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Abstract. The extortion strategy is an important subset of the zero-determinant strategy, which ensures
that the participant gets no less than its opponent’s payoff, attracting the attention of many scholars. Peer
pressure has proved to be an effective mechanism for maintaining cooperation between selfish individuals
in evolutionary game dynamics. Therefore, in this paper, we use punishment to imitate peer pressure to
study the influence of peer pressure on the evolution of cooperation in the extortion strategy. Peer pressure
can be simulated with punishment and use α to control the punishment intensity. The simulation results
show that the punishment of the extortioner plays a key role in the evolution of the cooperative strategy.
When α is small, the punishment of the extortioner will make the system enter a three-state cycle which
similar to that of rock–scissor–paper, greatly promoting cooperation. When α is large, the extortioner will
dominant the entire population by punishing cooperator and defector. In addition, proper punishment will
make the cooperator dominant the entire population when b is small.

1 Introduction

Cooperative behavior is ubiquitous in nature and
complex and orderly human society. Whether it is
cells, microorganisms, social insects, or social activities
between people, there are cooperative and cooperative
characteristics [1]. However, according to Darwin’s the-
ory of natural selection, individuals will become selfish
when driven by self-interest during the evolution pro-
cess, and there will be no altruistic cooperation between
individuals [2]. This contradicts the phenomenon of
cooperation existing in nature, so a suitable theory
is needed to explain this widespread phenomenon of
cooperation. Evolutionary game theory is an interest-
ing method proposed on the background of this prob-
lem, which provides a powerful framework for solv-
ing this contradiction [3,54]. The prisoner’s dilemma
game (PDG) concisely describes the essential dilemma
of cooperation, which has caused a lot of research. In the
PDG, two participants choose to cooperate or defect at
the same time. If they cooperate with each other, they
will both get a reward R; if they defect each other,
both players will get a punishment P ; if one partici-
pant cooperates, and the other one defects, the cooper-
ator gets a lower sucker’s payoff S, and the defector will
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get a higher temptation benefit T . These four param-
eters satisfy the relationship T > R > P > S and
2R > T + S. When the individual is rational, defection
is the best choice, but it will lead to a great loss of
overall interests and form a social dilemma.

The core research question of evolutionary game
theory is how cooperative behavior evolves. In recent
years, more and more scholars have used this theory
to study the mechanism of promoting the emergence of
cooperation. Nowak et al. [4] summarized five mech-
anisms that promote the emergence of cooperation:
kin selection [5], direct reciprocity [6], indirect reci-
procity [7], network reciprocity [8] and group selection
[9]. In addition, to explore the persistence and emer-
gence of cooperative behavior, more mechanisms have
been proposed. For example, reputation [10], volun-
tary participation [11], aspiration [12,13], asymmetry
[14], rewards and punishments [15,16], environmental
factors [17,37,55]. Besides social mechanism, network
structure also attracted much attention [18] to explore
its influence on the evolution of cooperation, such as
small world networks [19], interdependent network [28],
scale-free network [21], and so on. In addition, edge
dynamics have also been studied in ref [22–25]. Edge
dynamic takes into account other information related to
social connections (such as geographic proximity, prox-
imity of individual relationships), and the outcome of
the interaction will not be solely determined by the indi-
vidual’s strategy.

Recently, Press and Dyson proposed a zero-determi-
nant (ZD) strategy, which can unilaterally limit the
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returns of both parties to satisfy a certain linear rela-
tionship [26]. The extortion strategy is a subset of
the ZD strategy, which ensures that one can get no
lower payoffs than his opponent. Therefore, the extor-
tion strategy has the potential to dominate any evolu-
tionary opponent, which has attracted great attention.
Adami and Hintze found that in a well-mixed popu-
lation, the extortion strategy will be invaded by the
defection strategy, and the evolution of the extortion
strategy is unstable [27]. However, Hilbe et al. pointed
out that extortion strategies can act as a catalyst in
promoting the emergence of cooperation [20]. In addi-
tion, some literature indicates that extortion strate-
gies can not only steadily evolve, but also promote the
emergence of cooperation [51,52]. Extortion strategies
provide a new perspective on the evolution of research
cooperation.

