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Abstract. We propose a novel dynamic link weight adjustment model, in which link weights on static
network will be dynamically adjusted according to agents’ influence during the evolutionary process. To be
specific, when an agent’s strategy is learned by one of his direct neighbors, his influence will be expanded
by one unit β. Then link weights between agents will be adaptively adjusted by counting the influence
of agents. Meanwhile, we utilize a variable δ to control the range of link weights, that is, link weights
can only be limited within the interval [1 − δ, 1 + δ]. In our model, it should be noted that link weights
between agents will be integrated into the fitness calculation process. Through abundant simulations, the
results indicate that the newly proposed model can significantly foster the persistence and emergence
of cooperation. In addition, when the cost-to-benefit ratio u is quite small, the level of cooperation will
increase with the augmentation of δ. However, when the cost-to-benefit ratio u exceeds a certain value,
the level of cooperation increases at the early stage and then decreases with the growth of δ. As for the
potential reasons, we observe that it is closely related to the type of connections, in which the cooperation
can flourish once C − C type links dominate the system, while other types will hamper the evolution of
cooperation. Taking together, the current model and results will provide some insights into the collective
cooperation within the human population.

1 Introduction

It is well known that the cooperation between selfish
individuals greatly benefits the development of human
society [1]. However, the donation of cooperators within
the population will benefit their opponents, especially
defectors, at the cost of their own losses, which will
give rise to the conflict between altruism and egois-
tic behavior [2], and thus even induce the so-called
social dilemmas [3]. Therefore, deeply understanding
the ubiquitous cooperation among irrelevant and selfish
agents has puzzled for a long time [4–7]. Furthermore,
to explain the potential reasons for the emergence of
cooperation or explore the incentive mechanisms for the
maintenance of cooperation, scholars in various fields
have tried their best to solve this issue from both the-
oretical and empirical efforts [8–13].

Fortunately, evolutionary game theory (EGT) [14–
16] provides a simple yet powerful framework to inves-
tigate the problem of the evolutionary cooperation. In
particular, over the past decades, prisoner’s dilemma
game (PDG) [17–22], as the famous pairwise interaction
game model, has been generally used to illustrate the
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conflict between individual interest and social welfare.
In the traditional PDG, two agents must simultaneously
make a decision to cooperate (C) or defect (D) with-
out knowing the opponent’s strategy during the game
process. In addition, when two cooperators encounter,
they will gain the reward R for their mutual coopera-
tion; while two defectors come across, they will get the
punishment P for their defection. However, if a cooper-
ator meets with a defector, the former will be exploited
and have to receive the worse payoff S, but the latter
reaps the benefit to get the maximum payoff T during
the pairwise interaction. Furthermore, all these param-
eters need to fulfill the ranking order T > R > P > S
and the condition 2R > T+S. There is no doubt that all
agents in a well-mixed population, due to their inherent
selfishness, will inevitably be defected in the end, even
if the mutual cooperation leads to the stable gains for
each other and is beneficial to the whole population.

Meanwhile, with the rapid development of network
science, more and more researchers have found that
agents can only interact with a limited number of
direct neighbors. Particularly, Nowak and May semi-
nally investigated the evolutionary dynamics of PDG
on the spatially regular lattice with the fixed neigh-
borhood, revealing that the cooperative agents on spa-
tial structures can organized into the tight clusters to
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resist the attack and exploitation from defectors, which
is known as the spatial or network reciprocity [23].
After that, numerous different underlying topologies
have also been successfully confirmed to contribute
to the evolutionary cooperation, which include small-
world [24], scale-free [25] and independent or multi-
layer networks [26,27], to name but a few. Moreover,
to explore how to facilitate the evolution of cooper-
ation, some additional incentive mechanism have also
been proposed, for instance, reputation [28,29], mobil-
ity [30,31], information sharing [32,33], memory effect
[34,35], multigames [36,37] and so on, to further facil-
itate the persistence and emergence of collective coop-
eration.

