
Eur. Phys. J. B (2021) 94 :137
https://doi.org/10.1140/epjb/s10051-021-00122-x

THE EUROPEAN
PHYSICAL JOURNAL B

Regular Article - Statistical and Nonlinear Physics

A new nature-inspired optimization for community
discovery in complex networks
Xiaoyu Li1, Chao Gao2 , Songxin Wang3, Zhen Wang2, Chen Liu4, and Xianghua Li2,a

1 School of Cybersecurity, Northwestern Polytechnical University, Xi’an 710072, Shaanxi, China
2 School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi’an 710072,

Shaanxi, China
3 School of Information Management and Engineering, Shanghai University of Finance and Economics, Shanghai 200433,

China
4 School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, Shaanxi, China

Received 28 March 2021 / Accepted 12 May 2021 / Published online 7 July 2021
© The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany,
part of Springer Nature 2021

Abstract. The community structure, owing to its significant status, is of extraordinary significance in
comprehending and detecting inherent functions in real networks. However, the community structures are
always hard to be identified, and whether the existing algorithms are based on optimization or heuristics,
the robustness and accuracy should be improved. The physarum (i.e., slime molds with multi heads) has
proved its ability to produce foraging networks. Therefore, we adopt physarum so that the optimization-
based community detection algorithms can work more efficiently. Specifically, a physarum-based network
model (pnm), which is capable of identifying inter-edges of the community in a network, is used to optimize
the prior knowledge of existing evolutional algorithms (i.e., genetic algorithm, particle swarm optimization
algorithm and ant colony algorithm). the optimized algorithms have been compared with some advanced
methods in synthetic and real networks. experimental results have verified the effectiveness of the proposed
method.

1 Introduction

The community structure contributes a lot to the
dynamic characteristics and potential functions in a
network, and has been applied widely in many aspects
[1–3]. Since nodes are densely connected, they are gath-
ered in the same cluster; otherwise, they are resided in
different clusters. If some communities are related, then
the intact network can be affected. Therefore, commu-
nities are detected so that the related communities can
be found and displayed [4]. Community structures can
reinforce our understanding of networks, which can be
used in numerous areas (e.g. engineering, social and bio-
logical networks) [5,6].

Currently, one type of popular method is to maxi-
mize one objective such as the modularity [7] and the
identifiability of community structure [8]. This type of
method is also to maximize multi-objective like kernel
k-means or ratio cut [9] to detect communities. Then
some evolutionary algorithms [10,11], such as genetic
algorithms (GA) [12], particle swarm optimization algo-
rithms (PSO) [13] and ant colony optimization algo-
rithms (ACO) [14,15], can be applied in this problem.
Nevertheless, since the network structure is too com-
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plex to be identified easily, an algorithm desperately
requires to be more accurate and economical in compu-
tation cost. Based on existing extensive research in the
field of evolutionary computation [16], it is manifested
that the prior knowledge, as the essential element of
evolutionary algorithms, is of great importance for com-
putational cost. Therefore, the motivation of this paper
is to improve the computational efficiency of EAs-based
algorithms through optimizing the prior knowledge.

Inspired by calculating ability and positive feedback
theory following foraging process of Physarum [17],
a large amoeba-like cell is developed, which is com-
posed of a dendritic network of tube-like pseudopodia.
A Physarum-inspired optimization strategy has been
proposed for providing more valuable prior knowledge
of existing evolutionary algorithms and improving the
computational efficiency of solving NP-hard problems
(e.g., TSP [18] and 0/1 KP [19]). However, the prob-
lems below still need to be explored.

1. Can the Physarum identify community structures
and provide prior knowledge for evolutionary algo-
rithms?

2. Is it possible to construct the Physarum-based
computing framework to improve the precision and
cut the computing expenditure of EAs-based algo-
rithms?
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This paper assesses the effectiveness of the proposed
method with more performance metrics and networks.

2 Related work

2.1 Optimization-based community discovery
approaches

The optimization-based community detection is first
formulated as some optimization problems. Then, some
heuristic algorithms are proposed to solve and opti-
mize such problems. Because of the higher compu-
tational efficiency and easy-to-implement characteris-
tic in solving optimization problems, EAs-based algo-
rithms have been used to identify the structure of a
network through optimizing the Q [16]. More specifi-
cally, the typical EAs-based algorithms, i.e., GA [12]-,
PSO [13]- and ACO [14]-based optimization methods,
motivated by theories from biological areas and etho-
logical areas, respectively, have united with community
discovery issues.

Through imitating Darwin natural selection and
genetic theory, community discovery approaches based
on GA (e.g., GACD [21] and GLAS [22]) search for the
optimizing solution given an objective function. These
approaches encode the candidate solution (i.e., the com-
munity partitions) into integer strings, named as chro-
mosomes, due to the attribute partition of edge ter-
minals. Genes are the integers in these chromosomes.
What’s more, the fitness value of every chromosome
represents the homologous value in the objective func-
tion. In each iteration step, the GA-based algorithms
search better chromosomes by both crossover and muta-
tion operations. As these steps go on, it is obvious that a
higher fitness value helps chromosomes to live when the
iteration operators increase. Finally, GA-based algo-
rithms output the chromosome which has the highest
fitness value and decode it to form the greatest com-
munity division.

As the representative of the swarm intelligence algo-
rithms, the PSO is also evolution algorithms of a cer-
tain kind. Each particle in the PSO can adjust its state
according to its historic experience and neighbors for
the exploration of solution space. With the continuous
update of the population position, the search of algo-
rithms gradually falls in the high-quality solution space.
When the algorithm reaches the convergence and the
maximal iteration generation, we decode the particle
with the global optimal position to acquire the optimal
solution. Though the GDPSO discretize the PSO algo-
rithm for community detection [13], its accuracy still
limits the development in community detection.

