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Abstract. Solar neutrino studies triggered and largely motivated the major developments in neutrino
physics in the last 50 years. The theory of neutrino propagation in different media with matter and
fields has been elaborated. It includes oscillations in vacuum and matter, resonance flavor conversion and
resonance oscillations, spin and spin-flavor precession, etc. LMA MSW has been established as the true
solution of the solar neutrino problem. Parameters θ12 and Δm2

21 have been measured; θ13 extracted from
the solar data is in agreement with results from reactor experiments. Solar neutrino studies provide a
sensitive way to test theory of neutrino oscillations and conversion. Characterized by long baseline, huge
fluxes and low energies they are a powerful set-up to search for new physics beyond the standard 3ν
paradigm: new neutrino states, sterile neutrinos, non-standard neutrino interactions, effects of violation of
fundamental symmetries, new dynamics of neutrino propagation, probes of space and time. These searches
allow us to get stringent, and in some cases unique bounds on new physics. We summarize the results on
physics of propagation, neutrino properties and physics beyond the standard model obtained from studies
of solar neutrinos.

1 Introduction

“If the oscillation length is large. . . from the point of view
of detection possibilities an ideal object is the Sun.” This
statement from Pontecorvo’s 1967 paper [1] published be-
fore release of the first Homestake experiment results [2]
can be considered as the starting point for the solar neu-
trino studies of new physics.

Observation of the deficit of signal in the Homestake
experiment was the first indication of existence of oscilla-
tions. This result had triggered vast experimental [3] and
theoretical developments in neutrino physics. On theoreti-
cal side, various non-standard properties of neutrinos have
been introduced and new effects in propagation of neutri-
nos have been proposed. These include:

1) Neutrino spin precession in the magnetic fields of the
Sun due to the large magnetic moments of neutrinos [4,
5]: electromagnetic properties of neutrinos have been
studied in details.
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2) Neutrino decays: Among various possibilities (radia-
tive, 3ν decay, etc.) the decay into light scalar, e.g.,
Majoron, is less restricted [6, 7].

3) The MSW effect: The resonance flavor conversion in-
side the Sun required a neutrino mass splitting in the
range Δm2 = (10−7–10−4) eV2 and mixing sin2 2θ >
10−3 [8–13]. This was the first correct estimation of the
neutrino mass and mixing intervals. With adding more
information three regions of Δm2 and sin2 2θ have
been identified: the so-called SMA, LMA and LOW
solutions.

4) “Just-so” solution: vacuum oscillations with nearly
maximal mixing and oscillation length comparable
with the distance between the Sun and the Earth have
been proposed [14].

5) Oscillations and flavor conversion due to non-standard
neutrino interactions of massless neutrinos [8, 9, 15,
16].

6) Resonant spin-flavor precession [17, 18], which employs
matter effect on neutrino spin precession in the mag-
netic fields. The effect is similar to the MSW conver-
sion.

7) Oscillation and conversion in matter due to violation
of the equivalence principle [19], Lorentz-violating in-
teractions [20], etc.



Page 2 of 16 Eur. Phys. J. A (2016) 52: 87

In turn, these proposals led to a detailed elaboration
of the theory of neutrino propagation in different media
as well as to model-building which explains non-standard
neutrino properties.

Studies of the solar neutrinos and results of Kam-
LAND experiment [21–23] led to establishing the LMA
MSW solution as the solution of the solar neutrino prob-
lem. Other proposed effects are not realized as the main
explanation of the data. Still they can be present and
show up in solar neutrinos as sub-leading effects. Their
searches allow us to get bounds on the corresponding neu-
trino parameters. Thus, the Sun can be used as a source
of neutrinos for the exploration of non-standard neutrino
properties.

In this review we summarize the implications of re-
sults from the solar neutrino studies for neutrino physics,
the role of solar neutrinos in establishing the 3ν mixing
paradigm, in searches for new physics beyond the stan-
dard model. The paper is organized as follows. In sect. 2
the physics of the LMA MSW solution of the solar neu-
trino problem is described. We discuss the properties of
this solution and the dependence of the observables on
neutrino parameters. In sect. 3 the determination of the
neutrino masses and mixing using solar neutrinos is de-
scribed. We outline the status of the solution and summa-
rize existing open questions. Section 4 is devoted to pos-
sible manifestations of sub-leading effects due to physics
beyond the standard model. Bounds on parameters of this
new physics are presented.

2 Propagation and flavor evolution of the
solar neutrinos. LMA MSW solution

2.1 Evolution. Three phases

Evolution of the flavor neutrino states, νf ≡ (νe, νμ, ντ )T ,
is described by the equation

i
dνf

dx
= Hνf = (H0 + V )νf , (1)

where H is the total Hamiltonian, H0 ≈ M†M/2p is the
Hamiltonian in vacuum, M is the mass matrix of neutri-
nos (the term proportional to the neutrino momentum p is
omitted here), and V = diag(Ve, 0, 0) is the diagonal ma-
trix of matter potentials with Ve =

√
2GF ne [8, 9]. Here

GF is the Fermi constant and ne is the number density of
electrons.

The flavor evolution is described in terms of the instan-
taneous eigenstates of the Hamiltonian in matter νm ≡
(ν1m, ν2m, ν3m)T . These eigenstates are related to the fla-
vor states by the mixing matrix in matter, Um:

νf = Umνm. (2)

The matrix Um is determined via diagonalization of the
Hamiltonian:

Um†HUm = Hdiag = diag(H1m,H2m,H3m), (3)

where Him are the eigenvalues of the Hamiltonian. In vac-
uum νim coincide with the mass eigenstates: νim = νi, and
Him ≈ m2

i /2p.
The physical picture of neutrino propagation and fla-

vor evolution is the following:
– Neutrino state produced as νe in the central regions

of the Sun propagates as the system of eigenstates of
the Hamiltonian, νim. Admixtures of the eigenstates
are determined by the mixing in matter in the produc-
tion region. The eigenstates propagate independently
of each other and transform into corresponding mass
eigenstates when arriving at the surface of the Sun:
νim → νi.

– The mass eigenstates propagate without changes to
the surface of the Earth. The coherence between these
states is lost and oscillations are irrelevant.

– Entering the Earth the mass states νi split (decom-
posed) into the eigenstates in matter of the Earth and
oscillate propagating inside the Earth to a detector.

We will discuss these three phases in the next section.

2.2 Propagation inside the Sun. Adiabatic flavor
conversion

The picture of flavor transitions in the Sun is simple. In
the LMA case the solution of the evolution equation (1) is
trivial due to large mixing and relatively slow (adiabatic)
change of density on the way of neutrinos. Namely, in the
Sun the condition of smallness of the density gradient, i.e.,
the adiabaticity condition,

d ≡ ne

(
dne

dx

)−1

> lm, (4)

is satisfied. Here lm = 2π/Δm is the oscillation length in
matter and Δm ≡ Him − Hjm is the difference of eigen-
values of the Hamiltonian. According to eq. (4), a system
characterized by the eigenlength lm has time to adjust it-
self to the change of external conditions determined by
the scale of density change, d. Then with high accuracy
the solution of eq. (1) is given by the first-order adia-
batic perturbation theory which we call the adiabatic so-
lution [13, 24, 25].

The adiabatic solution can be written immediately us-
ing the physical picture outlined in sect. 2.1. The state
of electron neutrino produced in the central regions of the
Sun can be decomposed in terms of the eigenstates in mat-
ter as

νe =
∑

i

Um
ei (n0

e) νim(n0
e), (5)

where Um
ei (n0

e) are the elements of mixing matrix in the
production point with density n0

e. The adiabatic evolu-
tion means that transitions between the eigenstates in the
course of propagation are negligible and the eigenstates
evolve independently of each other. So, the evolution is
reduced to i) change of νjm flavor content and ii) appear-
ance of the phase factors

νjm(t0) → eiφj(t)νjm(t), (6)
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where the phases equal

φj(t) =
∫ t

0

dzHjm(z). (7)

The flavor content of the eigenstate in matter changes
according to change of mixing:

νjm(t) = Um†
αj (t)να, (8)

and Um
αj(t) = Um

αj(n(t)) follows the density change. Thus,
admixtures of the eigenstates are conserved being fixed
by (5), but flavors of the eigenstates do change.

At the surface of the Sun we have νjm(ts) = νj and
the neutrino state becomes

ν(ts) =
∑

j

Um
ej (n0)eiφj(ts)νj . (9)

Due to loss of coherence the phases are irrelevant.
The strongest change of flavors of the eigenstates (8)

occurs when neutrinos cross the resonance layer centered
at the resonance density given by the resonance condi-
tion [11–13]:

Ve(nres) = cos 2θ
Δm2

2E
. (10)

The width of the layer is proportional to mixing: nres

tan 2θ. The strongest change of flavor of whole the state
is realized when the initial density is much larger and fi-
nal density is much smaller than the resonance density.
Resonance manifests itself via dependence of Um

ej (n0) on
energy, and it corresponds to maximal mixing. The reso-
nance condition is satisfied inside the Sun for E > 2MeV.