Although some previous works have significantly con-
tributed to the evolution of cooperation, the impact
of dynamic adjustment of link weight between agents
on evolutionary cooperation also cannot be ignored.
For instance, inspired by the time-varying and het-
erogeneous phenomena of inter-individual dependence,
Huang et al. proposed a coevolutionary game model
of strategy and link weight, which indicated that the
frequency of cooperation could be maintained at a
higher level even in the case of lager temptation to
defect [38]. Shen et al. presented an aspiration-based co-
evolutionary game model of dynamic link weight adjust-
ment, and investigated the impact of this dynamic
adjustment mechanism on the evolution of cooperation
in the spatial PDG [39]. From the perspective of time-
scale heterogeneity, Chu et al. found that the coevolu-
tionary strategy and link weight could significantly pro-
mote cooperation in spatial structures [40]. Guo et al.
believed that interaction could cause the heterogeneity
of reputation, which further induced the heterogene-
ity of link weights. Thus, they gave a reputation-based
coevolutionary link weights model [41]. Actually, some
intrinsic attributes of agents will constantly change
with the interaction, which inevitably gives rise to the
dynamic adjustment of link weights between agents.
However, there is still an important factor being over-
looked, that is, the influence of agents during the game
process. In our life, if an agent’s idea or strategy is
learned or adopted by his neighbors, then his influence
will be expanded, and contracted otherwise. Meanwhile,
the heterogeneity of influence among agents necessarily
induces the dynamic adjustment of link weights. To this
end, in this work, we make an end to explore how the
influence-induced dynamic adjustment of link weights
between agents will affect the evolution of cooperation.

The remaining sections of the paper will be arranged
as follows. First, the model will be defined in detail
in Sect. 2. Then large quantities of simulations will be
presented and discussed in depth in Sect. 3. Finally, we
will provide some concluding remarks in Sect. 4.

2 Mathematical model

In this paper, agents play a coevolutionary game with
their direct neighbors on fully populated lattice, in

which the lattice size is set to be L × L and fulfil the
periodic boundary condition. In addition, each player
will play the game with his 4 direct neighbors, that is,
Von Neumann neighborhood is assumed here. Mean-
while, we mainly take an evolutionary PDG to depict
the potential social dilemmas. During the evolutionary
PDG process, two agents must simultaneously decide
either to cooperate or to defect without knowing the
strategy or action of their opponents in advance. Fol-
lowing the common practice [42–44], in the donation
game version of PDG, a cooperator must bear a cost of
c to make his opponent to gain the benefit of b. Thus,
the payoff values of PDG are set to be T = b, S = −c,
R = b−c and P = 0. For any b > c, we can find that the
strict payoff ranking T > R > P > S can be followed.
Generally, the payoff matrix of the current PDG model
can be further re-scaled as

M =
(

1 −u
1 + u 0

)
, (1)

where u = c/(b − c) means the so-called cost-to-benefit
ratio. It should be noted that simulations of the model
are carried out through Monte Carlo steps (MCS), and
the inner steps of each MCS consist of the following
substeps.

Initially, each player x can be stochastically and
equally chosen as a cooperating agent [C,sx = (1, 0)T ]
or a defecting one [D, sx = (0, 1)T ], that is, x can
become a cooperator or defector at the first MCS step
with the probability 50%. In the meantime, each agent
has an additional influence attribute Ix with an initial
value of 1, which can be dynamically adjusted according
to strategy imitation. Furthermore, every link weight
between agents has the same initial value w = 1, which
will also be dynamically adjusted according to their
dynamic influence. For each time step during the game
interaction, any agent x can be chosen as the focal
player once on average. Then player x will calculate
his initial payoff through playing the game with one of
his direct neighbors as follows:

pxy = sT
x Msy. (2)

After that, the focal agent x will accumulate his fit-
ness Fx by combining the initial payoff pxy with the
corresponding link weight wxy between player x and
his direct neighbor y, which sums over all 4 nearest
neighbors as follows:

Fx =
∑

y∈Ωx

wxy ∗ pxy, (3)

where Ωx denotes the set of all nearest neighbors of
player x and |Ωx| = 4 .