ACO is another typical optimization algorithm moti-
vated by the community behavior of social insect ants
[23]. There are two basic elements in ACO: pheromone
matrix and heuristic factor [14,15]. The pheromone
matrix provides a chance for each ant to find the
community structure all alone. After that, every ant
renews the pheromone on spot to notice other ants

about community partition condition on the basis of
a pheromone matrix. At each iteration, the pheromone
matrix instructs ants to find solutions, and the qual-
ity of solutions feeds back to other ants by renewing
the pheromone matrix. With the iteration going, these
ants can find the best community partitions through
the pheromone. Although every ant can find a solution
which reflects its local opinion, the whole optimal solu-
tion is acquired after every solution being aggregated
by clustering [24].

Due to the importance of the prior knowledge of EAs,
researchers design hybrid algorithms through combin-
ing existing evolutionary algorithms with other heuris-
tic algorithms, aiming to provide more valuable prior
knowledge for EAs. For example, to deal with TSP
and 0/1 KP, we can develop the computational effi-
ciency of original ACO and GA by optimizing the ini-
tialization and renewing the pheromone matrix [18].
Inspired by such strategies, we aim to optimize the
existing optimization-based community detection algo-
rithms combined with a new computational model,
inspired by the intelligent behaviors of a sort of multi-
headed slime molds (i.e., Physarum) [17]. Although
some preliminary experiments are implemented [16],
the detailed formulations and comparisons are not
addressed.

2.2 The computational intelligence of Physarum

Nowadays, owing to the capacity of searching for opti-
mal solutions of food and establishing networks with
great robustness, Physarum, a kind of slime mould,
has been taken seriously. Some studies have reported
that Physarum has shown an ability to deal with maze
and design network among experiments in biology [17].
Since Physarum can accomplish these tasks without
concentrated command, the theory has caught plenty
of attention. To better grasp and understand the main
forging characteristics and mechanisms of Physarum, a
number of researchers have put forward lots of models
to characterize and reappear the forging procedure on
the basis of many computational approaches motivated
by nature (e.g., artificial immune system [25]).

For example, based on a feedback system, a mathe-
matical model is used to imitate the flux propagation in
Physarum networks [26]. Based on such a feedback sys-
tem, the crucial pseudopodia survives and gets stronger
while others disappear. According to these features and
mechanisms, some complex computational problems
(e.g., TSP and 0/1 KP [18]) and real problems in our
world (e.g., traffic network optimization [27] and mul-
ticast routing problem [28]) can be solved in the field
of Physarum-based computing. Inspired by the analy-
ses and applications above, this paper tries to combine
the information of Physarum with prior knowledge of
EAs (e.g., GA, PSO and ACO) to improve the robust-
ness and accuracy of existing GA-based, PSO-based
and ACO-based community discovery approaches.
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2.3 Performance metrics for community detection

For estimating the efficiency and effectiveness of differ-
ent community detection algorithms, we should deter-
mine some performance metrics and criterion for our
experiments.

First, the modularity Q is selected as the fitness func-
tion and objective function for GA-based, PSO-based
and ACO-based community discovery approaches,
respectively. The Q, defined in Eq. (1), has been widely
used as the optimization objective in many algorithms
[15]. A larger value of Q tends to indicate a better divi-
sion. Such a criterion reflects the inherent features of
a network, i.e., the heterogeneous relationships among
edges between dense intra-community connections and
sparse inter-community connections.

Q =
1

2|E|
|N |∑

i,j

(
Ai,j − didj

2|E|
)

δ(i, j), (1)

where |E| and |N | represent the size of edges and nodes.
di is the degree of a node ni. δ(i, j) denotes whether the
connection exists between ni and nj in the community
division. More specifically, when δ(i, j) equals to 1, ni

and nj reside in the same community; otherwise, nodes
belong to different communities. Ai,j represents the ele-
ment of A, where Ai,j equals to 1 when ni and nj are
connected.

Second, the other more reasonable quality criterion
for community detection is the NMI for networks with
known community division [29]. NMI, defined in Eq.
(2), measures the similarity between two divisions (i.e.,
the detected and standard communities) on the basis
of a determinate characteristic in reality [5]. If we have
both a ground truth S and a discovered community
structure D, then a confusion matrix Co between these
two divisions is acquired.

Finally, if the ground truth of a network is known,
some criteria can help us further estimate the accuracy
of results. For example, the fraction of nodes identified
correctly (FV IC) [35] and the number of detected clus-
ters (dc) in a network can be used to justify whether
the divisions contains unreasonable fragments. Thereby,
both NMI and FV IC can be applied to estimate the
efficiency of community discovery approaches when pro-
vided the ground truth.

NMI(S,D)

=
−2

∑pS

i=1

∑pD

j=1 Coi,j · log( Coi,j ·|N |
Coi··Co·j

)
∑pS

i=1 Coi· · log(Coi·
|N | ) +

∑pD

i=j Co·j · log(Co·j
|N | )

,

(2)

where Coi,j denotes how many nodes are in di and sj

in the meantime. pS and pD denote the size of clusters
in division S and D, separately. Coi· is the total of fac-
tors in row i and similarly, Co·j represents total factors
in column j. When the detected partition D matches

standard division S, then NMI(S,D) = 1, otherwise
NMI(S,D) = 0.

3 Physarum-inspired framework for
detection

3.1 The Physarum-based network mathematic
model

3.1.1 The process of solving the maze problem

A maze is represented as a graph G(N,E), in which N
denotes a node set and E represents an edge set. We
set n1 as the inlet and n|N | as the outlet. di,j is the
distance between nodes ni and nj . It is the main task
for the maze problem to search for the min(d1,i +di,j +
· · · + dk,|N |), where ni, nj , nk∈N .