2.3 From the Sun to the Earth

The wave functions (wave packets) of the eigenstates are
determined by processes of production of neutrinos. Sizes
of the wave packets are different for different components
of the solar neutrino spectrum (pp, 7Be, 8B, etc.). On the
way from the production point in the Sun to the Earth
two effects happen: i) the wave packets (WP) of different
eigenstates shift with respect to each other and eventually
separate in space due to different group velocities; ii) each
WP spreads in space due to the presence of different mo-
menta in it.

The first effect leads to loss of the propagation coher-
ence (for low-energy neutrinos this happens already in-
side the Sun). Restoration of coherence in a detector [26]
would require extremely long coherence time of detec-
tion process, or equivalently, unachievable energy resolu-
tion: ΔE/E < lν/LEarth ∼ 2.5× 10−6 (E/10MeV), where
LEarth is the distance from the Sun to the Earth.

The spread is proportional to the square of the abso-
lute value of mass, m2. It is much bigger than the original
size of the packet for two heavier neutrinos even for hi-
erarchical spectrum. Although the spread is smaller than
separation, and in any case, it does not affect the coher-
ence condition [27].

Thus, incoherent fluxes of the mass eigenstates arrive
at the Earth. According to eq. (9) their weights (admix-
tures) are given by moduli squared of the mixing elements
at the production point |Um

ej (n0
e)|2. Therefore the proba-

bility to find νe in the moment tE of the arrival equals

Pee = |〈νe|ν(tE)〉|2 =
∑

j

|Um
ej (n0)|2|Uej |2. (11)

In the standard parametrization of the mixing matrix

Um
e1 = cos θm

13 cos θm
12,

Um
e2 = cos θm

13 sin θm
12, (12)

|Um
e3 | = | sin θm

13|,

and in (11) the mixing angles in matter should be taken
in the production point: θm

12 = θm
12(n

0), θm
13 = θm

13(n
0). In

terms of the mixing angles the probability Pee equals

Pee = c2
13c

m2
13 P ad

2 + s2
13s

m2
13 , (13)

where

P ad
2 = s2

12 + cos 2θ12 cos2 θm
12 (14)

=
1
2
(1 + cos 2θ12 cos 2θm

12). (15)

The 1-2 mixing angle θm
12 is determined by

cos 2θm
12 =

cos 2θ12 − c2
13ε12√

(cos 2θ12 − c2
13ε12)2 + sin2 2θ12

(16)

with
ε12 ≡ 2VeE

Δm2
21

. (17)

The first term in (14) gives the asymptotic (E → ∞) value
of probability which corresponds to the non-oscillatory
transition, so that Pee ≥ c2

13c
m2
13 s2

12; the second term de-
scribes the effect of residual oscillations; the last term
in (13) is the contribution of the decoupled third state ν3.

The 1-3 mixing in matter in the production point can
be estimated as [28]

sin2 θm
13 = sin2 θ13(1 + 2ε13) + O(s2

13ε
2
13, s

4
13ε13), (18)

where

ε13 ≡ 2Ve(n0
e)E

Δm2
31

. (19)

The correction in (18) can be as large as 12%.
Nature has selected the simplest (adiabatic) solution of

the solar neutrino problem. If the adiabaticity is broken,
the probability would acquire an additional term [29, 30]

ΔPee ≈ −P12c
2
13c

m2
13 cos 2θm

12 cos 2θ12, (20)

where P12 is the probability of transition between the
eigenstates during propagation [29, 30]. If initial density
is above the resonance one, so that cos 2θm

12 < 0, the cor-
rection is positive, which means that adiabaticity violation
weakens suppression of the original νe-flux.
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Corrections to the leading-order adiabatic approxima-
tion (adiabaticity violation effect) equal

ΔPee

Pee
≈ γ2 cos 2θ12

4 sin2 θ12

,

γ =
4Eθ̇m

H2m − H1m
, (21)

where γ is the adiabaticity parameter. For E = 10MeV
the correction is about 10−8 [31], i.e., negligible.

For small mixing the jump probability P12 is given by
the Landau-Zener formula [30], and the precise formula
valid also for large mixing angles has been obtained in [32].
Adiabaticity violation can be realized if, e.g., hypothetical
very light sterile neutrino exists, which mixes very weakly
with the electron neutrino (see sect. 4.1).

2.4 Oscillations in matter of the Earth

Evolution in the Earth is more complicated than in the
Sun [33–35]. Neutrino detectors are situated underground
and therefore oscillations in the Earth are present all
the times. The oscillation lengths range from 10 km for
low-energy pp-neutrinos to about 300 km for high-energy
8B-neutrinos. For high energies, oscillations in the Earth
during the day can be neglected, whereas for low energies
the oscillations are present during a part of day, but the
effect is very small due to smallness of mixing in matter.

Crossing the Earth surface the neutrino mass eigen-
states split into the eigenstates of Hamiltonian in matter
of the Earth, νkm,

νj → Ũm
jk νkm, (22)

and start to oscillate. Here Ũm is the mixing matrix of
the mass states in matter. So, oscillations in the Earth
are purely matter effect. Probability to detect the electron
neutrino is given by

Pee =
∑

j

|Um
ej (n0

e)|2Pje, (23)

where Pje are the probabilities of oscillation transitions
νj → νe. During the day Pje ≈ |Uej |2.

The matter effect of the Earth on the 1-3 mixing is very
small, so that P3e ≈ s2

13. Therefore the unitarity condition,∑
j Pje = 1, becomes P1e + P2e = 1 − s2

13. With this and
the parametrization (12) eq. (23) gives

Pee = PE
1ec

m2
13 cos 2θm

12 + c2
13c

m2
13 sin2 θm

12 + s2
13s

m2
13 . (24)

So, the Earth matter effect is described by the single os-
cillation probability PE

1e. For solar neutrino energies the
low-density limit is realized when

ε12 = 0.035
(

E

10MeV

)
� 1. (25)

(Here Ve is taken for the surface density.) In the lowest
order in Ve(x) or ε12 and for arbitrary density profile the

probability equals PE
1e = c2

13c
2
12 −Freg, where the regener-

ation factor is given by [36, 37]

Freg =
1
2
c4
13 sin2 2θ12

∫ L

0

dxVe(x) sin φm
x→L . (26)

Here φm
x→L is the phase acquired from a given point of

trajectory x to a detector:

φm
x→L =

∫ L

x

dyΔm
21(y), (27)

and the difference of eigenvalues equals

Δm
21(y) =

Δm2
21

2E

√
[cos 2θ12 − c2

13ε12(y)]2 + sin2 2θ12.

(28)
During the day, when effect of oscillations inside the

Earth can be neglected: P1e = U2
e1 = c2

13c
2
12. Then accord-

ing to (24) and (26) the difference of probabilities with and
without oscillations in the Earth (the day-night asymme-
try) equals

P − P0 = −c2
13 cos 2θm

12Freg

= −1
2
c6
13 sin2 2θ12 cos 2θm

12

∫ L

0

dxVe(x) sin φm
x→L.

(29)

It is proportional to c6
13 (see [38, 39]), so that non-zero 1-3

mixing reduces effect by about 7%.
Some insight into the results can be obtained in the

constant density approximation:

Freg = sin2 2θ12

(
c4
13Ve

Δm
21

)
sin2 1

2
Δm

21L. (30)

Oscillations in the Earth reduce PE
1e. Consequently, for

high-energy part of the spectrum with cos 2θm
12 < 0 the

effect is positive, thus leading to regeneration of the νe

flux, whereas for low energies one has cos 2θm
12 > 0, and

the oscillations in the Earth further suppress the νe flux.
The regeneration effect approximately linearly increases
with the neutrino energy.

Equivalently, the result (29) can be obtained using adi-
abatic perturbation theory [31]. Next order approximation
in ε21 has been obtained in [40].

Propagation in the Earth can be computed explicitly
taking into account that the matter density profile consists
of several layers with slowly changing density in which
propagation is adiabatic and density jumps at the borders
of the layers where adiabaticity is broken maximally. The
latter is accounted by matching conditions of no flavor
change.

Study of the Earth matter effect provides complete
(integrated) check of the solution of the solar neutrino
problem, since all the phases of evolution are involved.

