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Abstract. We explore systematically a new class of two-phase equations of state (EoS) for hybrid stars that
is characterized by three main features: 1) stiffening of the nuclear EoS at supersaturation densities due
to quark exchange effects (Pauli blocking) between hadrons, modelled by an excluded volume correction;
2) stiffening of the quark matter EoS at high densities due to multiquark interactions; and 3) possibility
for a strong first-order phase transition with an early onset and large density jump. The third feature
results from a Maxwell construction for the possible transition from the nuclear to a quark matter phase
and its properties depend on the two parameters used for 1) and 2), respectively. Varying these two
parameters, one obtains a class of hybrid EoS that yields solutions of the Tolman-Oppenheimer-Volkoff
(TOV) equations for sequences of hadronic and hybrid stars in the mass-radius diagram which cover the full
range of patterns according to the Alford-Han-Prakash classification following which a hybrid star branch
can be either absent, connected or disconnected with the hadronic one. The latter case often includes a tiny
connected branch. The disconnected hybrid star branch, also called “third family”, corresponds to high-
mass twin stars characterized by the same gravitational mass but different radii. We perform a Bayesian
analysis and demonstrate that the observation of such a pair of high-mass twin stars would have a sufficient
discriminating power to favor hybrid EoS with a strong first-order phase transition over alternative EoS.

1 Introduction

The study of the internal composition of neutron stars
is an active field of research which relies on astrophysi-
cal observations that allow to refine theoretical models.
In this respect, the recent observations of massive neu-
tron stars [1, 2] have imposed important constraints on the
stiffness of the equation of state (EoS), and therefore on
the density ranges covered by the density profiles of such
high-mass compact star interiors. On the other hand, ra-
dius measurements are still far from being precise, with
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most of the methods relying on either indirect measure-
ments or model dependent assumptions like, e.g., for the
neutron star atmospheres. While there is a wide range of
claimed radii starting from, e.g., ∼ 9 km [3] to ∼ 15 km [4]
we will proceed here on the assumption that the actual
radii are large, as reported by [5, 6]. For a recent review of
astrophysical constraints on dense matter see, e.g., ref. [7].

In this contribution, we present a Bayesian analysis
(BA) study case with a class of hybrid EoS characterized
by two parameters. The first one stands for the baryonic
exluded volume that determines the stiffness of hadronic
matter at high densities. The second one is the coupling
strength for an 8-quark vector current interaction which
regulates the stiffness of the high-density quark matter
phase. It turns out that within the range of variation
for the excluded volume parameter there is a qualitative
change in the mass-radius relation for high-mass stars: be-
yond a certain value for the excluded volume the first order
phase transition proceeds with a sufficiently large jump in
the energy density to cause an instability which, thanks
to the stiffness of the quark matter phase at high densities
goes over to a stable sequence of hybrid stars, the so-called
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“third family” of compact stars. In this situation, the con-
ditions are fulfilled for the high-mass twin phenomenon,
where stars on the high-mass end of the second family of
purely hadronic neutron stars are degenerate in mass with
their twin stars on the lower mass part of the third family
of hybrid stars bearing a quark matter core, see [8] and
references therein. For a recent classification of stable hy-
brid star sequences under generic conditions for the EoS,
see ref. [9]. We note that the high-mass twin phenomenon
is quite substantially based on a stiffening of both, the
hadronic and the quark matter EoS towards higher den-
sities; it is not obtained within a systematic parameter
scan of hadronic vs. NJL quark matter EoS [10] which
lacks additional stiffening effects as those introduced in
ref. [8].

This possibility of high-mass twin stars is of great im-
portance not only due to the possibility of identification
of a critical endpoint in the QCD phase diagram [11, 12]
but also because it provides a solution to several issues
discussed in [13]: the hyperon puzzle [14], the masquerade
problem [15] and the reconfinement case [16, 17]. More-
over, the transition between twin stars bears an energy
reservoir [18] that qualifies it as a possible engine for most
energetic explosive astrophysical phenomena like gamma-
ray bursts and fast radio bursts or play a role in con-
tributing to the complex mechanism of core collapse su-
pernova explosions. The present BA in the restricted two-
dimensional parameter space of the new hybrid EoS per-
formed with the modern high mass and large radius priors
will give an answer to the question whether the high-mass
twin star case is preferable over the connected hybrid star
branch alternative.