Tero et al. formulate the characteristic of “key
pipelines key focus”. First, pipelines with inside flux
in the biological experiment is presented as the edges
in a network. Di,j and PQi,j are represented as Eq. (3),
in which Ei,j is the distance of corresponding edges and
Pi denotes the pressure of ni [26]. Di,j and PQi,j rep-
resent the conductivity and quantity of pipe combining
nodes ni and nj , respectively.

PQt
i,j =

Dt−1
i,j

Li,j
|P t

i − P t
j |. (3)

Then the total flux is assumed as I0. According to the
conservation law, the inflow Iin and the outflow Iout

are both I0 at any time. This case is explained as Eq.
(4). On the basis of the original setting, the pressure of
each node can be calculated by combining Eqs. (3) and
(4).

∑

i

PQt
i,j =

{
I0, if nj is an inlet
−I0, if nj is an outlet
0, others

, (4)

PQt is updated based on Eq. (3). Before the iteration
process, Dt+1 is affected by PQt in Eq. (5), where k is
a parameter. The conductivities are reflected in the flux
at the next time. The feedback system between cyto-
plasmic flux and conductivity of tube, which is also crit-
ical to PNM, entertains that larger fluxes enhance the
conductivity while smaller fluxes reduce the conductiv-
ities. Finally, a high efficient network emerges owing to
this feedback process.

Dt+1
i,j =

PQt
i,j + Dt

i,j

k
. (5)

3.1.2 The description of PNM

The Physarum-based network model (PNM) establishes
a node as an inlet once every time. A quintessential
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example is formulated as Eq. (6) that is used to replace
Eq. (4). The global conductivity is renewed by comput-
ing the mean Dt(i) based on Eq. (7), where Dt(i) is the
updated conductivity matrix when ni is an inlet at t.
After the iteration number surpasses the determinate
threshold, the loop will end.

∑

i

Dt−1
i,j

Li,j

∣∣P t
i − P t

j

∣∣ =
{

I0, if nj is an inlet
−I0

|N |−1 , others , (6)

Dt =
1

|N |
|N |∑

i=1

Dt(i). (7)

Algorithm 1 The process of PNM method
In The adjacent matrix A;
Out The conductivity matrix D;
For (t = 1 : T )
For (i = 1 : |N |)
Selecting inlet: ni;
Computing P t

i on the basis of Eqs. (3) and (6);
Computing PQt

i,j on the basis of Eq. (3);

Computing Dt+1(i) on the basis of Eq. (5);
Updating the Dt+1 on the basis of Eq. (7);
Outputting D;

In view of the computational capability of PNM in
identifying the edges between different communities
from those inside the same community, this paper pro-
poses a Physarum-inspired computing method in the
following section to make the optimization-based algo-
rithms more efficient.

3.2 Physarum-inspired initialization

By means of PNM method for premised work, we
can differentiate the inter-community edges and intra-
community ones based on the conductivities. After
that, with the help of the recognition PNM, the prior
knowledge of optimization-based community detection
algorithms can be perfected to make the computa-
tion more robust and more accurate. More specifically,
we refer to many coding and initialization approaches
for better GA-based (i.e., NGACD [12]), PSO-based
(i.e., GDPSO [13]) and ACO-based (i.e., ACOC [15],
IACONet [14]) community discovery approaches by
enhancing premier solutions and heuristic elements,
separately. To be distinguished from original algo-
rithms, the P-prefix takes the lead in the new name
of optimized algorithms.

3.2.1 Improved GA-based algorithms based on PNM

In this section, we exemplify the NGACD [12], the
characteristic GA-based community discovery method,
to present the optimized initialization of our pro-
posed framework. First, D is obtained on the basis

of Algorithm 1. Also, DA is generated to stand for
features of edges, where DAi,j denotes the property
of ei,j . In detail, DAi,j = −1 only when ei,j is an
inter-community edge. Then entire edges are initial-
ized as inter-community edges. Subsequently, central
nodes generate from the selection of nodes at random.
The DA indicates that the corresponding value of the
edge connecting them immediately changes to 1 (i.e.,
DAi,j = 1), unless the edges with the maximal con-
ductivity. Finally, DA is utilized to obtain the initial
community structures. The process above needs to be
repeated until the number of initial solutions we have
established before are acquired.

In P-NGACD (a prefix “P-” is added before the orig-
inal name), the population is coded as genome|N |×|N |.
A genomei,j denotes the character division of edge
between nodes ni and nj . As for DA, genomei,j = 1
when the two nodes come from the same community. Or
else, genomei,j equals to – 1. So far, by genomei,j , the
genome|N |×|N | is exhibited to depict the character divi-
sion. Equipped with this coding plan, the convenience
for the crossover and mutation method to exchange the
character of edges and change a gene bit separately has
been improved greatly.

3.2.2 Improved PSO-based algorithms based on PNM

This section takes GDPSO algorithm as an example to
exhibit the optimized initialization of our framework.
The initialization of GDPSO based on PNM (i.e., P-
GDPSO) is concluded as follows.

D is primarily obtained on the basis of Algorithm 1.
The next step is to initialize the position vector of
each particle, denoted as X =

{
x1, x2, . . . , x|N |}, where

xi ∈ [1, |N |] and assign a unique community number for
each node. Firstly, each node ni in the position vector
randomly selects one neighbor nj that ensures the con-
ductivity between ni and nj is smaller than the fixed
threshold. Then, the label of nj is assigned to ni. After
that, the iteration is processed until the result converges
or the iteration reaches a certain number. If there is
more than one label with highest frequency, the final
label will be selected among these labels at random.
The operation of updating is formulized in Eq. (8).

xi = arg max
r

∑

j∈Li

ϕ
(
xj , r

)
, (8)

where Li is a set of neighbor nodes of ni. If xj = r,
then ϕ

(
xj , r

)
= 1; otherwise, ϕ

(
xj , r

)
= 0.