The salient feature of this picture is that the third
eigenstate essentially decouples from evolution of rest of
the system in all the phases. That is, any interference ef-
fect of ν3 or ν3m with two other eigenstates is averaged
out at the integration over energy, or equivalently due to
separation of the corresponding wave packets.
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Fig. 1. Dependence of the probabilities Pee integrated over
the day and night time periods, for Δm2

21 determined from
the global fit of the solar neutrino data only (red) and from
the global fit of all oscillation data (blue). Also shown are the
results from different experiments. We use abbreviations “Brx”
for Borexino and “KL” for KamLAND.

2.5 Averaging and attenuation

Observable effects are determined by the νe survival prob-
ability integrated over energy with resolution function of
a detector, over the kinematic distribution (in the case of
ν-e scattering) and over the energy profile of neutrino lines
(e.g., the 7Be-neutrino line). This integration leads to the
attenuation effect [36] according to which a detector with
the energy resolution ΔE cannot “see” remote structures
of the density profile for which the distance to the detector
is larger than the attenuation length λatt ∼ 1/ΔE. In the
core due to larger density the oscillations proceed with
larger depth. However, this increase is not seen in boron
neutrinos due to the attenuation. In contrast, for the 7Be-
neutrinos the energy resolution is given by the width of
the line and λatt turns out to be bigger than the distance
to the core. So, detectors of 7Be-neutrinos can in principle
“see” the core.

The probabilities should be averaged over the produc-
tion region in the Sun. In the first approximation this can
be accounted by the effective initial densities n0

e → n̄0
e [31].

2.6 Energy profile of the effect

Flavor conversion is described by Pee(E, t) (24) which de-
pends on neutrino energy and time. The time dependence
is due to oscillations in the Earth since the effect depends
on the zenith angle of trajectory of neutrino. The main
dependence on energy is in θm

12(n0), and much weaker one
is in θm

13(n0) and P1e.
Figure 1 shows dependence of the probabilities Pee(E)

integrated over the day and the night times. At low ener-
gies neglecting the νe regeneration one has

Pee ≈ c4
13(1 − 0.5 sin2 2θ12) − 0.5c6

13 cos 2θ12 sin2 2θ12ε12.
(31)

With decrease of energy: Pee → P vac
ee . For the best fit value

of the 1-2 mass splitting deviations of the probability (31)

from its vacuum values are 6% for the 7Be-neutrinos and
2% for the pp-neutrinos with E = 0.3MeV.

At high energies the matter effect dominates and

Pee = c4
13 sin2 θ12 + c2

12Freg +
1
4

cos 2θ12 sin2 2θ12ε
−2
12 .

(32)
The intermediate energy region between the vacuum-

and matter-dominated limits is actually the region where
the resonance turn on (turn off). The middle of this region
(before averaging) corresponds to the MSW resonance at
maximal densities in the Sun. Value of θ12 determines
sharpness of the transition, that is, the size of transition
region. The larger θ12 the bigger the size of the region. In-
tegration over the neutrino production region in the Sun
smears the transition, thus reducing the sensitivity to θ12.

As follows from fig. 1 almost all experimental points
are within 1σ from the prediction. Larger deviations can
be seen in the intermediate region.

2.7 Scaling

The conversion probability of solar neutrinos obeys certain
scaling which allows to understand various features of the
LMA MSW solution as well as effects of new physics. The
survival probability averaged over the oscillations on the
way to the Earth (related to loss of propagation coherence)
is function three dimensionless parameters:

Pee = Pee(ε12, ε13, φE). (33)

Here

φE ≈ Δm2
21L

2E
(34)

is the phase of oscillations in the Earth and ε12, ε13 are
defined in eqs. (17), (19) correspondingly.

Several important properties follow immediately:

1) The probability is invariant with respect to rescaling

Δm2
21 → bΔm2

21, Δm2
31 → bΔm2

31, E → bE.
(35)

2) The adiabatic probability does not depend on distance
and any spatial scale of the density profile. So, the
only dependence on distance is in the phase φE . If
oscillations in the Earth are averaged, then whole the
probability, Pee = Pee(ε12, ε13), is scale invariant. This
happens for practically all values of the zenith angle.
In this case Pee is invariant with respect to rescaling

Δm2
21 → aΔm2

21, Δm2
31 → aΔm2

31, Ve → aVe.
(36)

In particular, if a = −1, Pee is invariant with re-
spect to change of the signs of mass squared differences
and potentials. Since the oscillation probability in the
Earth (the regeneration factor) does not change under
φE → −φE , the invariance with respect to simulta-
neous change of signs of Δm2 and potential (eq. (36)
with a = −1) holds also for the non-averaged proba-
bility (33).

3) If |Δm2
31| is kept fixed, the scaling (36) is broken by

the 1-3 oscillations.
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4) The dependence of the probability on ε13 is weak, and
if neglected,

Pee ≈ Pee(ε12) = Pee

(
2VeE

Δm2
21

)
(37)

depends on one combination of the parameters only.

We will use these properties in the following discussion.

3 Determination of the neutrino parameters

The conversion effect of the solar neutrinos depends main-
ly on sin2 θ12 and Δm2

21. In the approximation sin2 θ13 = 0
the problem is reduced to 2ν problem. Due to low neutrino
energies the 1-3 mixing, being small in vacuum, is not en-
hanced substantially in matter. Consequently, corrections
to the 2ν approximation are proportional to sin2 θ13.

With increase of experimental accuracy dependence of
the probability on the 1-3 mixing becomes visible. It is
mainly via dependence of the elements of PMNS matrix
Ue1 and Ue2 on cos2 θ13.

Dependence of the probability on Δm2
31 is via the mat-

ter correction to the 1-3 mixing (18). This correction is
about 0.3% at 10MeV, that is, an order of magnitude
smaller than correction due to the non-zero 1-3 mixing
itself.

Similarly, the sensitivity of solar neutrinos to the 1-3
mass hierarchy (the sign of Δm2

31) is low. According to
eq. (18) in the case of inverted mass hierarchy the correc-
tion to the sin2 θ13 is negative. Consequently, the survival
probability increases at high energies by about 0.5% in
comparison with the NH case.

Solar neutrinos are insensitive to the 2-3 mixing. The
reason is that only the electron neutrinos are produced in
the Sun, and νμ and ντ cannot be distinguished at the
detection.

Solar neutrino fluxes do not depend on the CP-viola-
tion phase δ [41]. Indeed, in the standard parametriza-
tion |Uei| do not contain δ. In matter the propagation can
be considered in the propagation basis, νprop, defined as
νf = U23Γδνprop, where U23 is the matrix of rotation in
the (νμ, ντ ) plane and Γδ ≡ diag(1, 1, eiδ). In this basis
the CP phase is eliminated from evolution, whereas νe is
unchanged. As a result, the amplitude of probability, Aee,
does not depend on δ.

3.1 The 1-2 mixing and mass splitting

The angle θ12 determines the energy dependence of the ef-
fect (24) (shape of the energy profile) via θm

12 both in the
Sun and the Earth. The oscillation phase is relevant only
for oscillations in the Earth for a small range of zenith
angles near horizon. Also in the first approximation the
dependence of the probability on Δm2

31 can be neglected.
Then the whole the picture is determined by Δm2

21 in
combination with energy: Δm2

21/E. This means that with
change of Δm2

21 the profile shifts in the energy scale by
the same amount without change of its shape. In particu-
lar, with decrease of Δm2

21 the same feature of the profile
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(e.g., the upturn) will show up at lower energies. Since
dependence of the profile on E is weak at large and small
energies, it is the position of the transition region with
respect to the solar neutrino spectrum that determines
Δm2

21.
Also the νe regeneration effect in the Earth depends

on Δm2
21: according to (26) Freg ∝ 1/Δm2

21.
In fig. 2 we show result of the global fit of the solar

neutrino data in the (θ12,Δm2
21)-plane, for θ13 fixed to

the best-fit value from the reactor experiments. In the left
panel we show the regions restricted by individual solar
neutrino experiments, whereas in the right panel we com-
pare the solar and KamLAND allowed regions. The pre-
ferred value of θ12 from the analysis of solar data slightly
increases as θ13 increases. Compared to the solar neutrino
analysis KamLAND gives about 2σ larger Δm2

21 but prac-
tically the same value of θ12.

3.2 The 1-2 mass ordering

Solar neutrinos allow to fix the sign of Δm2
21 for the stan-

dard value of Ve. The sign determines the resonance chan-
nel (neutrino or antineutrino) and the mixing in matter.
The facts that due to smallness of the 1-3 mixing the prob-
lem is reduced approximately to the 2ν problem and that
suppression of signal averaged over the oscillations at high
energies is stronger than 1/2, selects Δm2

21 > 0. That
corresponds to the normal ordering (hierarchy) when the
electron flavor is mostly present in the lightest state.