Next, the system enters the phase of strategy updat-
ing. To be specific, the focal agent x will pick up one
direct neighbor y at random, in which player y will
also acquire his accumulated fitness Fy in the same
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way of the focal agent x. After that, agent x can asyn-
chronously update his strategy through comparing his
current accumulated fitness Fx with the accumulated
fitness Fy of y according to the Fermi rule [45],

W =
1

1 + exp[(Fx − Fy)/K]
, (4)

where the parameter K is the noise factor, which can
capture irrational errors in the process of strategy imi-
tation. Although the focal agent x can learn the strat-
egy of his direct neighbor y if Fx < Fy, it may be also
possible that the focal agent x drops y′s strategy when
Fx > Fy. Considering that the effect of parameter K
has been well explored in the previous works [46,47], we
will set K = 0.1 in this work without lacking the gener-
ality. If the focal agent x succeeds in adopting the strat-
egy of his direct neighbor y, it means that the neighbor
y′s influence will be magnified by the value of β [48],
which can be expressed quantitatively by the following
formula:

Iy = Iy + β, (5)

where the parameter β is the increment of agent y′s
influence. Within this work, we will prove that if the
parameter β is positive, no matter what the value of β
is, the evolutionary results will not change significantly.
After the influence of one individual agent is varied,
the link weight between this agent and his opponent
will be changed accordingly. As an example, the link
weight between two interacting partners x and y can
be adjusted according to the influence relationship as
follows [29,38,41,49]:

wxy =

{
wxy + Δ if Ix < Iy,
wxy − Δ if Ix > Iy,
wxy otherwise,

, (6)

where the parameter Δ ∈ [0, 1) is the manipulating
variable of the link weight. In line with previous works
[29,38,41], the link weight is often assumed to be varied
within the interval [1−δ, 1+δ], in which δ ∈ [0, 1) deter-
mines the potentially limiting values of link weights.
Obviously, when Δ = 0 or δ = 0, the link weights are
frozen (i.e. all link weights keep the initial value w = 1),
which means that the system degrades into the tradi-
tional static network situation, that is, only strategies
can evolve.

Once the aforementioned sub-steps are completed,
one full Monte Carlo Simulation (MCS) step will be
ended, within which all agents have one chance to
update their strategy on average. The current results
are mainly carried out on 100 × 100 square lattice.
To eliminate the finite-size effect, the lager lattice size
(such as L = 200 or 400) is also tested and the iden-
tical simulation results are obtained although they are
not presented here. Moreover, the key quantity ρC (the
frequency of cooperation) to measure the model perfor-
mance is determined by averaging over the last 2 × 103
MCS steps for the whole 3×104 steps, which ensures the
system to arrive at a stable state. Furthermore, to avoid

the interference of random factors, the final results are
averaged over at least 20 independent simulations for
each set of parameters.

3 Results and analyses

To verify the validity the model to promote and main-
tain the evolution of cooperation, we first inspect how
the frequency of cooperation ρc varies with the cost-to-
benefit ratio u for several values of δ in Fig. 1. According
to the potential interaction network structure, rule of
strategy updating and other details of simulation, there
is always a critical threshold uc beyond which defectors
will dominate the whole system. Thus, we are not only
interested in how much the frequency of cooperation ρc

has increased under the proposed mechanism, but also
concerned with how the new mechanism can effectively
enlarge the critical value uc. When δ = 0.0, all link
weights are frozen at the initial value of 1, which means
that the system degenerates into its traditional form.
Thus, the frequency of cooperation ρc is quickly down
to zero with the increase of u, and the critical threshold
uc is at about 0.0215, which is in line with the previous
work [43]. However, once δ > 0, the evolution of cooper-
ation is significantly improved even if the level of coop-
eration still continues to decline as u increases. In com-
parison with the traditional case, not only the frequency
of cooperation ρc has been greatly enhanced, but also
the critical value of cooperators dying out uc has also
been markedly enlarged. Even when δ increases up to