Vi = ωVi � (c1r1 (Pbesti ⊕ Xi) + c2r2 (Gbest ⊕ Xi)) .

(9)

After the initialization, the fitness of population is eval-
uated and the global optimal position Gbest is chosen.
Then the velocity and position of particles are updated
by Eqs. (9) and (10). The operator ⊕ performs the XOR
operation on two position vectors. Pbesti is the indi-

123



Eur. Phys. J. B (2021) 94 :137 Page 5 of 14 137

vidual optimal solution of the ith particle. The inertia
weight ω, learning factor c1 and c2 are set to 0.7298,
1.4961 and 1.4961, respectively. r1 and r2 are random
numbers between 0 and 1.

Xi = Xi ⊗ Vi, (10)

where � calculates two velocity vectors. For exam-
ple, there are two vectors V1=

{
v1
1 , . . . , v

|N |
1

}
and V2={

v1
2 , . . . , v

|N |
2

}
. V3 = V1 � V2 =

{
vi
3, · · · , v

|N |
3

}
is

defined in Eq. (11).

{
vi
3 = 0, rand(0, 1) ≥ 1

1+e−(vi
1+vi

2)

vi
3 = 1, rand(0, 1) < 1

1+e−(vi
1+vi

2)

. (11)

The operational rule of ⊗ is defined in Eq. (12). If
vi
1 = 0 and xi

1 keeps unchanged, then the label of
ni remains unchanged. Otherwise, it will be taken by
that of its neighbor nodes and the increased modu-
larity ΔQ

(
xj
1, j|j ∈ Li

)
will be calculated. Finally, ni

updates the label as the one which contributes the most
to the increased modularity.

{
xi
2 = xi

1, vi
1 = 0

xi
2 = arg maxj ΔQ

(
xi
1, j|j ∈ Li

)
, vi

1 = 1 . (12)

3.2.3 Improved ACO approaches based on PNM

This section exemplifies the ACOC [15] to demonstrate
the optimizing process of ACO by means of PNM. First,
a probability matrix P (i, cj) is used to direct each ant
to finish the whole route and each ant is a solution
in Eq. (13), which is a community division. P (i, cj)
declares the possibility of ni residing in Cj . And cj

labels the community Cj .

P (i, cj) =
η(i, cj)

β
Tau(i, cj)

α

∑
k η(i, ck)β

Tau(i, ck)α
, (13)

η(i, cj) =
ni,cj∑p

k=1 ni,ck

, (14)

where Tau is renewed by ants at every iteration on the
basis of the qualities of solutions. η(i, cj) stands for the
size of edges between ni and nodes in a community Cj .
The parameters α and β command the importance of
pheromone trail factor versus heuristic factor. We can
deduce that ni belongs to a community Cj if there are
more edges connecting ni and Cj . Therefore, η(i, cj)
can be selected as a heuristic factor and measured by
Eq. (14) to develop the ability of searching among ants.
More specifically, ni,cj is the normalized result to mea-
sure how many edges connecting ni and nodes in Cj .

Before allocating a community label to a node, we
should first compute P (i, cj) for each ni. And then, ni

will be labeled by a community label cj with the top

P on the basis of the probability p0. And ni is ran-
domly labeled on the basis of the roulette with the pos-
sibility 1 − p0. After that, each ant aims to update the
pheromone matrix Tau on the basis of Eq. (15), where ρ
denotes how fast the pheromone evaporates and Q rep-
resents how good the community partition is. Finally,
Eq. (16) is implemented to enhance the effects of better
community partitions whose Q values are high.

Tau(i, cj) = (1−ρ) · Tau(i, cj)+2ρ · Q · δ(i, cj),
(15)

Tau(i, cj) = (1−ρ) · Tau(i, cj)+Qtop · δ(i, cj). (16)

To diversify the solutions and prevent the ant colony
methods from the precociousness, this paper imple-
ments a random walk method. During such phases, each
node is first randomly repartitioned by the community
label with the possibility pm. Also, the node will accept
such reassignment only when the modularity value of
corresponding solution can be improved. Having fin-
ished the local seeking and renewing for Tau, ants clus-
ter to a certain community division owning the top Q.
To make the existing ACO-based detection approaches
more efficient, we optimize the heuristic factor on the
basis of Eq. (17).

η∗(i, cj) =
n∗

i,cj∑p
k=1 n∗

i,ck

, (17)

n∗
i,cj =

∑

k∈Cj

1
wik

, (18)

where n∗
i,cj is defined in Eq. (18). wik indicates the

conductivity of ei,k, a factor of D generated from Algo-
rithm 1, and cj represents the label of community Cj .
The more edges between ni and nodes in Cj are, the
larger the η∗(i, cj) is, in comparison with η(i, cj).