For both signs of Δm2
21 consideration and formulas are

the same and the only difference is the value of θm
12(n

0
e) in

the production point. For high energies when density at
production is much bigger than the resonance one n0

e 
nres(E), one has cos 2θm

12 ≈ −1 (+1) for normal (inverted)
ordering. Correspondingly, the ratio of probabilities in the
NH and IH cases equals tan2 θ12 ≈ 1/2. Thus, for inverted
ordering the suppression would weaken with increase of
energy.

According to eq. (30) with the change of sign of Δm2
21

the Earth matter effect (regeneration factor) flips the sign.
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Fig. 3. Allowed regions of mixing angles θ12 and θ13 from the
global fit of the solar neutrino data only (left) and the solar
plus KamLAND data (right).

3.3 The 1-3 mixing

If s4
13 terms in the probability (13) are neglected, the de-

pendence on the 1-3 appears as an overall normalization
which can be absorbed (at least partially) in uncertainties
of neutrino fluxes. In contrast, degeneracy of the 1-2 and
1-3 mixings is absent since sin2 θ12 and sin2 θ13 enter the
probability Pee in different combinations in the vacuum-
and matter-dominated energy regions. According to (31)
and (32) these combinations are

s2
13 ≈ 1

2
− Ph

2s2
12

, s2
13 ≈ 1

2
− P l

2 − sin2 2θ12

. (38)

The SNO and SK results, on the one hand, and Borexino
(7Be-, pp-neutrinos), and to a large extent Ga-Ge results,
on the other, depend on different combinations of angles
θ12 and θ13. Figure 3 shows the allowed region in the plane
sin2 θ12-sin2 θ13. The left panel illustrates how the low- and
high-energy data restrict the allowed region. Also shown
is the result of global fit of all solar neutrino data which
gives smaller Δm2

21 and the best-fit value sin2 θ13 = 0.017.
The latter coincides with the earlier result in ref. [28].

Instead of low-energy solar neutrino data one can use
the KamLAND antineutrino result (vacuum oscillations
with small matter corrections). Result of the combined
fit of the solar and KamLAND data in assumption of the
CPT invariance is shown in fig. 3 (right). KamLAND data
shift the 1-3 mixing to bigger value: sin2 θ13 = 0.028. The
present solar neutrino accuracy on θ13 is much worse than
the one from the reactor experiments, but it can be sub-
stantially improved in future by SNO+, JUNO, Hyper-
Kamiokande.

3.4 Tests of theory of neutrino oscillations and
conversion

3.4.1 Determination of the matter potential

As discussed in the previous sections, the MSW effect
plays central role in the solution of the solar neutrino prob-
lem. It is therefore important to experimentally verify all
the aspects of this effect, and in particular, value of matter

10
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10
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10
-1

10
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10
1

aMSW
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15

20

Δχ
2

sin
2θ13 = 0.022

Fig. 4. Determination of the matter potential from the solar
(red) and solar+KamLAND (blue) neutrino data, as a function
of the scaling parameter amsw. We fix sin2 θ13 = 0.022 and
Δm2

31 → ∞, and marginalize over Δm2
21 and θ12. The dashed

red line is obtained neglecting the Earth matter effect.

potential. To this end, we follow the approach of ref. [42]
and allow for an overall rescaling of the matter potential:

Ve → amswVe. (39)

Note that such a modification of the matter term can be
regarded as a special case of non-standard neutrino inter-
actions [43], which we will describe in detail in sect. 4.2.

In order to determine the preferred value and allowed
range of amsw, we perform a fit of the solar neutrino data
only (fig. 4, red line) and a combined fit of the solar and
KamLAND neutrino data (blue line). We fix for simplicity
sin2 θ13 = 0.022 but allow θ12 and Δm2

21 to vary freely.
We find 0.84 ≤ amsw ≤ 3.08 at the 3σ level (see fig. 4,
blue line), with best-fit value amsw = 1.66. The standard
value amsw = 1 is well within the allowed region, although
slightly disfavored by the data (Δχ2 = 5). As we will see
in sect. 4.2, this is related to the tension between solar and
KamLAND data in the determination of Δm2

21, which can
be alleviated by a non-standard matter potential.

Inclusion of the KamLAND data is essential for deter-
mination of amsw. Indeed, as long as scaling (37) is realized
(Pee depends only on the combination Ve/Δm2

21), a rescal-
ing of the matter potential Ve can be compensated by the
same rescaling of Δm2

21. This is clearly reflected by the
dashed red line in fig. 4, for which the Earth matter effect
has been “switched off”.

According to fig. 4, scaling (37) is broken in the range
3× 10−3 � amsw � 0.3 by the effect of non-averaged oscil-
lations in the Earth, which for small Δm2

21 depend on L.
This is seen as wiggles of the red solid line. Violation of
scaling at amsw � 5× 10−3 corresponds to the breaking of
adiabaticity in the Sun, so that formula for Pee becomes
invalid. In this range lν > 0.1Rsun. The sharp increase of
Δχ2 at amsw ∼ 5 × 10−4 (very small Δm2

21) occurs when
lν ∼ Rsun.

Thus, the solar neutrinos alone give only the lower
bound amsw > 5 × 10−3, and cannot fix Ve and Δm2

21.
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The precise matter-independent determination of Δm2
21

provided by KamLAND fixes the issue.
According to fig. 4 at amsw ∼ 1 the Earth matter effect

reduces χ2 by Δχ2 ∼ 14, i.e., the effect is seen at about
4σ, when all the data (in particular, SNO) are included.

3.4.2 Oscillation phase

Results of global analysis of the solar neutrino data can be
compared with results from non-solar experiments which
have different environment, type of neutrino, energy, etc.
This comparison provides important possibility to test the
theory of oscillations and to search for new physics.

As an example, suppose that for some geometrical rea-
sons, non-locality, etc., the phase in the oscillation formula
differs from the standard one by a factor ξ:

φ → ξφ (40)

as it was advocated in some publications previously. This
means that Δm2

21 extracted from the corresponding mea-
surements would be different by a factor 1/ξ. If the factor
ξ does not appear in the Hamiltonian, one can establish
existence of ξ �= 1 using Δm2

21 from the adiabatic conver-
sion result which does not depend on the phase. The fact
that Δm2

21 obtained from solar neutrino data and Kam-
LAND are close to each other allows to restrict ξ.

Comparing results from KamLAND measurement and
solar neutrino experiments one can search for effects of
CPT-violation, presence of non-standard interactions, etc.

3.5 Status of the LMA MSW. Open issues

LMA MSW gives good description of all existing solar
neutrino data with their present accuracy and no statis-
tically significant deviation are found. The LMA solution
reproduces all the observed features including the directly
measured pp-neutrino flux [44], as well as the Day-night
asymmetry: (2–4)% for the boron neutrinos [45] and the
value consistent with zero for 7Be-neutrinos [46]. Pulls of
different measurements with respect to predictions for the
best-fit values of oscillation parameters extracted from the
solar neutrino data can be seen in fig. 1. There is certain
redundancy of measurements from different experiments
which provides consistency checks of the results.

Realization of the KamLAND experiment [47] was mo-
tivated by the solar neutrinos studies, namely by a pos-
sibility to test the LMA solution. Although historically
by measuring Δm2

21 KamLAND has uniquely selected the
LMA solution, now the solar neutrino experiments alone
can do this due to new measurements by Borexino, which
validated the solution at low energies, and due to higher
accuracy of other results.

There are a few open issues which motivate further
detailed studies. Three following facts are most probably
related:

1) The “upturn” of the spectrum (the ratio of the mea-
sured spectrum to the SSM one) towards low energies
is not observed. According to the LMA solution the
suppression should weaken with decrease of energy is

not observed (see fig. 1). The increase should be for all
energies (if oscillations in the Earth are not included)
but the strongest change is expected in the range (2–
6) MeV. With oscillations in the Earth also the upturn
towards high energies is expected. No one experiment
has showed the upturn. The SNO experimental points
even turn down at low energies.

2) For the best fit values from the global solar neutrino
fit, one expects the D-N asymmetry ADN ≡ 2(N −
D)/(N+D) = 2.8%. For values of Δm2

21 from global fit
of all oscillation data (dominated by KamLAND) the
asymmetry equals ADN = 1.8%. Super-Kamiokande
gives larger value: ADN = (3.2 ± 1.1 ± 0.5)% [45], and
even larger asymmetry, 4.2%, has been obtained from
separate day and night measurements. This can be
simply statistical fluctuation. Especially in view of the
observed energy and zenith angle dependencies of the
asymmetry.