Fig. 1 Frequency of cooperation ρc as a function of cost-
to-benefit ratio u for several different values of δ. When
δ = 0, the system degenerates into the traditional situation.
However, when δ > 0, link weights in the system is no longer
maintained at the value of 1, but dynamically adjusted as
the system evolves. It can be found that the the level of
cooperation can be gradually elevated with the increase of u.
All simulation results are obtained for the parameter setup:
L = 100, MCS = 3 × 104, Δ = 0.1, K = 0.1, and β = 1
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Fig. 2 Time courses of frequency of cooperation ρc for
several different values of δ when the cost-to-benefit ratio
u = 0.022. It can be found that cooperators continues to
decline until dies out when δ = 0.0. However, when δ > 0,
the frequency of cooperation ρc experiences a process of
decrease at first and then increase over time. In addition,
the larger value of δ will lead to the higher frequency of
cooperation within the population. Other parameters are
set as Fig. 1

a certain threshold, there is a situation (for instance
δ = 0.6 or δ = 0.8), in which cooperators can occupy the
whole system. All of these macroscopic results indicate
that the proposed mechanism is effective in facilitating
the evolution of cooperation.

Then we need to further explore the role of the pro-
posed mechanism in the microscopic evolution of col-
lective cooperation, which will help us to capture more
details during the process of evolution. To this end,
Fig. 2 provides time courses of the frequency of cooper-
ation ρc for several values of δ when the cost-to-benefit
ratio is fixed to be u = 0.022. Following the previ-
ous works [50,51], a complete evolutionary process can
be divided into two sub-sequential stages, that is, the
enduring (END) phase and expanding (EXP) phase. To
be specific, in the initial stage cooperators are subject to
attacks and invaded by defectors since there are strong
social dilemmas in the system and defectors occupy
favorable terrain. Therefore, the level of cooperation
continues to decline during this stage, which is called
the END phase. Then, with the help of network reci-
procity and the proposed mechanism, cooperators try
their best to switch from the defense into the offense.
Henceforth, the level of cooperation begins to rise grad-
ually, which is defined as the EXP phase. For δ = 0.0, all
link weights are left at the initial value of 1, which corre-
sponds to the traditional situation. At this point, coop-
erators can only rely on network reciprocity to counter
the defectors’ exploitation. It is clear that cooperators
continues to nonlinearly decline over time until they
completely disappears regardless of their attempts to
defy the defectors but ultimately to no avail, that is,

Fig. 3 Snapshots of spatial strategy evolution in some par-
ticular state. From top to bottom, each line of results are
obtained at δ = 0.0, δ = 0.2, δ = 0.4, δ = 0.6, and δ = 0.8,
respectively. Meanwhile, from left to right, each column of
snapshots are taken at MCS =0, 10, 100, 500, and 30,000,
respectively. Moreover, yellow dots and purple spots stand
for cooperative and defective strategies, respectively. Other
parameters are set as those in Fig. 1

there is only END stage at δ = 0.0 while the EXP one
is absent. However, once the proposed mechanism is
introduced into the system, network reciprocity can be
greatly enhanced. For δ > 0, not only can the down-
ward momentum of the level of cooperation be held at
the final END phase, but also the level of cooperation
can progressively go up to a different altitude for various
value of δ during the EXP phase. Moreover, the larger
value of δ will lead to the higher frequency of coopera-
tion within the population. As an example, during the
equilibrium phase, when δ = 0.2, the frequency of coop-
eration ρc can be restored to a level slightly below the
initial value, while for δ = 0.8, ρc can climb to around
0.9, which indicates that the proposed mechanism is
effective in promoting the evolution of cooperation.