3.3 The mapping of the PNM parameters

Figure 1 illustrates the mapping of PNM parameters
to GA and PSO-based algorithms. First, a network, as
shown in Fig. 1a, is mapped by the PNM framework
in which each node is denoted as a food source, and
each edge is denoted as a pipe as plotted in Fig. 1b.
The conductivity D is mapped to the factor predicat-
ing properties of edges in a network. More specifically,
the conductivity D based on Eqs. (3), (5), (6), (7) when
we know the structure of a network, is shown in Fig. 1b.
After that, there only exists inter-community edges.
Then, some central nodes, such as n4 and n5, are ran-
domly selected in Fig. 1c. If the edges exist between
those selected nodes (i.e., e1,4, e2,4, e3,4, e4,5, e5,6, e5,7)
and their conductivities are lower than a certain thresh-
old, they will be marked as intra-community edges. As
shown in Fig. 1c, e1,4, e2,4, e3,4, e5,6, e5,7, are marked
as intra-community edges. The existing research shows
that the top 20% conductivities of edges are that of
inter-community.
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(a) (b)

(c)

(d)

(e)

Fig. 1 The mapping of the PNM parameters to GA-based algorithms and PSO-based algorithms

(a) (b)

Fig. 2 The mapping of PNM parameters to ACO-based
algorithms. a and b Compare the resemblance and distinc-
tions between PNM- and ACO-based algorithms, respec-
tively

In PSO algorithms, a particle randomly selects a
neighbor label which dose not own the top 20% conduc-
tivities as its label. In Fig. 1d, n1, n2, n3 and n4 belong
to community 1 and n5, n6 and n7 are in community
2. Based on these methods, PNM is used to generate a
preliminary community division, and then improve the
quality of initial population. The final division will be
the output as shown in Fig. 1e.

The mapping of PNM parameters to ACO-based
algorithm is shown in Fig. 2. The resemblance and dis-
tinctions between PNM and ACO-based algorithms are
explained in Figs. 2a and b. The conductivity D and the
quantity of pipes in PNM are mapped to the pheromone
matrix Tau and the heuristic factor η in ACO-based
algorithms, respectively. In fact, there exists a positive
feedback process both in PNM and ACO-based algo-
rithms. The heuristic factor based on the conductiv-
ity of PNM induces each ant to produce a good solu-
tion, and the obtained community structures are mea-
sured by modularity. Then the solutions are fed back to
pheromone matrix according to the pheromone update
strategy, so that ants can communicate with each other
better.

4 Experiments

4.1 Datasets

The experiments adopt six real networks and synthetic
networks varying in sizes and scopes. The former is
gathered by Newman1, Batagelj and Mrvar2, the lat-
ter is proposed by Lancichinetti [30]. Table 1 demon-
strates the structure characters in networks. Specially,
G1 to G4 are real-world and classic datasets with known
community structures.

The details of parameters are shown in Tables 2, 3
and 4, which are based on the discussion of GA [12]
[21], PSO [13] and ACO [14] [15], respectively. More
specifically, the adjacent rate and children proportion
are used to denote the initial proportion of centralized
nodes and the proportion of new children for the next
generation.

To distinguish the optimized algorithms from the
original ones, a prefix (i.e., P-) is written in front of
the original names of optimized algorithms. All experi-
ments are operated over 100 runnings on average about
the GA-based, PSO-based and ACO-based community
discovery approaches.

4.2 Accuracy comparison

4.2.1 The comparison results of the modularity Q

Figures 3, 4, 5 and 6 first compare the Q values of
original EA-based community discovery approaches and
their enhanced approaches (i.e., with the prefix “P-”)
based on our proposed Physarum-inspired computa-
tional framework. The ends of whiskers stand for the
minimal and maximal Q values. Since the maximum
and minimum are random, the contrast of those meth-
ods is centered on the evenness, first and third quartiles.
There is a conclusion derived from the diagrams that

1 http://www-personal.umich.edu/∼mejn/netdata/.
2 http://vlado.fmf.uni-lj.si/vlado/vladonet.htm.
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Table 1 The essential characteristics of networks. Gi stands for the symbols of those networks. E and N indicate the total
number of edges and nodes. C and k denote the clustering coefficient and averaged degree, severally. #C shows the size of
communities in ground truth, where “–” signifies that the ground truth is unknown

Gi Name N E k C #C

G1 Karate club 34 78 4.588 0.588 2
G2 Dolphins 62 160 5.129 0.303 2
G3 PolBooks 105 441 8.400 0.488 3
G4 Football 115 613 10.660 0.403 12
G5 Jazz 198 2742 27.697 0.053 –
G6 Celegans 297 1540 9.656 0.326 –
G7 Synthetic network 100 479 9.58 0.141 3
G8 Synthetic network 200 1384 13.84 0.080 2
G9 Synthetic network 300 1619 10.79 0.376 5
G10 Synthetic network 400 1300 6.50 0.484 3
G11 Synthetic network 500 3966 15.86 0.053 6

Table 2 Parameters used in our GA-based experiments

Parameters Values

Population size 200
Mutation rate 0.01
Children proportion 0.5
Adjacent rate 0.1
The maximum iterations 100

Table 3 Parameters used in our PSO-based experiments

Parameters Values

Population size 100
Mutation rate 0.1
Inertia weight 0.7298
Learning factor 1.4961
The maximum iterations 100

the average Q values of three optimized algorithms in
six real-world networks are higher than those of their
original algorithms in most cases. And the 1st and 3rd
quartiles of the P-approaches are higher than those
of original approaches. It means that the enhanced
algorithms based on PNM framework possess a bet-
ter global exploration ability. The diagrams show that
the optimized algorithms, P-ACOC and P-IACONet,
get slightly lower medians of Q than the original algo-
rithms in G5. However, the medians and averages of Q
returned by the improved approaches are almost higher
than those of primary approaches in all networks. What
is more, the difference between the first and the third
quartiles of Q reflects the fluctuation of Q. In rare cases,
the algorithms could attain a wider range of Q values
after optimization. For P-NGACD, its Q values vary
as narrowly as NGACD’s in G2. The same phenom-
ena happen to both P-ACOC and P-IACONet in G6.
However, in most cases, the Q values of the optimized
methods vary in a smaller range.