2 New class of quark-hadron EoS for hybrid
stars

In this study we consider hybrid neutron stars that are
composed of hadronic matter and might undergo a phase
transition to quark matter in their cores if parameter val-
ues of the models physically allow for it. In this way both
pure hadronic and hybrid star configurations with physi-
cal properties determined by fixed parameter values shall
be faced against observational data for model descrimi-
nation. The EoS description is presented in the following
subsections.

2.1 Hadronic EoS with excluded volume corrections

The description of hadronic matter in terms of pointlike
hadrons with appropriately chosen interactions has to be
limited to the low density region where effects of the fi-
nite size of hadrons (due to their compositeness) can be
neglected. In the high density region, however, the quark
substructure of nucleons requires antisymmetrization of
the many-nucleon wave function w.r.t. quark exchange
among them, leading to the Pauli blocking effect in the
EoS. This effect is expected to happen as density increases

beyond saturation density and can be viewed as a precur-
sor of quark delocalization as the equivalent of the quark
deconfinement transition [19] Pauli blocking will be inten-
sified by the simultaneous partial chiral restoration [20].
The resulting consequences for the EoS can be mimicked
by adopting excluded volume corrections to any purely
hadronic EoS.

The excluded volume correction is applied at suprasat-
uration densities and has the effect of stiffening the EoS
without modifying any of the experimentally well con-
strained properties below and around saturation nsat =
0.16 fm−3, the density in the interior of atomic nuclei. We
introduce the the available volume fraction ΦN for the
motion of nucleons at a given density n as [21]

ΦN =
{

1, if n ≤ nsat,

exp[−v|v|(n − nsat)2/2], if n > nsat,
(1)

with v = 16πr3
N/3 as the van-der-Waals excluded vol-

ume corresponding to a nucleon hard-core radius rN . The
mathematical form of (1) with positive (negative) values
for v leads to a stiffening (softening) of the original EoS.
We shall consider only positive values of excluded volume
in this work and introduce for them the dimensionless pa-
rameter p = 10× v[fm3], taking values between p = 0 and
p = 80.

For the hadronic part of the neutron star EoS we will
consider here the density dependent relativistic mean-field
EoS named “DD2” [22] (which is rather stiff) and the
slightly softer EoS “DD2F” which fulfills the flow con-
straint from heavy-ion collision experiments [23]. This flow
constraint version of the DD2 EoS is obtained by multiply-
ing the density-dependent meson-nucleon couplings Γi(n)
of the DD2 model [22] for n > nsat with the functions
gi(n), where i = ω, σ. These functions are defined as

gω(n) =
1 + α−xs

1 + α+xs
=

1
gσ(n)

, (2)

where x = n/nsat − 1 and α± = k(1 ± r), with the pa-
rameter values being adjusted to k = 0.04, r = 0.07 and
s = 2.25.

For both these EoS we shall adopt a variation of the nu-
clear symmetry energy as introduced in [24] in the context
of the description of neutron skin thickness of heavy nuclei.
The symmetry energy Es(n) is defined as the difference in
the energy per nucleon between pure neutron matter and
symmetric matter in a uniform, infinite system. In RMF
models the isovector ρ meson usually represents the only
contribution to the isospin dependence of the interaction.
Following [24] we use here three parametrizations for the
density-dependent ρ meson coupling

Γρ(n) = Γρ(nsat) exp(−αρx), (3)

corresponding to a “soft”, “medium” and “stiff” symme-
try energy, see table 1.

It turns out that Es(n) has a direct impact on the neu-
tron star radius, in particular for the low-mass stars like
star (B) of the double pulsar PSR J0737-3039(B) [25], thus
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Table 1. Parametrization of the symmetry energy variation by
different density dependences of the ρ meson coupling, adapted
from ref. [24].

Es(n) Parametrization Γρ(nsat) aρ

Stiff DD2+ DD2F+ 3.806504 0.342181

Medium DD2 DD2F 3.626940 0.518903

Soft DD2− DD2F− 3.398486 0.742082

affecting the compactness and binding energy, important
observables for our analysis in this work. We have hereby
defined a family of six EoS which we label according to
their symmetry energy functionals as DD2, DD2−, DD2+,
DD2F, DD2F−, and DD2F+, respectively. For each of
these EoS we will vary the excluded volume as the first
free EoS parameter of this study.