In addition, to visually comprehend the impact of the
proposed influence-induced dynamically adjusted link
weight mechanism on the evolution of cooperation, we
scrutinize the evolutionary state of the strategy through
some representative snapshots in Fig. 3. In Fig. 3, all
snapshots are obtained at u = 0.022. Meanwhile, yellow
dots and purple ones stand for cooperators and defec-
tors, respectively. For each row from top to bottom, the
parameter δ is fixed as 0.0, 0.2, 0.4, 0.6 and 0.8, respec-
tively. For each column from left to right, the MCS are
set to be 0, 10, 100, 500 and 30000, respectively. Ini-
tially, cooperators and defectors are evenly distributed
within the population with the equal probability. Thus,
it can be found that there is no significant difference
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Fig. 4 Frequency of cooperation ρc in dependence on the
increment of agents’ influence β for several different val-
ues of cost-to-benefit ratio u. It can be found that once
the parameter β is grater than 0, the ρc does not seem
to change no matter how much β increases, which indi-
cates that β is not the direct factor affecting the evolu-
tion of cooperation. The simulation results are obtained at
MCS = 3 × 104, L = 100, Δ = 0.1, δ = 0.5 and K = 0.1

for the snapshots taken under any parameter δ when
MCS = 0. However, once the system begins to evolve,
there are obvious differences in snapshots under differ-
ent values of δ. For instance, when δ = 0.0, cooperators
have to gang up against the defector’s attack with the
help of network reciprocity. It can be found that there
are some quite tight yellow star clusters in the pur-
ple ocean when MCS = 10. Over time, the tight yellow
star clusters become larger but fewer when MCS = 100
and 500. One can find that cooperators are struggling
to get rid of the exploitation by the defectors. However,
due to strong social dilemmas, it seems futile as they
ultimately tend to be extinct. In stark contrast, after
the proposed mechanism is introduced into the system,
one can find that cooperation has become more and
more prosperous with the increase of δ even if the level
of cooperation also declines at MCS = 10. Moreover,
the larger the value of δ, the wider the yellow area in
the stable state. Taking δ = 0.8 as an example, yel-
low cooperators nearly occupy the entire system while
purple defectors are scattered across the yellow sea. All
these observations indicate that network reciprocity can
be enhanced by the proposed mechanism, which can
further confirm that the current mechanism favors the
evolution of cooperation.

It should be emphasized that all the aforementioned
results are obtained at the increment of agents’ influ-
ence of β = 1. To further investigate the impact of
parameter β on the frequency of cooperation ρc, Fig. 4
plots ρc in dependence on the increment of agents’ influ-
ence of β for several different values of cost-to-benefit
ratio u. When β = 0, it signifies that agents’ influence
cannot be changed even if their strategies are learned so
that link weights between agents also cannot be dynam-

Fig. 5 Frequency of cooperation ρc as a function of δ at
several different given values of cost-to-benefit ratio
u. When the cost-to-benefit ratio u is quite small, ρc con-
tinues to increase with the increase of δ. However, when
the cost-to-benefit ratio u exceeds a certain value, ρc goes
through first increase and then decease, which means that
there is an optimal value of δ (δ = 0.8) facilitating the evo-
lution of cooperation. The simulation results are obtained
at MCS = 3 × 104, L = 100, Δ = 0.1, β = 1 and K = 0.1

ically adjusted, which leads to the system equivalent
to the traditional case. However, when β �= 0, agents’
influence will be changed if their strategies are adopted.
Thus, the uneven influence of the agents inevitably
leads to the heterogeneous link weights, which makes
the level of cooperation greatly improved. Surprisingly,
the frequency of cooperation ρc will not be significantly
changed with the increase of β, which indicates that the
parameter β is not the direct factor affecting the evolu-
tion of cooperation. In fact, in our model, the parame-
ter β just cause the uneven or heterogeneous influence
between agents, and thus it plays an indirect role in
maintaining the high level of cooperation. Meanwhile,
it will be demonstrated later that the heterogeneous
link weights induced by agents’ asymmetrical influence
play a significant role in determining the evolution of
cooperation. Thus, without loss of generality, we always
assume the parameter β = 1 in the following results.