Table 4 Parameters used in our ACO-based experiments

Parameters ACOCIACONet

Ants population 15 15
Evaporation rate ρ 0.1 0.2
The importance of pheromone trail factor α 1 1
The importance of heuristic factor β 2 2
Mutation rate 0.05 0.2
The maximum iterations 1000 50

(a) (b) (c)

(d) (e) (f)

Fig. 3 The values of Q in box charts for P-NGACD and
NGACD. The first and third quartiles are represented by
the bottom and top of the box. The median is the band
inside the box

Table 5 reports the averaged Q values in five syn-
thetic networks, as listed in Table 1, which also verifies
the optimization performance of our proposed frame-
work. P-GDPSO can attain the highest Q values in G7,
G9, G10 and G11, and P-NGACD performs best in G8.
In conclusion, the PNM framework improves the global
search ability of original approaches in synthetic net-
works in diverse scopes.
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(a) (b) (c)

(d) (e) (f)

Fig. 4 The Q values in box charts for GDPSO and its opti-
mized algorithms P-GDPSO in different kinds of networks

(a) (b) (c)

(d) (e) (f)

Fig. 5 The Q values in box charts for ACOC and its opti-
mized algorithms P-ACOC in different kinds of networks

(a) (b) (c)

(d) (e) (f)

Fig. 6 The Q values in box charts for IACONet and its
optimized algorithms P-IACONet in different kinds of net-
works. Compared to Fig. 5, we find that P-IACONet can
achieve higher Q values than P-ACOC which is caused by
the inherent performance difference between IACONet and
ACOC

Furthermore, some optimization-based, heuristic-
based community detection and network representa-
tion learning algorithms are employed to evaluate the
efficiency of our approach. Specifically, there are evo-
lutional algorithms (i.e., ACO [32] and GA-Net [33]),
swarm intelligence method (i.e., RWACO [34] and D-
ACOC [38]), clustering method based on betweeness
(i.e., GN [7]), label propagation based algorithm (i.e.,
LPA [36]), Markov clustering approach (i.e., MCL [37])
and network representation learning algorithms (i.e.,
Node2vec, DeepWalk, M-NMF, Walklets and GEM-
SEC). Table 6 reports the modularity Q values returned
by those algorithms in six small networks. P-GDPSO
can achieve better results than others, which has the
highest modularity Q values from G1 to G6. In sum-
mary, optimized algorithms based on the PNM frame-
work exhibit better search ability.

Table 5 The comparison of the modularity Q in synthetic networks

Alg. Net.

G7 G8 G9 G10 G11

GA-Net [33] 0.0407 0.0014 0.3364 0.5297 0.0080
NGACD [12] 0.2300 0.2000 0.2548 0.2972 0.2100
P-NGACD 0.2590 0.2491 0.2555 0.3157 0.2498
GDPSO [13] 0.3613 0.2442 0.5012 0.6534 0.4225
P-GDPSO 0.3614 0.2463 0.5017 0.6615 0.4226
ACO [32] 0.2310 0.1035 0.2599 0.3034 0.0923
IACONet [14] 0.3229 0.1749 0.3956 0.6163 0.2217
P-IACONet 0.3249 0.1749 0.3999 0.6179 0.2233

The bold numbers denote the best results
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Table 6 The comparison with other approaches in the aspect of Q

Alg. Net.

G1 G2 G3 G4 G5 G6

NGACD [12] 0.4186 0.5243 0.4982 0.5777 0.2278 0.1896
P-NGACD 0.4193 0.5249 0.5180 0.6008 0.2896 0.2891
IACONet [14] 0.4175 0.5153 0.5136 0.5914 0.3758 0.3804
P-IACONet 0.4197 0.5168 0.5204 0.5930 0.4066 0.3846
GDPSO [13] 0.4198 0.5278 0.5271 0.6045 0.4450 0.4683
P-GDPSO 0.4198 0.5284 0.5272 0.6046 0.4451 0.4693
GN [7] 0.4013 0.4706 0.5168 0.5996 0.4051 0.2280
MCL [37] 0.3715 0.5039 0.5199 0.5191 0.2653 0.3794
LPA [36] 0.3705 0.4806 0.5042 0.5884 0.2820 0.2318
RWACO [34] 0.3715 0.3774 0.4569 0.6010 0.2849 0
ACO [32] 0.4190 0.4930 0.4760 0.5310 0.2450 0.2529
GA-Net [33] 0.4060 0.4670 0.4900 0.5980 0.2652 0.2899
D-ACOC [38] 0.3718 0.4855 0.4955 0.4811 0.2733 0.2743
Node2vec [39] 0.3694 0.4002 0.4991 0.6006 0.2676 0.3750
DeepWalk [40] 0.3700 0.4002 0.4986 0.5954 0.2657 0.3809
M-NMF [41] 0.1559 0 0.5204 0.4585 0.2585 0.0136
Walklets [42] 0.3700 0.4002 0.5017 0.6010 0.2935 0.3812
GEMSEC [43] 0.3823 0.4685 0.4996 0.5418 0.2755 0.3280

The bold numbers denote the best results

4.2.2 The comparison results of convergence rate

This section estimates the convergence rate of the opti-
mized algorithms. First, taking six real-world networks
as examples, Fig. 7 plots the dynamical variations of
Q during the iteration process. The Q is a criterion for
estimating network partition returned by approaches.
The greater the value of Q is, the higher the efficiency
of an algorithm is. As demonstrated in Figs. 7a and b,
there is no obvious difference between NGACD and P-
NGACD. It means that our framework slightly improve
the efficiency of NGACD in G1 and G2. However,
from Figs. 7c–f, the initial Q of P-NGACD is demon-
strated higher when compared with NGACD. Simulta-
neously, the ability of searching the community struc-
ture strengthens and the values of Q increase with the
generation process. As a result, the chart shows that the
Q values of P-NGACD are higher than those of NGACD
at each generation. The growth of generation steps nar-
rows the gap between them. However, P-NGACD per-
forms better because of the faster rate of convergence
and the fewer iteration steps for optimal results. In par-
ticular, at the 50th generation, P-NGACD converges
while NGACD does otherwise, which indicates that the
improved strategy help algorithms have greater conver-
gence. P-NGACD has an advantage over calculating Q
on the entire iteration procedure.