2.2 Quark matter EoS with multi-quark interactions

The EoS in the high-density phase is obtained from a
NJL model with multiquark interactions [8, 26]. The La-
grangian for two quark flavors, q = (u, d) is defined as

L = q̄(i∂μγμ − m)q + μuūγ0u + μdd̄γ0d + L4 + L8, (4)

where μf are the chemical potentials of flavor qf and m is
the current mass. The interaction terms are

L4 =
g20

Λ2
[(q̄q)2 + (q̄τ q)2]− g02

Λ2
[(q̄γμq)2 + (q̄γμτ q)2], (5)

L8 =
g40

Λ8
[(q̄q)2 + (q̄τ q)2]2 − g04

Λ8
[(q̄γμq)2 + (q̄γμτ q)2]2

−g22

Λ8
[(q̄γμq)2 + (q̄γμτ q)2][(q̄q)2 + (q̄τ q)2]. (6)

While the NJL model has additional interactions to com-
plete its chiral symmetry, in eqs. (5) and (6) only the com-
ponents that condense at finite density are shown. Within
the mean-field approximation the thermodynamic poten-
tial is found

Ω = U +
∑

f=u,d

Ωf (Mf , T, μ̃f ) − Ω0, (7)

where

U = 2
g20

Λ2
(φ2

u + φ2
d) + 12

g40

Λ8
(φ2

u + φ2
d)

2

−2
η2g20

Λ2
(ω2

u + ω2
d) − 12

η4g40

Λ8
(ω2

u + ω2
d)2, (8)

Ωf = −2Nc

∫
d3p

(2π)3
{

Ef + T log[1 + e−β(Ef−μ̃f )]

+T log[1 + e−β(Ef+μ̃f )]
}

, (9)

where we have set the mixing term g22 = 0 [26]. The
parameter η4 is the dimensionless scaled coupling strength
for the 8-quark interaction in the vector meson channel
which determines the stiffness of the quark matter EoS

at high densities. It is the second parameter that will be
subject to free variation in this study.

The quark pressure Pq is obtained by solving the gap
equations

∂Ω

∂φf
= 0,

∂Ω

∂ωf
= 0. (10)

for the scalar (φf ≡ 〈q̄fqf 〉) and vector (ωf ≡ 〈q†fqf 〉)
mean-fields and evaluating (7) as Pq = −Ω. β-equilibrium
is maintained through the processes d → u + e− + ν̄e and
u + e− → d + νe, so that

μu = μd + μe, (11)

where μe is the electron chemical potential. We take into
account charge neutrality by

2
3
nu − 1

3
nd − ne = 0, (12)

where nf = −∂Ω/∂μf .
From these two constraints (11) and (12) we can find

the total pressure of the quark matter phase, Pq +Pe, as a
function of the baryon chemical potential μB = 2μd + μu.
The total energy density of the system is

ε = −Pq − Pe + nuμu + μdnd + neμe. (13)

2.3 Phase transition: Maxwell construction

In our study we consider that compact stars might un-
dergo a first-order phase transition to quark matter. The
transition point is determined by enforcing the Gibbs con-
ditions: both the pressure and chemical potential should
have the same value in both hadronic and quark matter
phases. Whether the resulting compact star will be a hy-
brid or a pure hadronic will depend on having these con-
ditions fulfilled at densities lower than the central density
of the most massive star of each EoS sequence.

A systematic analysis is performed by varying the EoS
parameters both in the hadronic and the quark phase as
shown in fig. 1. This has important consequences for the
compactness of the neutron star as well as for the possible
existence of a disconnected branch of hybrid stars (“third
family”) in the mass-radius diagram.

2.4 Mass-radius relations for hybrid EoS

Once the equation of state of neutron star matter is de-
fined, the structure and global properties of compact stars
are obtained by solving the Tolman-Oppenheimer-Volkoff
(TOV) equations [27, 28]

dP (r)
dr

= −GM(r)ε(r)
r2

(
1 +

P (r)
ε(r)

) (
1 +

4πr3P (r)
M(r)

)
(

1 − 2GM(r)
r

) ,

dM(r)
dr

= 4πr2ε(r),

dNB(r)
dr

= 4πr2

(
1 − 2GM(r)

r

)−1/2

n(r). (14)
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Fig. 1. Variations of the hybrid EoS for the DD2F− model. Upper row. The hadronic EoS is kept fixed while the quark EoS is
allowed to vary for the parameters η4 = 0, 1, 2, . . . , 30. Lower row. The quark EoS is fixed whereas the hadronic EoS takes the
values p = 0, 5, 10, . . . , 80. For all these models the EoS is shown on the left and central plots while the resulting mass radius
diagrams are shown on the right side.