Next, since we just analyze the impact of the parame-
ter δ with limited values on the cooperation in the previ-
ous figures, it will be worthwhile to widely explore how
δ affects the evolutionary dynamics of the cooperation.
To this end, for several other values of u, we depict the
frequency of cooperation ρc as a function of δ in Fig. 5.
From Fig. 5, it can be found that the parameter δ plays
a significant role in facilitating the collective coopera-
tion within the population. However, for different values
of u, there are also some slightly differences for parame-
ter δ to influence the level of cooperation. For instance,
when u is quite small (e.g. u = 0.01), ρc increases
monotonously as δ increases until the full cooperation
is reached. Nevertheless, when u increases up to a cer-
tain value, ρc no longer increases monotonously with
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the increase of δ. On the contrary, with the increase
of δ, ρc shows a single hump trend, that is, the bell-
shape curves are exhibited. What is more, the peaks all
occurs around δ = 0.8, and a smaller or larger δ will
lead to a decreasing trend as far as the level of coop-
eration is concerned. It can be clearly found that when
δ increases from zero, the frequency of cooperation ρc

first goes through the increase until the maximum fre-
quency of cooperation is arrived at when δ is near 0.8
; after that, its trend turns downward. Herein, it can
be concluded that the parameter δ is really an obvious
factor to influence the frequency of cooperation within
the population, and when the cost-to-benefit ratio u is
beyond a certain value, there exists the best value of δ
to render the frequency of cooperation to achieve the
peak.

Based on the above observations, it is necessary
for us to further reveal the underlying reasons for
the proposed mechanisms to promote the evolution of
cooperation. On the one hand, according to previous
works [29,38,41], heterogeneity within the population
is an important factor to determine the evolutionary
behavior of collective cooperation. Henceforth, dynamic
adjustment of link weights between agents induced by
agents’ asymmetrical influence is the root cause of sys-
tem heterogeneity. What is more, the larger the vari-
ance of the link weights among agents, the stronger the
heterogeneity of the system. On the other hand, the role
of connection types cannot be ignored, either. Thus, for
different conditions, Fig. 6 not only presents the statis-
tical results of link weight variance but also calculates
the link weight distribution for different types. To be
specific, the first line presents the results obtained at
u = 0.015 while the last the row provides the results
obtained at u = 0.036. In addition, panels (a) and (d)
are the results of link wight variance; panels (b) and (e)
are the results of link weight distribution for different
types obtained at δ = 0.7 while panels (c) and (f) are
the same results obtained at δ = 0.9. In Fig. 5, one has
concluded that when u is quite small, the frequency of
cooperation ρc continues to increase with the increase
of δ; while for quite larger u, ρc first undergoes increase
and then decrease as δ grows. In panel (a) of Fig. 6, the
link weight variance increases with the augmentation
with δ, which seems to be in line with the conclusions of
previous works [29,38,41]. However, the results in panel
(d) are also similar to panel (a), which seems to contra-
dict with the conclusions of previous works. Therefore,
the pertinence between the occurrence of the evolution
of cooperation and the heterogeneity does not apply
to any scenarios, which elucidates that heterogeneity
itself is not conducive to the evolution of cooperation.
In other words, heterogeneity is not a necessary and suf-
ficient condition for promoting the collective coopera-
tion, which is consistent with the conclusion of previous
work [49].