After that, Fig. 8 depicts the iteration curve of the
averaged Q values in six networks about the P-GDPSO
and GDPSO algorithms. The results show that P-
GDPSO is superior to GDPSO in the whole datasets.

Finally, Figs. 9 and 10 report the dynamic changes of
the averaged Q values about the improved and original
algorithms in ACOC and IACONet. Results show that
two kinds of optimized ACO-based community detec-
tion approaches grow more quickly compared with pri-

(a) (b) (c)

(d) (e) (f)

Fig. 7 The tendency of Q values with the increase of iter-
ations in six real-world networks. The higher the Q value is,
the better the division of the algorithm is

(a) (b) (c)

(d) (e) (f)

Fig. 8 The modularity of P-GDPSO is slightly better than
that of the GDPSO in six real-world networks. Obviously,
the improved algorithm expedites the rate of convergence
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(a) (b) (c)

(d) (e) (f)

Fig. 9 The trend charts of the mean Q values of ACO
and P-ACO with the enhancement of iteration in six real
networks

(a) (b) (c)

(d) (e) (f)

Fig. 10 The dynamical variations of the mean Q values of
IACONet and P-IACONet with the enhancement of itera-
tion in six real networks

mary approaches. As demonstrated in such figures, the
initial Q values of optimized approaches approximate
those of the original approaches. Nonetheless, optimized
approaches higher increase, in comparison with the
original ACO approaches. With the increment of iter-
ations, the difference between original and optimized
approaches emerges. These phenomenons are caused by
the positive feedback system. The optimized ACO algo-
rithms generate good initial solutions and obtain divi-
sions with a high Q value. Then results are fed back
to the pheromone matrix by an updating strategy with
respect to Q.

4.2.3 The visualization results for real-world networks

According to the visualization results, colors denote the
partitions of networks returned by algorithms and geo-
metric figures display the real partitions. Taking GA-
based algorithms as an example, Figs. 11a and b illus-
trates the visualization results in four small real-world
networks. The circle and rectangle indicate diverse real
clubs.

Figures 11c and d show the division returned by P-
NGACD and NGACD for the dolphins network. Based

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 11 Partition results of NGACD and P-NGACD on
the basis of the top value of objective function Q in (a)–
(h). More specifically, the averaged NMI values over 100
repeated runnings are reported below each subgraph. The
shapes of the nodes stand for the ground truth, and the
colors represent community partitions of approaches. The
dotted circle highlights the major diversity in partitions

on the benchmark criteria, rectangles and circles stand
for real communities. As shown in Fig. 11c, although
the communities detected by P-NGACD do not stay the
same as the real communities, P-NGACD distributes a
big community into three small ones. Figures 11e and
f are the partition results of two algorithms in the Pol-
books network. Two algorithms produce the division
denoted by four colors in the diagrams. Edges depict the
references between them. There are four colors depicted
in these figures which denote partition results obtained
by two algorithms. The context of books bridges the
distance of some books to become smaller communi-
ties. Although P-NGACD cannot detect real commu-
nity represented by triangle well, most of books rep-
resented by circle and rectangle are divided into two
communities successfully. Figures 11g and h show the
community structures searched by two algorithms in
the Football network. Each node stands for a football
team, and the edges denote the matches between the
two teams. The two marked communities CA and CB

show the details of partitions. Although the purple node
in CA should not be involved in CB according to the
real division, the team represented by this node does
have more games with the teams in CB . In other words,
those partitions returned by algorithms are better than
the real ones from the aspect of edge density of commu-
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Table 7 The comparisons in the aspects of FV IC and dc

Alg. Net.

G1 G2 G3 G4

FV IC(dc) FV IC(dc) FV IC(dc) FV IC(dc)

NGACD [12] 0.9926 (4.1) 0.9863 (4.4) 0.8500 (6.7) 0.5535 (9.4)
P-NGACD 0.9912 (4.0) 0.9871 (4.3) 0.8576 (4.7) 0.6470 (7.8)
GDPSO [13] 1.0000 (4.0) 0.9839 (4.9) 0.8571 (5.0) 0.8696 (10)
P-GDPSO 1.0000 (4.0) 1.0000 (4.0) 0.8571 (5.0) 0.8696 (10)
IACONet [14] 0.9902 (4.0) 0.9801 (5.2) 0.8469 (5.5) 0.6289 (10.2)
P-IACONet 1.0000 (4.0) 0.9855 (4.4) 0.8486 (4.6) 0.8337 (7.4)

Table 8 The basic features of a synthetic networks with different number of communities. N and E represent the total
size of nodes and edges. k and C represent the averaged degree and clustering coefficient, severally. #C show the size of
communities in the ground truth

G12 N E k C #C

G1
12 500 4921 19.684 0.157 5

G2
12 500 4808 19.232 0.182 6

G3
12 500 4851 19.404 0.212 7

G4
12 500 5036 20.144 0.263 8

G5
12 500 4966 19.864 0.280 9

G6
12 500 4829 19.316 0.310 10

nities. From illustrations above, we can conclude that
P-NGACD behaves better in community detection.

Besides NMI reported in Fig. 11, Table 7 shows the
criterion of FV IC and the number of detected clus-
ters (dc) in different synthetic networks with known
divisions. Results show that our proposed optimization
framework can reduce the unreasonable fragments by
measuring the values of dc and improve the identified
accuracy of each node.