3) The 1-2 mass splitting extracted from the global fit of
the solar neutrino data Δm2

21 = (4.7+1.6
−1.1) × 10−5 eV2

is about 2σ smaller than the value measured by Kam-
LAND (antineutrino channel) as well as the global fit
value of all oscillation data [48] Δm2

21 = (7.50+0.19
−0.17) ×

10−5 eV2. Notice that the bump in the spectrum
of reactor antineutrinos at (4–6)MeV uncovered re-
cently [49, 50] leads to a decrease of Δm2

21 extracted
from KamLAND data by about 0.1 × 10−5 eV2, and
therefore to an insignificant reduction of the disagree-
ment [51]1. With the decrease of Δm2

21 the upturn and
regeneration peak shift to lower energies, which leads
to weaker distortion of the spectrum at low energies
and larger D-N asymmetry.

4) The value of potential extracted from the solar neu-
trino data is larger by a factor 1.6 than the stan-
dard potential. This is directly related to difference of
Δm2

21 extracted from the solar and KamLAND data
(sect. 3.4).
Solar neutrino studies motivated calibration experi-

ments with radiative sources. The latter led to gallium
anomaly —about 2σ deficit of signal which implies new
physics unrelated to the solar neutrinos (and has value
by itself). Impact of the Gallium calibration on results of
solar neutrino experiments is not strong if it is related to
cross-section uncertainties in the energy range of calibra-
tion sources.

3.6 Theoretical and phenomenological implications

Measured oscillation parameters have important implica-
tions for fundamental theory, though there is no unique
interpretation. The observed 1-2 mixing is large but not
maximal. The deviation of the measured value sin2 θ12 =
0.304+0.013

−0.012 is about 15σ below sin2 θ12 = 0.5 and it is sub-
stantially larger than sin2 θC = 0.050. The value of sin2 θ12

1 This shift in Δm2
21 has been obtained by fitting the 2013

KamLAND data presented in [52] with a reactor antineutrino
spectrum modified according to the RENO near-detector mea-
surement shown in fig. 6 of ref. [49], and is in good agreement
with the result reported recently in [53].
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is between sin2(π/4 − θC) = 0.281 and sin2 θ12 = 1/3,
where the first number corresponds to the Quark Lep-
ton Complementarity (QLC) [54] and the second one to
the Tri-bimaximal (TBM) mixing [55]. In turn, QLC im-
plies a kind of quark-lepton unification (symmetry), and
probably, the Grand Unification (GU). TBM indicates to-
ward geometric origins of mixing and certain flavor sym-
metry which is realized in the residual symmetries ap-
proach [56–58].

Measured value of Δm2
21 gives the lower bound on the

mass m2 ≥
√

Δm2
21 = 0.007 eV. Comparing Δm2

21 with
Δm2

31 one finds that neutrinos have the weakest mass hi-
erarchy (if any) among all other leptons and quarks in the
case of normal mass ordering: m2/m3 ≥

√
Δm2

21/Δm2
31 =

0.18. In the case of inverted mass hierarchy Δm2
21 deter-

mines degeneracy of two heavy mass states Δm/m2 ≥
Δm2

21/2Δm2
31 = 1.5 × 10−2, which implies certain fla-

vor symmetry. If neutrinos are Majorana particles, their
masses fix the effective scale of new physics responsible
for the neutrino mass generation. For the D = 5 Weinberg
operator generating such a mass, we obtain the value new
physics scale Λ = v2

EW/
√

Δm2
21 ∼ 1016 GeV which coin-

cides essentially with the GU scale.
There is a number of phenomenological consequences

of the solar neutrino results:
1) Supernova (SN) neutrinos: in outer regions of a col-

lapsing star the MSW conversion produces significant
flavor changes of fluxes. The conversion occurs in the
adiabatic regime. Due to the 1-2 mass splitting and
mixing the SN neutrinos oscillate in the matter of
the Earth leading to the observable effects (see, e.g.,
ref. [59]).

2) The Early Universe: equilibration of the lepton asym-
metries in different flavors occurs due to oscillations
with large mixings [60, 61].

3) Neutrinoless double beta decay: contribution from the
second mass state to the effective Majorana mass of
the electron neutrino gives the dominant contribu-
tion in the case of normal mass hierarchy: m

(2)
ee ≈

sin2 θ12

√
Δm2

21 = (2–3)meV. In the case of inverted
hierarchy mee ≈ m

(1,2)
ee ∝ c2

13| cos2 θ12 + sin2 θ12e
iφ|,

and numerically m
(1,2)
ee ≈ (18–50)meV depending on

value of the Majorana phase φ.
4) CP-violation effects are proportional to sin 2θ12, and

Δm2
21 determines the L/E scale for oscillation experi-

ments which are sensitive to the CP phase.

4 Solar neutrinos and physics beyond the 3ν
framework

Apart from masses and mixing a number of non-standard
neutrino properties have been considered which lead to
new effects in propagation of neutrinos, and consequently,
to suppression of the solar νe flux. After establishing the
LMA MSW solution, these effects can show up as sub-
leading effects. Their searches in solar neutrinos allow to
put bounds on standard neutrino properties.

As far as propagation is concerned, effects of new
physics can be described by adding new terms, Hnp, to
the Hamiltonian in eq. (1): H → Hlma + Hnp. In the fol-
lowing sections we will use the approximation of the third
mass dominance, Δm2

31 → ∞ or decoupling of ν3, accord-
ing to which the evolution of 3 neutrinos (in certain basis)
is reduced to the evolution of a 2ν system described by an
effective Hamiltonian H(2) = H

(2)
lma + H

(2)
np with

H
(2)
lma =

Δm2
21

4E

(− cos 2θ12 sin 2θ12

sin 2θ12 cos 2θ12

)
+
√

2GF ne

(
c2
13 0
0 0

)
.

(41)
In addition, new physics can affect production and in-

teractions of neutrinos, which we will discuss separately
for each specific case.

4.1 Sterile neutrinos

Sterile neutrinos, singlets of the standard model symme-
try group, can manifest themselves through mixing with
ordinary neutrinos, with non-trivial implications for the
oscillation patterns. The most general neutrino mass ma-
trix which generates such a mixing with n sterile neutrinos
has in the basis νf = (νe, νμ, ντ , νs1, . . . , νsn)T a form

Mν =
(

0 mD

mT
D mN

)
, (42)

where mD is a generic 3×n matrix and mN is a n×n sym-
metric matrix. Then the Hamiltonian in vacuum equals
H0 = MνM†

ν/2E. The diagonal matrix of the mat-
ter potentials appearing in (1) is now V = diag(Ve +
Vn, Vn, Vn, 0, . . . , 0) with Vn = −(1/

√
2)GF nn and nn be-

ing the number density of neutrons.
From a phenomenological point of view, three different

regimes can be identified, depending on whether the mass-
squared splitting involving the sterile neutrinos, Δm2

as, is
much smaller, comparable, or much larger than Δm2

21.

4.1.1 Δm2
as � Δm2

21: quasi-Dirac case

This was realized in the “Just-so” solution of the so-
lar neutrino problem. For very small Majorana masses,
|mN | � |mD|, the eigenvalues of eq. (42) form pairs of
almost degenerate states. This situation is referred to as
“quasi-Dirac” limit. The presence of extra mass-squared
splittings can distort the neutrino oscillation patterns, and
due to very big baseline (the Sun-Earth distance) the so-
lar neutrino experiments have high sensitivity to small
values of |mN |. For Δm2

as < 10−9 eV2 the evolution inside
the Sun is practically unaffected by the presence of the
sterile neutrinos (the oscillations into sterile neutrinos are
suppressed in matter), and the main effect is due to vac-
uum oscillations νa → νs on the way from the Sun to the
Earth.

In order not to spoil the accurate description of so-
lar oscillations data the Majorana mass should satisfy
the upper bound |mN | � 10−9 eV (normal ordering) or
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|mN | � 10−10 eV (inverted ordering) [62, 63]. The bound
corresponds to the maximal active sterile mixing and
Δm2

as ≈ 2mDmN = (10−11–10−9) eV2.

4.1.2 Δm2
as � Δm2

21

Originally, this possibility has been motivated by rela-
tively low Ar production rate in the Homestake exper-
iment and absense of spectral upturn [64, 65]. An extra
sterile state has been added to the three active ones,
νf = (νs, νe, νμ, ντ )T , and correspondingly, new mass state
ν0: νm = (ν0, ν1, ν2, ν3)T . The 4 × 4 mixing matrix is
parametrized as U = UPMNS U01(α) [64]. The value of new
mixing angle is assumed to be very small: sin2 2α ∼ 10−3

and the new mass splitting equals Δm2
01 ∼ 0.2Δm2

21 eV2.
The diagonal matrix of the matter potentials in the flavor
basis is V = diag(0, Ve + Vn, Vn, Vn).

In such a model, the neutrinos propagating inside the
Sun encounter two resonances: one is associated with the
1-2 mass splitting, as in the standard case, and another
one with the 0-1 mass splitting. With parameters α and
Δm2

01 defined above the new resonance modifies the sur-
vival probability leading to the dip at the intermediate
energies, E ∼ 3MeV, thus suppressing the upturn (see
fig. 5). This alleviates the tension between solar and Kam-
LAND data.