Since heterogeneity is not the direct cause of the evo-
lution of cooperation, we consider whether some critical
information can be found in the types of connections. It
should be pointed out that we restrict the link weights
to the interval [1 − δ, 1 + δ]. There is an interesting

Fig. 6 Statistics of link weight variance and different types
of link weight distribution under different conditions. The
results of the first line are obtained at the cost-to-benefit
ratio u = 0.015, and the ones of the second row are obtained
at the cost-to-benefit ratio u = 0.0.36. Panels a and d are
the results of statistics of link weight variance. Panels b and
e are the results of different types of link weight distribution
for δ = 0.7 while panels c and f are the ones of link weight
distribution obtained at δ = 0.9. The simulations results are
obtained at MCS = 3 × 104, L = 100, Δ = 0.1, β = 1 and
K = 0.1

phenomenon in Fig. 6, that is, for the link weight dis-
tribution obtained under any conditions, expect that
some of link weights are kept at the initial value of 1,
and the rest of ones are almost distributed at the max-
imum or minimum regardless of the types of connec-
tions. By comparing the distribution results of the link
weight obtained under different conditions, one can find
that there are significant differences. For quite small
value of u (e.g. u = 0.015), most of link weights occupy
the C − C connections and only small amount of link
weights are distributed on other connections, which is
the key factor for the cooperation to flourish, especially
more link weights at the maximum. As C − C connec-
tions enables the agents that interact with each other
to gain stable returns, their relationships will become
stronger and stronger. Moreover, when δ = 0.9 the link
weights at the maximum are much greater than those
when δ = 0.7, which explains the reason why the level of
cooperation increases with the rise of δ when the cost-
to-benefit ratio u is quite small. However, for quite lager
value of u (e.g. u = 0.036), the situation has been dras-
tically reversed. Whether δ = 0.7 or δ = 0.9, all three
types of connections (i.e. C − C, D − D, and C − D
or D − C) emerge in large numbers. There is a clear
difference in these two cases. For δ = 0.7, the type of
connection is dominated by C − C, while for δ = 0.9,
there are quite a large number of D − D-type connec-
tion in the system. Moreover, D−D-type connection in
δ = 0.9 is much more than those under case of δ = 0.7.
In particular, D−D connections at the maximum value
in δ = 0.9 are much richer than the ones in δ = 0.7. Fur-
thermore, C −D or D −C connections can break down
the tight cooperative clusters since cooperators in such
a relationship have to endure exploitation from defec-
tors, which is unfavorable in the evolution of coopera-
tion. At this point, we have made clear the reason why
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Fig. 7 Color phase encoding the frequency of cooperation
ρc on δ − Δ parameter plane for a series values of cost-
to-benefit ratio u. Panels a–f are obtained at the cost-to-
benefit ratio u = 0.01, u = 0.015, u = 0.02, u = 0.025,
u = 0.03, and u = 0.035, respectively. It can be found that
when u is quite small, the level of cooperation increases with
the augmentation of δ, while the parameter Δ seems to have
no significant impact on the evolution of cooperation. Simi-
lar with previous discussion, when the cost-to-benefit ratio u
exceeds to a certain value, the level of cooperation presents
the first increase and then decrease with the increase δ. In
addition, when the parameter δ reaches a certain value, the
level of cooperation decreases as Δ gradually grows. All
these observations suggest that there is an optimal com-
bination δ − Δ promoting the evolution of cooperation. All
results are obtained at L = 100, MCS = 3×104, β = 1 and
K = 0.1

the level of cooperation goes through the first increase
and the upcoming decrease with the increase of δ when
the cost-to-benefit ratio u exceeds a certain threshold.