4.3 Discussion

4.3.1 Scalability analysis

To further assess the efficiency of our proposed method,
some synthetic networks with different number of com-
munities are first constructed [30]. The features of these
networks are listed in Table 8. Then we analyze the
effect of the number of communities on the efficiency of
our method.

As shown in Fig. 12, optimized algorithms always
outperform original algorithms in terms of Q values.
We can conclude that our proposed framework can opti-
mize original algorithms independently of the commu-
nity number. More specifically, the GA-based algorithm
is stable with the increment of community number.
However, the performances of PSO-based and ACO-
based algorithms keep increasing with the increment of
community number.

Fig. 12 The dynamical variation of averaged Q in syn-
thetic networks G12 with different number of communities

4.3.2 Statistical analysis

According to the statistical method in [19], we imple-
ment some statistical analyses (i.e., Friedman test,
Bonferroni–Dunn’s test, and Holm’s and Hochberg’s
methods) for comparing performance between our pro-
posed method and other methods. To begin with, Fried-
man test (i.e., χ2

F ) in Table 9, is used to rank the
differences of algorithms in Tables 5 and 6. Based
on Eq. (19), the χ2

F of Table 9 is 53.0932. Due to
χ2

F >χ2
0.05=14.07 in the Chi-square table, there is a con-

clusion that results of algorithms are quite different
with a confidence of 95%. Then this paper implements
the Bonferroni–Dunn’s test to measure the specific
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Table 9 The rankings obtained based on Tables 5 and 6. The value is the ranking result of approaches in every dataset

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 R

P-GDPSO 1.5 1 1 1 1 1 1 1 1 1 1 1.046
GDPSO 1.5 2 2 2 2 2 2 2 2 2 2 1.955
IACONet 5 4 3 4 3 3 3 4 3 3 3 3.455
NGACD 4 3 4 5 6 6 5 3 6 6 4 4.727
ACO 3 5 6 6 5 5 4 5 5 5 5 4.909
GA-Net 6 6 5 3 4 4 6 6 4 4 6 4.909

Fig. 13 The Bonferroni–Dunn’s graph corresponding to
the results of Table 9. The horizontal line denotes the value
which equals to the sum of the ranking of the control algo-
rithm (i.e., P-GDPSO) and the corresponding CD. Those
bars which exceed this line are associated to an algorithm
with worse performance than P-GDPSO

diversities between two approaches. Based on Eq. (20),
we obtain the critical difference (i.e., CDα) with diverse
confidence levels in Table 9, such as CD0.05 = 2.3413
and CD0.3 = 1.8555. Therefore, the conclusion can be
acquired that P-GDPSO is better than five approaches
(i.e., GDPSO, IACONet, NGACD, ACO, GA-Net) with
70% confidence (i.e., α=0.3) and 95% confidence (i.e.,
α=0.05) as shown in Fig. 13.

χ2
F =

12N

k(k + 1)

⎡

⎣
∑

j

R2
j − k(k + 1)2

4

⎤

⎦, (19)

where N and k denote the number of datasets and algo-
rithms, respectively. R is the Ranking R in Table 9.

Finally, this paper applies the Holm’s and Hochberg’s
methods to further compare the diversities between two
approaches. Based on Eq. (21), the statistic for compet-
ing the method i with the method j (represented as z
value) is calculated. To be specific, the value of Unad-
justed p is obtained by seeking for the standard distri-
bution table on the basis of z value. And Bonferroni–
Dunn p is computed by BDpi

= min{vi; 1}, where vi =
(k − 1)Upi

. Holm p is computed by Hpi
= min{vi; 1},

where vi = min{(k − j)Upj
: 1 ≤ j ≤ i}. Hochberg p

is computed by HBpi
= min{(k − j)Upj

: (k − 1) ≥
j ≥ i}. According to such comparison, we can provide
more detailed information to conclude whether a con-
trol algorithm is better than others. Table 10 reports
the statistical results of Table 9. There is a conclu-
sion that P-GDPSO outperforms five approaches (i.e.,
GDPSO, IACONet, NGACD, ACO, GA-Net) with 95%
confidence (i.e., α = 0.05) and 80% confidence (i.e.,
α = 0.2).

CDα = qα

√
k(k + 1)

6N
, (20)

where α is a confidence level and qα can be obtained
in the critical value of Z table. k and N represent the
number of datasets and algorithms, respectively.

z =
Ri − Rj√

k(k+1)
6N

, (21)

where R denotes the Ranking R in Table 9. N and k are
the number of datasets and algorithms, respectively.

Table 10 The p value on G1 - G11 (P-GDPSO is the control method)

P-GDPSO vs. z Unadjusted p Bonf.-Du. p Holm p Hochberg p

GA-Net 4.84 0.0000004 0.000002 0.000002 0.0000020
ACO 4.84 0.0000004 0.000002 0.000002 0.0000016
NGACD 4.62 0.0000100 0.000050 0.000030 0.0000300
IACONet 3.02 0.0025200 0.012600 0.015120 0.0151200
GDPSO 1.14 0.2542000 1.000000 0.254200 0.2542000
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5 Conclusion

Some studies have been carried out to apply the
optimization-based algorithms for community detec-
tion. Nonetheless, because of the inherent complexity
of discovering community structure, the computational
efficiency should be further improved. We have two
major contributions: (1) a modified Physarum net-
work model (PNM) for community mining is intro-
duced, which can distinguish edges in different com-
munities from those in the same community; (2) our
proposed method takes the advantage of valuable prior
knowledge into consideration, which has an excellent
enhancement in the robustness and accuracy, compared
with other optimization-based algorithms; and (3) our
framework is extensible, which has confirmed by a com-
putational complexity analysis.
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