Many theoretical [31–34,36] and experimental [38–
42] studies have shown that punishment mechanism can
effectively promote the maintenance and development
of cooperative behavior. Punishment is to punish coop-
erators or defectors (usually defectors), the punished
person needs to pay a fine, and the punisher also pays
a certain price. Wang et al. studied the impact of social
punishment [43] on cooperation and found that pun-
ishment strategies in the prisoner’s dilemma game and
public goods game models can well promote the evolu-
tion of cooperative behavior. In addition, Yang et al.
proposed a symmetric punishment mechanism [44], in
which each individual will punish neighbors who hold
the opposite strategy, and the results show that appro-
priate punishment can enhance cooperation. Inspired
by the above research, we introduce punishment into
the extortion strategy to study its impact on individ-
ual behavior.

The following content consists of three parts. In
Sect. 2, we introduce game models and strategies. Sec-
tion 3 will give the results of numerical simulation.
Finally, the full text is summarized.

2 Model

We investigate the evolution of extortion strategies with
punishment parameters on a square lattice of size L×L
with periodic boundary conditions, where extortion was
studied in the realm of the donation game [45]. Each
individual has three choices: unconditional cooperation
(C), unconditional defection (D) or extortion (Eχ) [46],
which are described by

Sx =

( 1
0
0

)
,

( 0
1
0

)
or

( 0
0
1

)
, (1)

respectively. In the donation game, cooperator will pay
a cost c and provide a benefit b to its opponent; the
defector will get benefit without any labor. The payoff
matrix is

M =

⎛
⎜⎜⎜⎝

C D Eχ

C b − c −c b2−c2

bχ+c

D b 0 0

Eχ
(b2−c2)χ

bχ+c 0 0

⎞
⎟⎟⎟⎠ , (2)

where b (1 < b ≤ 2) is the temptation to defector and
χ stands for the extortion factor. Since χ > 1, there is
a relationship between cooperative strategy and extor-
tion strategy similar to snowdrift game: the optimal
response of an individual is to choose the strategy oppo-
site to his opponent. If y cooperates, x should choose
extortion; if y chooses extortion, then x should coop-
erate. On the other hand, when the defection strategy
meets the extortion strategy, they will get nothing, pre-
senting a neutral drift relationship [47]. Following pre-
vious works [30,50], we set χ = 1.5 and b − c = 1 so
that there is only one parameters in the payment matrix
that is b.

In our model, we consider the impact of peer pressure
on player’s payoff. Furthermore, peer pressure causes
individuals to lose benefits as a punishment behavior,
which is different from the punishment strategies in pre-
vious studies [15,48]. At each time step, an individual
will punish the neighbors that hold different strategies.
But the extortioners will not be punished. Therefore,
the cumulative payoff of player x can be expressed as

Px =

⎧⎪⎨
⎪⎩

∑
y∈Ωx

[
ST

x MSy − α
(
1 − ST

x Sy

)]
, Sx = C,D,

∑
y∈Ωx

ST
x MSy, Sx = Eχ,

(3)
where Ωx represents the sum of the nearest neighbors
from player x, α is the punishment parameter. When
α = 0, it returns to the traditional situation, at this
time, the extortion strategy cannot exist stably in the
network, and the extortion strategy has no special effect
on the evolution of cooperation [51,52]. So, the value of
α is greater than 0 in this article.

The game iterates according to the Monte Carlo
(MC ) simulation program and adopts the asynchronous
update process to update strategy. The specific steps
are as follows: first, a randomly select player x accumu-
lates payoff Px by playing games with its four nearest
neighbors. Then select a player y randomly from the
four neighbors of x and accumulate the payoff Py in the
same way. Finally, the probability that player x choos-
ing neighbor y’s strategy Sy is given by Fermi function:

W (Sx ← Sy) =
1

1 + exp [(Px − Py) /K]
, (4)

where K represents the noise level in different environ-
ments, which is set as 0.1 in this paper.