4.1.3 Δm2
as  Δm2

21

In this limit (see refs. [66, 67] for latest discussions) all
the Δm2

ij other than Δm2
21 can be assumed to be infinite,

and in certain propagation basis the neutrino evolution is
described by the sum of H

(2)
lma in eq. (41) and

H
(2)
np =

√
2GF

nn

4

(
−ξD ξNe−iδ12

ξNeiδ12 ξD

)
, (43)

where ξD, ξN are combinations of the mixing matrix
elements Uαi (explicit expressions can be found in ap-
pendix C of ref. [67]).

The new physics term (43) proportional to Vn, is in-
duced by the decoupling of heavy neutrino states. In gen-
eral, the matter term (43) and the usual one with Ve do
not commute with each other as well as with the vacuum
term. The phase δ12 appearing in H

(2)
np originates from

the phases of the general (3 + n) mixing matrix, and it
cannot be eliminated by a redefinition of the fields. This
phase does not produce CP-violation asymmetry but af-
fects neutrino propagation in matter.

The relevant conversion probabilities can be written as

Pee = C̃e − η2
eP

(2)
osc ,

Pae = C̃a − ηe

(
ξDP

(2)
osc + ξNP

(2)
int

)
,

(44)

where P
(2)
osc ≡ |S(2)

21 |2 and P
(2)
int ≡ Re(S(2)

11 S
(2)�
21 ) and the

matrix S(2) is the solution of the evolution equation with
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Fig. 5. Impact of new physics on solar neutrino survival prob-
ability. We fix sin2 θ13 = 0.022. We plot standard oscillations
(sin2 θ12 = 0.31, Δm2

21 = 7.5 × 10−5 eV2), one extra sterile
neutrino (sin2 θ12 = 0.31, Δm2

21 = 7.5 × 10−5 eV2, sin2 2α =
0.005, Δm2

01 = 1.2 × 10−5 eV2) and non-standard interac-
tions with up-type (sin2 θ12 = 0.30, Δm2

21 = 7.25 × 10−5 eV2,
εu

D = −0.22, εu
N = −0.30) and down-type (sin2 θ12 = 0.32,

Δm2
21 = 7.35 × 10−5 eV2, εd

D = −0.12, εd
N = −0.16) quarks.

See text for details. We use abbreviations “Brx” for Borexino
and “KL” for KamLAND.

the effective Hamiltonian H(2). The coefficients C̃e, C̃a,
and ηe are functions of Uαi [67]. The formulas (44) are
valid for any number of sterile neutrinos. Sterile neutrinos
affect the oscillation probabilities in two different ways:

1) the mixing of νe with the “heavy” states leads to a
suppression of the energy-dependent part of the con-
version probabilities, in analogy with θ13 effects in the
standard case;

2) the mixing of the sterile states with ν1,2 leads to overall
disappearance of active neutrinos, so that Pee + Pμe +
Pτe �= 1.

Phenomenologically, the most relevant effect is the sec-
ond one, since the precise NC measurement performed by
SNO confirms that the total flux of active neutrinos from
the Sun is compatible with the expectations of the Stan-
dard Solar Model. Hence the fraction of sterile neutrinos
which can be produced in solar neutrino oscillations is
limited by the precision of the solar flux predictions, in
particular of the Boron flux. An updated fit of the solar
and KamLAND data in the context of (3+1) oscillations,
with the simplifying assumption Ue3 = Ue4 = 0, yields
|Us1|2 + |Us2|2 < 0.1 at the 95% CL.

Concerning the first effect, the mixing of νe with
“heavy” eigenstates has similar implications as in the stan-
dard case except that now there are “more” heavy states.
This allows to put a bound on ηe which is very similar to
the one on |Ue3|2 in 3ν one, but instead of being inter-
preted as a bound on |Ue3|2 it becomes a bound on the
sum

∑
i≥3 |Uei|2. For example, for (3+1) models a bound

|Ue3|2 + |Ue4|2 < 0.077 at 95% CL can be derived from
the analysis of solar and KamLAND data, as shown in
ref. [67]. Additional bounds have been obtained by Borex-
ino [68].
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4.2 Non-standard interactions

In the presence of physics Beyond the Standard Model,
new interactions may arise between neutrinos and matter.
They can lead to effective four-fermion operators of the
form

LNSI = −2
√

2GF εfP
αβ (ν̄αγμνβ)(f̄γμPf), (45)

where f denotes a charged fermion, P ∈ {L,R} are the
left and right projection operators and εfP

αβ parametrize
the strength of the non-standard interactions.

The non-standard interactions (NSI) were introduced
to obtain oscillations [8, 9] or MSW conversion [15, 16]
without neutrino masses. NSI could provide an alternative
solution of the solar neutrino problem. They can modify
the LMA MSW solution, and inversely, be restricted by
solar neutrinos [69–73].

NSI affect neutrino propagation: the matter term, V ,
in the evolution equation (1) includes an extra contribu-
tion from NSI

Vαβ = Veδαeδβe +
√

2GF

∑
f

nf εf
αβ , (46)

where εf
αβ = εfL

αβ + εfR
αβ . Hermiticity requires that εf

βα =
εf∗

αβ , so that the diagonal entries εf
αα must be real. The

new physics part of the Hamiltonian equals

H
(2)
np =

√
2GF

∑
f

nf

(
−εf

D εf
N

εf∗
N εf

D

)
, (47)

where εf
D and εf

N are linear combinations of the origi-
nal parameters, εf

αβ , and their explicit expressions can be
found in ref. [43].

Neglecting the matter effect on the 1-3 mixing one
obtains that the νe probability Pee can be written as
Pee = c4

13P
(2)
surv + s4

13, where P
(2)
surv ≡ |S(2)

11 |2 should be
calculated using the Hamiltonian H(2).

In the specific case of NSI with electrons (f = e) both
the standard and the non-standard (eq. (47)) terms scale
with the same matter density profile ne. This implies that
large enough positive value of εe

D can “flip the sign” of
the matter term, so that the resonance will be realized
for the inverted 1-2 hierarchy, Δm2

21 < 0, in contrast to
the usual case. There is therefore an unresolvable degen-
eracy between the sign of Δm2

21 and that of the matter
potential: only their relative sign can be determined by
oscillation experiments. For NSI with up-quarks (f = u)
or down-quarks (f = d) this ambiguity is only approxi-
mate, however present data are unable to resolve it. As a
consequence, in the presence of NSI the sign of Δm2

21 can
no longer be determined uniquely.

With new interactions the evolution inside the Sun is
still adiabatic, and so the results are determined by the
mixing at the production point. The latter is affected by
NSI, and now also the off-diagonal elements of the Hamil-
tonian depend on matter potential. This means that at

large values of the potential mixing is not suppressed: in
asymptotics, E → ∞, one has

cos 2θm ≈ c2
13 − 2rfεf

D√
(2rfεf

D − c2
13)2 + (2rfεf

N )2
, (48)

where rf ≡ nf/ne. According to eq. (48), cos 2θm > −1,
and therefore suppression at high energies for the same
vacuum mixing is always weaker than without NSI. The
mixing at the exit from the Sun coincides with the vacuum
mixing. In the limit of very low energies Pee approaches
the vacuum value as in the standard case. The strongest
modification appears in the intermediate energy region. In
general, the probability is given by (13) with

cos 2θm ≈ − A√
A2 + (2rfεf

N + sin 2θ12ε
−1
12 )2

, (49)

where A ≡ − cos 2θ12ε
−1
12 +c2

13−2rfεf
D. The absolute min-

imum is achieved when the second term in denominator
of (49) is zero, i.e.

εf
N = − sin 2θ12

2rf ε12
. (50)

This corresponds to zero the off-diagonal elements of
Hamiltonian (47). For E = 3MeV we obtain εf

N = −0.3.
In fig. 5 we plot the Pee survival probability for non-

standard interactions with up-quarks and down-quarks.
As can be seen, the presence of NSI allows to consider-
ably flatten the spectrum above 3MeV, in analogy with
the similar effect produced by light sterile neutrinos. More-
over, NSI can also generate large day-night asymmetries:
(4–5)% at 10MeV for both cases, f = u and f = d. The
flattening and larger asymmetry remove the tension with
KamLAND data.

The NSI and sterile neutrino cases can be distinguished
by the slower increase of the NSI probability as the energy
decreases. The sharp increase for the sterile case is related
to small νe-νs mixing (narrow resonance). The two possi-
bilities can be distinguished, e.g., by precise measurements
of the pep neutrino flux and well as the day-night asym-
metry at high energies.