Finally, we need to have a comprehensive grasp of
the proposed mechanism. Thus, Fig. 7 shows the color
phase encoding the frequency of cooperation ρc within
the δ −Δ parameter plane for a series values of cost-to-
benefit ratio u, in which the results from panels (a) to
(f) are obtained at the values of u = 0.01, u = 0.015,
u = 0.02, u = 0.025, u = 0.03, and u = 0.035, respec-
tively. Obviously, for different values of u, the trend of
ρc changes with the parameter δ or Δ is quite diverse.
To be specific, when u is fairly small (e.g. u = 0.01),
the level of cooperation as a whole increases with the
augmentation of δ, and the parameter Δ seems to have
no significant impact on the level of collective cooper-
ation. Moreover, for some particular combinations of
parameters (δ,Δ), cooperators can even dominate over
the entire system. Nevertheless, with the increase of u,
there are slight changes in these phases. For instance,
when u = 0.02 or even larger, the level of cooperation
first increases and then decreases with the increase of
δ, and the peaks are almost at around δ = 0.8, which is
in line with the above-mentioned results. In addition,
for some particular values of δ, the level of coopera-
tion decreases with the increase of Δ. Combined with
the these observations, we can conclude that there is
an optimal combination of parameters (δ,Δ) that can
best promote the evolution of cooperation.

4 Conclusions

To sum up, we propose a dynamic link weight adjust-
ment game model with asymmetrical influence, in
which each agent has been endowed with an influ-
ence attribute, and systematically explore the effect of
dynamic adjustment link weight of influence induction
on the evolution of cooperation. During the evolution-
ary process, if an agent’s strategy is learned by the
focal player, it means that the agent’s influence can
be expanded. Then, each agent will dynamically adjust
the link weights between them by comparing the their
influence. At last, link weights will be incorporated into
the computational process of agents’ fitness, that is,
link weights between agents can affect their fitness. It
should be noted that although link weights are dynam-
ically adjusted, this adjustment is only performed on a
static network, that is, the connection between agents
remains unchanged, which is different form dynamical
network where the existing links can be rewired or the
size of network can be grown [50–53].

After lots of simulations, it is confirmed that the
currently proposed mechanism can tremendously fos-
ter the emergence of the collective cooperation within
the spatial population playing the PDG. In addition,
when the increment of agent’s influence β �= 0, no mater
how much the parameter β can be changed, the level
of cooperation will not be significantly altered, which
means that the parameter β is not the direct factor
affecting the collective cooperation and the parameter
β can only lead to the heterogeneity of individual influ-
ences. Moreover, when the normalized matrix payoff
u is quite small, the level of cooperation increases as
δ grows. Nevertheless, when the normalized payoff u
exceeds a certain value, as δ increases, the frequency
of cooperation ρc firstly increases and then declines,
which indicates that there exists the best value of δ
(around δ = 0.8) that can lead to the highest level of
cooperation. After analyzing the link weights under dif-
ferent conditions, we find that the heterogeneity facil-
itating the evolution of cooperation is not applicable
to any scenario. In other words, the heterogeneity is
not a necessary and sufficient condition for promoting
the cooperation. Actually, the cooperation behaviors is
often related to the type of links or connections. Since
the C−C pairwise interactions can allow agents to gain
stable returns, while the D − D ones can make agents
get nothing. It is also important to note that C − D
or D − C relationships render cooperators to endure
the exploitation from defectors. Thus, cooperation can
thrive when C − C links dominate the system. Other
types of relationships are unfavorable in the develop-
ment of cooperation. In particular, C − D or D − C
types of connections can even play a disruptive role
in the evolution cooperation. In the end, by mapping
δ −Δ phase, we find an interesting phenomenon: When
the matrix element u is quite small, the frequency of
cooperation ρc increases as δ grows, while the increase
of Δ and does not influence the level of cooperation
at the stationary state. However, when the value of u
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becomes very large, there is an optimal combination of
parameters (δ,Δ) facilitating the evolution of coopera-
tion, which means that too small or too large δ or Δ
does not better favor the evolution of collective coop-
eration.

Considering the prevalence of link weight in nature
and human society, we believe that our research can
provide some valuable insights into the evolution of
cooperation and offer some feasible advice for the study
of this problem even if there are still some unrealistic
assumptions in the proposed mechanism.
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