Initially, the proportion of cooperators, defectors and
extortioners was the same in the population. Monte
Carlo simulation results are obtained in a population
of 800 × 800 individuals, and the stationary fraction
of three strategies are determined by the average of the
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Fig. 1 Average frequency of cooperators (red), defectors (green), and extortioners (blue) as a function of b for several
different values of α. From a to d, the values of α are 0.1, 0.3, 0.6 and 0.7. All the results are obtained for K = 0.1 and
L = 800

last 3×103 results of 3×104 full MC steps. In addition,
to avoid additional interference and ensure appropriate
accuracy, the simulation results are obtained through
an average of 20 independent operations.

3 Results

First, we consider the impact of peer pressure on the
evolution of cooperation. Figure 1 shows the frequency
of the three strategies with the temptation of defect
b for different values of parameter α. As can be seen
from Fig. 1a, when α = 0.1, the frequency of cooper-
ators decreases rapidly or even disappears when b is
relatively small. But when the extortioner appears, the
cooperator comes along with it. Even when b = 2, the
cooperator can also survive. As the punishment inten-
sity increases (α = 0.3), it can be seen from Fig. 1b
that the cooperator can completely dominate the sys-
tem when b is small, the defector is suppressed, and the
cooperator has an advantage in the entire system. When
the punishment is further increased, the defector disap-
pears, and the extortioner gradually increases because
he is not punished (see Fig. 1c). When α = 0.7, the
cooperator in Fig. 1d disappears with the increase of b,
and the extortioners completely dominates the system.
Therefore, the introduction of punishment will promote
the evolution of cooperation and solve social dilemmas,

but the intensity of punishment should be maintained
in a moderate range. Larger punishment intensity is not
conducive to the emergence and maintenance of coop-
eration.

How does the peer pressure mechanism promote the
evolution of cooperation? Here, we study the evolution
of microcosmic cooperation. Figure 2 shows the time
evolution of three different strategies with different α
values. Figure 2a shows that when α = 0.1, the ini-
tial stage cooperator will first reach the peak. This is
because the extortioner punishes the defector, resulting
in the decline of the defector, and the dominance of the
cooperators causes the extortioner to become a coop-
erator. Later, as the number of extortioners decreased,
the number of defectors quickly increased by exploiting
cooperators. The increase of defectors will lead to the
increase of extortioners, and the last three strategies
will coexist in a stable state. In Fig. 2b, after the extor-
tioner wiped out the defector, he was wiped out by the
cooperator, and the cooperator ruled the entire popula-
tion. In Fig. 2c, d, the extortioners rules the entire pop-
ulation by punishing cooperators and defectors. From
this, we can see that the punishment of extortioners
drives the evolution of cooperation.

To further observe the effect of peer pressure on the
overall evolutionary process, Fig. 3 shows the change of
the proportion of each strategy under the correspond-
ing b and α values through the phase graph. In Fig. 3a,
we can see that punishment significantly contributes
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Fig. 2 Time evolution of cooperators (red), defectors (green), and extortioners (blue) on square lattices for K = 0.1 and
L = 800 From (a) to (d), the values of α are equal to 0.1, 0.3, 0.6 and 0.7

(a) (b) (c)

Fig. 3 The final density of three strategies evolves with the temptation to defect b and the penalty parameter α. From
(a) to (c), they are cooperators, defectors and extortioners

to the evolution of cooperation. When the punishment
parameters are moderate, the cooperator can rule the
entire network with a small value of b. Even when b = 2,
cooperators have a higher frequency. The defector dis-
appeared in the population as the value of α increased.
Interestingly, the extortioner plays a special role. The
extortioner helps the cooperator to eliminate the defec-
tor when the α value is small, and then exploits the
cooperator to occupy the entire population. Therefore,
the punishment of the extortioner plays a key role in
the evolution of the cooperative strategy.