The NSI provide a very good fit to solar neutrino data,
even in the limit of Δm2

21 = 0. This is mainly due to
the lack of experimental data below 5MeV, where the
transition between the MSW and the vacuum-dominated
regime takes place. It is therefore not possible to obtain a
precise determination of both vacuum oscillation and non-
standard interaction parameters using only solar data. On
the other hand, KamLAND measurement of Δm2

21, being
only marginally affected by matter effects, is rather stable
under the presence of NSI. A combined fit of both solar
and KamLAND data is therefore able to constraint both
sets of parameters with good accuracy. In fig. 6 we show
the results of such a combined fit for NSI with f = u
(left) and f = d (right), limited for simplicity to the case
of real εf

N . The presence in both cases of two disconnected
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Fig. 6. Allowed regions of parameters of the non-standard
neutrino interaction (see text).

regions is related to the ambiguity in the determination
of the sign of Δm2

21 discussed above. Namely, the left-
side regions include the standard solution εf

D = εf
N = 0

Δm2
21 > 0, the right-side regions (slightly disfavored for

f = d) correspond to Δm2
21 < 0.

In fig. 6 the best fit points (stars) for solar+KamLAND
are εd

D = −0.12 and εd
N = −0.16 for NSI with down-type

quarks, and εu
D = −0.22 and εu

N = −0.30 for NSI with
up-type quarks. These values are somewhat in tension
with the atmospheric and LBL experiments bounds, and
probably hard to accommodate within BSM models, al-
though some possibility has been discussed [74]. As shown
in ref. [43], atmospheric and long-baseline data are insen-
sitive to εf

D but more restrictive for εf
N , and can therefore

provide complementary information.
In addition to propagation effects, the presence of NSI

can also affect the neutrino cross-sections relevant for neu-
trino detection. For example, in ref. [75] stringent bounds
on NSI with electrons were derived from the Borexino data
by studying the elastic scattering in the 7Be energy win-
dow.

4.3 Large magnetic moments

Electromagnetic interactions of neutrinos are due to neu-
trino dipole moments (see review [76]). The Dirac neutrino
in the Standard Model has a very tiny magnetic moment,
μν = 3 × 10−19 (mν/eV)μB ref. [77]. Experimental evi-
dence for a larger value of μν would therefore testify the
presence of some new physics.

Following the formalism of ref. [78], we describe the
interaction of Dirac or Majorana neutrinos with the elec-
tromagnetic field in terms of an effective Hamiltonian in
the flavor basis:

Hem =

⎧⎪⎨
⎪⎩

1
2
ν̄RλσαβνLFαβ + h.c. (Dirac),

−1
4
ν̄T

L C−1λσαβνLFαβ + h.c. (Major.),
(51)

where C is the charge-conjugation operator and νT
L(R) =

(νe, νμ, ντ )L(R) is the vector of left-handed (right-handed)
flavor states. The matrix λ can be decomposed into the

sum of two Hermitian matrices:

λ = μ − id, μ = (λ + λ†)/2, d = i(λ − λ†)/2. (52)

Here μ describes the neutrino magnetic moments, while
d the electric dipole moments. The off-diagonal elements
of these matrices link together states of opposite helicity
and different flavors, and thus correspond to the transi-
tion moments [79]. For the Majorana neutrinos the CPT
conservation implies that μ and d are antisymmetric imag-
inary matrices, so that their diagonal elements vanish and
only transition moments are possible.

Bounds on the elements of the matrix λ can be
presented in terms of the collective quantity |Λ| =√

Tr(λ†λ)/2. For what concerns solar neutrinos, two ef-
fects of neutrino electromagnetic properties have been
considered: neutrino spin-flavor precession and additional
contribution to the neutrino-electron scattering cross-
section.

4.3.1 Spin-flavor precession

The evolution of neutrino states under the combined in-
fluence of matter effects and strong magnetic fields, can
be described by equation [17, 18, 78, 80]:

i
d
dz

(
ϕ−
ϕ+

)
=

⎛
⎜⎝

M†M

2E
+ VL −B+λ†

−B−λ
MM†

2E
+ VR

⎞
⎟⎠

(
ϕ−
ϕ+

)
, (53)

where ϕ+ and ϕ− denote the vectors of neutrino flavor
states corresponding to positive and negative helicities,
respectively. We have assumed that neutrino propagate
along the z direction, so that B± = Bx± iBy are the com-
ponents of the magnetic field perpendicular to the neu-
trino trajectory. Here VL = diag(Ve + Vn, Vn, Vn) is the
standard matter potential for neutrino states; for Dirac
neutrinos we have VR = 0, while for Majorana neutrinos
we have VR = −VL.

The joint evolution of flavor and spin states induced
by the existence of magnetic transition moments leads to
the phenomenon of spin-flavor precession [17, 18, 80]. The
interplay of such mechanism and standard matter effects
could be the source of the observed deficit of solar neu-
trinos, as long as 10−9 eV2 � Δm2

21 � 10−7 eV2 [81, 82].
However, the evidence for much larger Δm2

21 provided by
KamLAND, which is practically insensitive to small neu-
trino magnetic moment, ruled out this mechanism. Con-
versely, we can now use the precise determination of the
oscillation parameters to set bounds on neutrino electro-
magnetic properties, by requiring that the accurate de-
scription of solar neutrino data is not spoiled by spin-flavor
precession effects, and by the fact that no antineutrino
coming from the sun is detected. For example, in ref. [83]
the bound |Λ| � few × 10−12 μB for θ13 = 0 was derived,
under the assumption that neutrinos are Majorana parti-
cles and that turbulent random magnetic fields exists in
the Sun.
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As can be seen in eq. (53), in the presence of non-
vanishing magnetic moment the evolution of the neutrino
system mixes together positive and negative helicities, so
that a conversion between them becomes possible. If neu-
trinos are Majorana particles this implies that neutrinos
can convert into anti-neutrinos, which may result in the
observation of a flux of anti-neutrinos coming from the
Sun. Searches for ν̄e signal have been performed by both
Borexino [84] and KamLAND [85], so far with negative
results.

As shown in ref. [81], the large value of Δm2
21, as mea-

sured by KamLAND, implies that a neutrino magnetic
moment below 10−11 eV2 has practically no effect on the
evolution of solar neutrinos, given a characteristic solar
magnetic field of the order of 80 kG.

4.3.2 Neutrino-electron cross-section

In the presence of magnetic moments extra term arises in
the elastic neutrino-electron cross-section due to photon
exchange:

dσem

dT
=

α2π

m2
eμ

2
B

(
1
T

− 1
E

)(
‖λϕdet

− ‖2 + ‖λ†ϕdet
+ ‖2

)
,

(54)
where E is the neutrino energy, T is the kinetic energy of
the recoil electron, and the 3-vectors ϕdet

− and ϕdet
+ denote

the neutrino flavor amplitudes at the detector for negative
and positive helicities.

In the case small precession effects in the Sun, the he-
licity of solar neutrinos is conserved, so that ϕdet

+ = 0
and ϕdet

− can be calculated using the formalism intro-
duced in sect. 2. Following this formalism, in ref. [86]
a bound on Majorana transition moments was derived,
|Λ| � 6.3 × 10−10 μB from the analysis of solar neutrino
data alone, and |Λ| � 2.0× 10−10 μB in combination with
reactor antineutrino data. Such a bound can be improved
by almost an order of magnitude after the inclusion of 3
years of Borexino data.

4.4 Neutrino decay

The existence of neutrino masses and flavour mixing im-
plies that the heavier neutrino states decay into lighter
ones, and are therefore unstable [6]. In the Standard
Model, the neutrino lifetimes are much longer than the age
of the Universe, hence well beyond the reach of present ex-
periments. Observation of neutrino decay would therefore
be a signal of New Physics.

In vacuum, the survival probability of an unstable
state νi is described by an exponential factor e−diL/E ,
where E is the neutrino energy, L is the traveled distance,
and di = mi/τi is the ratio of the neutrino mass and
lifetime. Applying this to solar neutrinos and neglecting
decay inside the Sun or across the Earth, we obtain

Peα =
∑

i

PS
eiP

E
iαe−diLSE/E , (55)

where PS
ei and PE

iα are the νe → νi and νi → να probabil-
ities in the Sun and the Earth, respectively (see sects. 2.2

and 2.4). If the decay daughter particles include lighter
active neutrinos, they should be accounted for in the cal-
culation of the event rates. Here we follow the approach of
refs. [87, 88] and we ignore this possibility, thus assuming
that decaying neutrinos simply “disappear”.