The necessary boundary conditions to solve these
equations are picking up a central energy density εc =
ε(r = 0) and a central pressure Pc = P (r = 0) at r = 0.
The integration is carried out from the center of the star
up to the distance r = R where the pressure vanishes
P (r = R) = 0, defining the radius R, the mass M = M(R)
and the baryon number NB = NB(R) of the star. By vary-
ing the central energy density is possible to obtain a se-
quence of star configurations for a given EoS, which then
uniquely corresponds to a mass-radius curve M(R), see
fig. 2.

3 Bayesian analysis for compact stars

Bayesian methods have proven to be a poweful technique
for model descrimination and parameter descrimination.
In a primer Bayesian study performed by Steiner et al. [29]
the luminosity of expanding photospheric radius extracted
for burst sources has been used to constrain a combined
mass-radius relationship. However, this method is prob-
lematic, in particular because of the unknown stellar at-
mosphere composition, uncertainties in the distance to the
source, the bias of the parabolic M -R constraint with the
shape of stellar sequences in the M -R diagram for typical
EoS and last but not least due to unknown details of the
burst mechanism. In this work we do BA as well but we
implement different observables which will be used as con-

straints: the highest measured mass [2], a radius measure-
ment [5] and a gravitational mass vs. baryonic mass deter-
mination by Podsiadlowski et al. [30]. These constraints
were already included in our earlier Bayesian analyses,
e.g., of refs. [31–33]. We will describe the Bayesian method
and the chosen constraints in the following subsections.

3.1 Bayesian analysis technique

We start by defining a vector of free parameters −→π =
{p, η4}, which correspond to all the possible models with
or without phase transition from nuclear to quark matter
using the EoS described above. The way we sample these
parameters is −→π i =

{
p(k), η4(l)

}
, (15)

where i = 0 . . . N − 1 with N = N1 × N2 such that
i = N2 × k + l and k = 0 . . . N1 − 1, l = 0 . . . N2 − 1,
with N1 and N2 being the total number of parameters
p(k) and η4(l), respectively. After integration of the TOV
equation each EoS model will provide estimations for NS
properties that we shall use for Bayesian analysis. Thus,
these results allow us to use different neutron star obser-
vations in order to determine the probability that a given
EoS fulfils the observational constraints. Our goal is to
find the set of most probable −→π i matching the above con-
straints using the BA technique. For initializing the BA
we propose that a priori each vector of parameters −→π i

have the same probability, P (−→π i) = 1/N , for all i.
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Fig. 2. Mass radius relations for the six hybrid EoS classes constructed from the hNJL quark matter EoS and the six hadronic
RMF EoS by a Maxwell construction.

3.2 Mass constraint

We describe the error for the event EA of a mass mea-
surement of the high-mass pulsar PSR J0348+0432 [2]
with a normal distribution N (μA, σ2

A), where the mean
value of the mass is μA = 2.01M� and the variance is
σA = 0.04M�. Using this assumption we compute the
conditional probability of the event EA (under the condi-
tion that the neutron star is described by the EoS model
with the parameters −→π i) with

P (EA |−→π i ) = Φ(Mi, μA, σA). (16)

Here Mi is the maximum mass accessible with the vector−→π i and Φ(x, μ, σ) is the cumulative distribution function
for the Gaussian distribution

Φ(x, μ, σ) =
1
2

[
1 + erf

(
x − μ√

2σ2

)]
. (17)

3.3 Radius constraint

We consider here a very promising technique to measure
radii of neutron stars that is based on the pulse phase re-
solved X-ray spectroscopy which properly accounts for the

system geometry of a radio pulsar. This radius measure-
ment gives μB = 15.5 km and σB = 1.5 km for PSR J0437-
4715 [5]. Moreover, Hambaryan et al. [6] have also reported
compatible radius measurements for RXJ 1856.5-3754.

We compute the conditional probability of the event
EB that the measured radius of the neutron star corre-
sponds to the model with −→π i as

P (EB |−→π i ) = Φ(Ri, μB , σB). (18)

Here the value Ri is the maximum radius for the given
vector −→π i. Figure 2 shows a comparison of these mass
and radius constraints with M(R) relations of sect. 2.