To study the effect of this mechanism on the spatial
distribution of strategies on a grid network, Fig. 4 shows
a snapshot of the characteristics of three strategies over

time at different values of α. In the process of evolution,
we will fix the initial distribution of the entire popula-
tion. The circle in the middle indicates a cooperator,
the upper half indicates a defector, and the lower half
indicates a extortioner. When α = 0.1, from Fig. 4a1–
e1, we find that the defector area is invaded by the
extortioner and the cooperator area is invaded by the
defector, which results in a three-state cycle similar to
rock–scissor–paper. This is because punishment alters
individual payoff, and individual payoff determines the
course of strategy change. References [29,49,53] pro-
vide more explanation for the interaction of cycles. As
α increases, a different situation occurs. When α = 0.3
(Fig. 4a2–e2), after the defector is completely invaded
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Fig. 4 Evolution snapshots of the clusters of cooperators (red), defectors (green) and extortioners (blue) on square lattice
when α = 0.1, 0.3, 0.6, 0.7 from top to bottom. From left to right, the time steps are 0, 200, 600, 1000 and 29999, respectively,
for K = 0.1 and b = 1.1

by the extortioner, the cooperation strategy will prevail
and the extortioner will be eliminated. When α = 0.6
(Fig. 4a3–e3), the cooperators form a small cluster to
resist the intrusion of extortioners, and finally the two
coexist in the network. When α = 0.7 (Fig. 4a4–e4), the
cooperators are surrounded and finally invaded by the
extortioner. It can be seen that appropriate punishment
will promote cooperation, while larger punishment will
reverse the invasion process of cooperators and extor-
tioners, leading to the disappearance of collaborators.

The evolutionary pattern shows the distribution of
individuals on the network, but the number of specific
clusters and the number of individuals in the cluster are
not available. Therefore, we use C clusters, D clusters
and Eχ clusters to denote clusters composed of coop-
erators, defectors and extortioners. Then Fig. 5 shows
the evolution of the number of pure strategy clusters
(NC) and the number of pure strategy players (LC)
corresponding to the largest pure strategy clusters as
the b value changes. Figure 5b shows that the LC of
the cooperators and extortioners is very small, and the
LC of the cooperators is large before b = 1.55, which
shows that the cooperators can exist as larger clusters
when b is small. Even when the value of b is not greater
than 1.1, NC = 0 and LC = 0 of the defector and

the extortioner, while NC = 1 and LC = 640000 of
the cooperators, at this time, cooperators gather into a
strong cluster to occupy the entire network, this is the
same as the results in Figs. 1b and 4. As b increases,
the NC of cooperators and extortioners increases, which
means that the cooperators and extortioners use more
clusters to resist intrusion. The extortioner’s NC peaks
around b = 1.5, and LC has been increasing, indicating
that the extortioner has an advantage when b is large.

4 Conclusions

Based on previous research, we introduced peer pres-
sure into the extortion strategy. A large number of sim-
ulation results show that punishment can effectively
promote the evolution of cooperation, and extortioners
plays a key role in the evolution of cooperation strate-
gies. Specifically, when α is small, the punishment of
the extortioner will cause the system to enter a three-
state cycle similar to rock–scissor–paper, greatly pro-
moting cooperation. Appropriate punishment will make
the cooperator dominant the entire population when b
is small, even if b is large, the cooperator has an abso-
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Fig. 5 Number of clusters of pure strategist NC and number of the largest cluster of pure strategist LC dependent on b
on the regular lattice. All the results are obtained for α = 0.3, K = 0.1 and L = 800

lute advantage. However, a larger value of α will cause
the extortioner to dominant the entire population by
punishing cooperator and defector. Our work provides
a new situation for the extortioners’ bleak prospects
under the imitation update rules. The extortioners can
exist stably in the network and can promote the evolu-
tion of cooperation. We hope this work will inspire more
researches to solve the problem of social dilemma.
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