Due to the smallness of θ13 the impact of a non-zero
d3 on solar neutrino data is very small [87]. Indeed, from
a global fit of the solar neutrino data we find that for
sin2 θ13 = 0.022 the values d3  10−10 eV2 (complete ν3

decay) are disfavored with respect to d3 � 10−13 eV2 (sta-
ble ν3 state) by Δχ2 = 0.55 only. Hence, no bound can be
set on d3 from the present data. On the other hand, from
the same analysis we find d1 = m1/τ1 < 1.3 × 10−13 eV2

and d2 = m2/τ2 < 1.2 × 10−12 eV2 at the 3σ level, in a
good agreement with the results of refs. [87, 88]. The global
best fit point occurs for di = 0, and the determination of
the θ12 range is practically unaffected by the enlargement
of the parameter space.

4.5 Violation of fundamental symmetries

Violation of fundamental symmetries (VFS) at the Planck
mass scale is expected in theories attempting to unify
gravity with quantum physics. Neutrinos, whose masses
are generated by some physics close to the GUT/Planck
scales, could be most sensitive to this violation. New ef-
fects in neutrino propagation may arise due to violations of
the equivalence principle [19], neutrino couplings to space-
time torsion fields [89], violation of Lorentz invariance [90]
and of CPT symmetry [91]. The impact of VFS on neu-
trino propagation can be accounted by the inclusion of
extra terms in the Hamiltonian:

H
(2)
np =

1
2
σ±En

(−ϕD ϕN

ϕ∗
N ϕD

)
, (56)

where n is the energy power scaling, ϕD and ϕN parame-
trize the strength of the VFS effects, and σ± accounts for a
possible relative sign between neutrinos and antineutrinos.
We have (n = 1, σ+ = σ−) in the case of violation of the
equivalence principle or violation of Lorentz invariance,
(n = 0, σ+ = σ−) for neutrino couplings to space-time
torsion fields, and (n = 0, σ+ = −σ−) for violation of CPT
symmetry. Hnp does not involve matter or magnetic fields
and therefore relevant also for propagation in vacuum.

The oscillation probabilities in the presence of VFS can
be derived from the standard ones by just replacing the
vacuum mixing and mass-squared splittings with effective
quantities defined by diagonalizing the vacuum Hamilto-
nian. VFS can manifest itself through A) deviation en-
ergy dependence of the oscillation length from E−1, and
B) non-trivial dependence of the vacuum mixing param-
eters on the neutrino energy. So spectral information is
necessary for searches of VFS.

Concerning solar neutrinos, a bound on the overall
strength of VFS, ‖ϕ‖ =

√
|ϕD|2 + |ϕN |2, can be esti-

mated by requiring that the VFS term of eq. (56) is not
larger than the standard one, ‖ϕ‖En � Δm2

21/E. Us-
ing Δm2

21 = O(10−5 eV2) and assuming a typical energy
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E ≈ 10MeV (the scale at which spectral information is
available from SK and SNO) we obtain ‖ϕ‖ � 10−12 eV
for n = 0 and ‖ϕ‖ � 10−19 for n = 1. Such estimations
are consistent with results of numerical calculations.

4.6 Other new physics models

Practically any extension of the Standard Model, which
leads to non-standard neutrino properties, produces ob-
servable effects in the neutrino oscillation pattern. The
number of extensions which could be probed by solar neu-
trinos is therefore huge, and here we briefly mention few
cases.

1) Mass varying neutrinos were proposed in ref. [92] to
provide a theoretical framework for the otherwise un-
explained closeness of values of the dark energy and
dark matter densities today, even though their ratio
varies in time as the third power of the cosmic scale fac-
tor. The model proposes that the dark energy and neu-
trino densities track each other, and that the neutrino
mass is not a constant but rather a dynamical quantity
arising from the minimization of an effective potential
depending solely on the neutrino density itself.
The phenomenological implications of this model for
solar neutrinos were discussed in ref. [93], where it was
shown that the quality of the data fit is worse than
in the standard case. A modification of the original
model in which neutrino masses depend also on the
density of visible matter was proposed in [94], and it
was shown in [95] that such a model is compatible with
solar neutrino data.

2) The possible existence of other long-range forces be-
yond the electromagnetic and gravitational ones was
first considered in ref. [96]. The phenomenological im-
plications for solar neutrinos of a new leptonic force of
this kind was discussed in ref. [97]. It was shown that
such scenarios did not provide significant improvement
of quality of the fit with respect to the standard LMA
solution, and bounds on the strength and range of the
new force were derived.

3) Non-standard decoherence effects are usually expected
to be a possible manifestation of quantum gravity, for
example in the presence of a “foamy” space-time fab-
ric. The phenomenological implications of this mech-
anism for oscillating systems were first discussed in
ref. [98]. A concrete analysis applied to solar neutrinos
was presented in [99], where it was shown that the ex-
istence of non-standard sources of decoherence would
induce extra smearing in the neutrino oscillation pat-
tern and could therefore be detected experimentally.
A fit to the available data showed no hint for such an
effect, and stringent bounds on the new physics pa-
rameters were therefore derived.

4) The impact of extra dimensions on neutrino physics
was first considered in [100, 101]. These models share
with sterile neutrino models the idea that extra
fermionic singlets may exist, but allow them to propa-

gate into a higher-dimensional spacetime whereas ac-
tive neutrinos are confined to a (3+1) brane. The appli-
cations for solar neutrinos were discussed in [101–104].
The most distinctive property of such models is the
presence of an infinite Kaluza-Klein tower of new neu-
trino eigenstates, which participate in the oscillation
process and may therefore produce new MSW reso-
nances.

5 Conclusion and outlook

Solar neutrino studies triggered vast developments in neu-
trino physics. The solar neutrino problem has been uncov-
ered, and eventually resolved in terms of the neutrino fla-
vor conversion. Theory of neutrino propagation in differ-
ent media has been elaborated which included the MSW
effect (adiabatic flavor conversion), resonance enhance-
ment of oscillations, neutrino spin precession, resonance
spin-flavor precession, conversion in the presence of non-
standard interactions, etc. Effects of propagation in dif-
ferent density profiles have been explored; among them
the non-adiabatic conversion, parametric effects, in par-
ticular, parametric enhancement of neutrino oscillations,
propagation in stochastic media, multi-layer media, etc.

Solar neutrinos played crucial role in establishing the
standard 3ν paradigm with mixing of 3 flavors. They pro-
vided determination of the 1-2 mixing and mass splitting,
fixed the sign of Δm2

21, i.e., determined the 1-2 mass hi-
erarchy. They give independent measurements of θ13.

Physics beyond three neutrinos can show up in solar
neutrinos as sub-leading effects. The bound have been
obtained on NSI, magnetic moments of neutrinos, pa-
rameters of hypothetical sterile neutrinos, neutrino decay,
Lorentz violation and CPT-violation parameters. Some of
these bounds are the best or competitive with bounds ob-
tained from non-solar neutrino experiments. The Sun here
appears as a source of neutrinos for various searches.

LMA MSW solution gives consistent description of all
the data. The largest pulls are related to flat suppression
of the flux at low energies instead of upturn and slightly
larger DN asymmetry. Mixing parameters extracted from
the solar neutrino data are in agreement with KamLAND
results and consistent with the 1-3 mixing measurements
at reactors. Although the Δm2

21 determined from solar
neutrinos is about 2σ smaller than from KamLAND. The
difference is related to the absence of upturn and large D-
N asymmetry. This can be just statistical fluctuation or
indication of some new physics like contribution from NSI
to the matter potential or existence of very light sterile
neutrinos.

Measurements of Δm2
21 and θ12 have crucial implica-

tions for the fundamental theory. They created a new theo-
retical puzzle —large mixing with deviation from maximal
mixing by about the Cabibbo angle.

Two experimental results obtained in 2014: direct mea-
surements of the pp-neutrino flux by Borexino and estab-
lishing at about 3σ level the Day-Night effect have accom-
plished the first phase of studies of solar neutrinos. The
next phase is precision (at sub % level) measurements of
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neutrino signals. New opportunities are related to SNO+,
JUNO, HK:

a) Accurate measurements of pp-, pep- and 7Be-neutrino
fluxes will substantially contribute to global fits of the
solar neutrino data and to further checks of the LMA
solution.

b) Detailed studies of the Earth matter effects will be
possible using the Hyper-Kamiokande detector with
possible applications to the Earth tomography.

c) In combination with other measurements solar neu-
trino studies provide a sensitive way to test theory of
neutrino oscillations and flavor conversion in matter.

d) Searches for sub-leading effects will allow to put more
stringent bounds on non-standard neutrino properties.
In new phase of the field many small-size effects will
be accessible and cannot be neglected as before.

Detailed knowledge of solar neutrinos is needed for
various low-background experiments, in particular, for
searches of the Dark matter and neutrinoless double beta
decay. In future the solar neutrino fluxes will be accessible
to the Dark Matter detectors [105].
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