatic interactions, the dipole
or charge relaxations require the solution of a full
dense linear system of equations. These systems often
require iterative solvers, in particular for systems with
periodic boundary conditions. The iterative solution
then plays a similar role to the SCF optimization
procedure in orbital-based electronic structure calcu-
lations. By propagating an approximate solution rep-
resented by extended dynamical variables, a broken
time-reversibility and a systematic energy drift can be
avoided, even with approximately converged solutions
in each time step [23,24,38,43–45,108]. This gives a sig-
nificant reduction of the computational cost. Recently,
it was possible to formulate XL-BOMD in its most
recent framework, with features previously only appli-
cable to orbital-based XL-BOMD, also for these orbital-
free models [30]. These features, as discussed above,
include the metric tensor generalization of the extended
harmonic potential, preconditioners, and the ability to
use only a single Coulomb summation to determine the
fully equilibrated charges and the interatomic forces
in each time step for the shadow Born–Oppenheimer
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potential energy surface. An example was demonstrated
in Fig. 7.

8 Summary and outlook

In this brief review we have presented XL-BOMD
for various levels of electronic structure theory, from
Hohenberg–Kohn density functional theory to coarse
grained charge relaxation models. XL-BOMD appears
as a general framework that can be adapted and applied
to a broad variety of electronic structure models. Com-
putationally efficient and accurate trajectories are gen-
erated by propagating extended electronic degrees of
freedom, in the spirit of Car–Parrinello MD, through
a harmonic oscillator that is centered around an opti-
mized electronic ground state, in combination with an
approximate shadow energy functional that is linearized
around the extended electronic degrees of freedom. No
iterative solvers are needed to find the electronic ground
state and only a single Coulomb summation is required
to find the fully equilibrated charges in each time step.
The framework of XL-BOMD therefore provides a sig-
nificant boost to a broad variety of molecular dynamics
simulation methods based on a number of underlying
models for the electronic structure.

In this review we have tried to be pedagogical by
explaining the electronic structure models and how they
can be formulated in the framework of XL-BOMD. The
different examples hopefully help the reader understand
the theory and show how XL-BOMD can be applied
also to other models not discussed here. For some of
the more technical details we sometimes may have been
fairly brief, but the reader can then consult the original
publications or other literature.

A major part of existing implementations and appli-
cations are currently based on early versions of XL-
BOMD that cannot take full advantage of the most
recent formulation, including efficient preconditioners
and an exact ground state optimization of a linearized
functional with SCF-free equations of motion that are
derived in an adiabatic mass-zero limit. Using the
updated framework of XL-BOMD could provide a sig-
nificant boost to current implementations—improve
stability, allow slightly longer integration time steps,
and completely remove the need for any iterative SCF
optimization.

Despite the recent progress in the development of XL-
BOMD, there is plenty of room for improvements and
new applications. A few missing ingredients include, for
example: (1) a preconditioner for the density matrix
formulation of XL-BOMD; (2) more rigorous and less
ad hoc integration schemes for a variety of ensem-
bles; (3) implementations in a variety of state-of-the
art ab initio electronic structure codes; (4) applications
of XL-BOMD for the non-linear charge relaxation mod-
els that are parameterized and optimized using modern
machine learning methods; (5) linear scaling implemen-
tations of XL-BOMD for fractional occupation numbers
including the low-rank Krylov subspace approximation

of the kernels; and (6) a careful mathematical analy-
sis of stability and efficiency of XL-BOMD for different
electronic structure models and ensembles.

XL-BOMD provides a theoretical framework that
relies on a physics-based reformulation of the underly-
ing Born–Oppenheimer dynamics. This reformulation
makes it possible to avoid the cumbersome solution of
a non-linear eigenvalue problem or a dense system of
equations. Instead, only a simplified linear eigenvalue
problem has to be solved for the orbital-based models or
a quasi-diagonal system of equations for the non-linear
charge relaxation models. This represents an example of
the value of a coordinated design approach. To optimize
software implementations and to improve hardware or
the parallelism for hybrid architectures are all impor-
tant if we want to enhance the computational efficiency,
but it is only a genuinely cross-disciplinary approach,
where we also reformulate the underlying physics, which
allows a truly transformative step forward. This may,
of course, sound like an obvious statement to many sci-
entists, but yet it is frequently forgotten.
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