3.4 Gravitational mass vs. baryonic mass constraint

For the selection of the EoS with different symmetry ener-
gies we consider as an observational constraint the prop-
erties of the star B in the double pulsar PSR J0737-
3039(B) [25]. Following [30], the evolution of this object
based on the hypothesis that the neutron star is born in a
supernova collapse after electron capture instability of an
O-Ne-Mg star. This method allows us to estimate the mass
of the progenitor core, being approximately the baryon
mass of the new-born neutron star. The measured neutron
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Fig. 3. Gravitational mass vs. baryonic mass for the six classes of new hybrid EoS. For the explanation of the boxes, see text.

star gravitational mass is MG = 1.249M�, with error-bar
ΔM = ±0.001M�, while from the evolution model the
baryon mass is expected to be μB = 1.366M� with sta-
tistical uncertainty σM = 0.003M�, see the red boxes in
fig. 3. Meanwhile we know a second object of this kind, the
low-mass neutron star companion of PSR J1756-2251 [34]
with MG = 1.249 ± 0.007M� which, if it underwent the
same evolutionary history as PSR J0737-3039(B) and orig-
inated from an O-Ne-Mg star by an electron capture su-
pernova, then it should have the same baryon mass, which
would be rather troublesome as none of the known neu-
tron star EoS candidates would explain such a large gravi-
tational binding energy, see the blue boxes in fig. 3. There
are two ways out of this dilemma. Either the mass mea-
surement should get corrected upwards or there is another
mechanism to create a low-mass neutron star in a binary
system which would work for lower baryon masses, such
as the so-called “ultra-stripped supernovae” [35]. Recently,
Suwa et al. [36] demonstrated in a simulation the forma-
tion of a neutron star with MB = 1.35M� from such a
scenario. Conversely, also PSR J0737-3039(B) could be
formed this way. Therefore, we derive from the above dis-
cussion the following constraint. From the two measured
neutron star masses discussed above we take the mean
value MG = 1.24M�, with the error-bar ΔM = ±0.01M�,
and from both alternative evolution models we take the
mean baryon mass to be μB = 1.36M� with the error-bar
ΔM = ±0.01M� (see the grey box in fig. 3), the statistical
uncertainty is taken to be σM = ΔM/3 = 0.0033M�.

We compute the conditional probability of the event
EP that the assumed baryon mass is reproducible in the

model with parameters −→π i given by normal distribution
with mean value μB . So, using the model dependance
between the masses described by MB = MB(MG;−→π i)
the probability to fulfill the constraint can be calculated
from the normal distribution function for that MB val-
ues, which are in the area corresponding to the observed
gravitational mass range MG ± ΔM :

P (EP |−→π i ) = Φ(MB(MG + ΔM ;−→π i), μB , σM )

−Φ(MB(MG − ΔM ;−→π i), μB , σM ). (19)

In the plots of results we show the 1σ range of MB values
as a box on the MG ⊗ MB plane.

3.5 Fictitious radius measurement constraints

To find out the best suggestion for future observations,
which will be powerful for the model discrimination we
employ fictitious radius measurement constraints. For our
“experiment” we choose the two known objects with
well-measured high masses: PSR J0348+0432 [2] and
PSR J1614-2230 [1]. We assume that the possible radii
of these objects will be different and in the resolution
range ΔR. The masses of the objects are measured MGA

=
2.01M�, with error-bar ΔMGA

= ±0.04M� and MGD
=

1.97M�, with error-bar ΔMGD
= ±0.04M� correspond-

ingly for the PSR J0348+0432 and PSR J1614-2230 pul-
sars. The fictitious radii we assumed to be RA and RD

with statistical uncertainty σRA
and σRD

correspondingly.
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Symmetry energy→ soft medium stiffEoS ↓

DD2F (semi-soft)

DD2 (stiff)

Fig. 4. Probabilities without the gravitational mass vs. baryon mass constraint. The stiffest possible EoS are favored, corre-
sponding to large radii and small gravitational binding.

We compute the conditional probability of the event
EF for fixed model with parameters −→π i under the assump-
tion that the “measured” radii should be producible with
normal distribution with mean values RA and RD. Each
model defines dependence of the radii on masses for all
possible stable branches (families of neutron stars) given
by Rα = Rα(MGα

;−→π i) functions. Here the index α stands
for the definition of the pulsar. The probability to fulfil the
constraint will correspond to the area where the configura-
tions have values of radii predicted from the model when
the masses are in the interval of the observational mass
range MGj

± ΔMj :

P (EFα
|−→π i ) = Φ (Rα(MGα

+ ΔMα;−→π i), μRα
, σRα

)

−Φ
(
Rα(MGj

− ΔMα;−→π i), μRα
, σRα

)

(20)

Because in some cases (mainly for the hybrid stars) the
Rα(MGα

;−→π i) can be not uniquely defined functions, we
have excluded possible overlaps of the boxes of the radius
probability regions on the MGα

⊗ Rα plane to avoid the
double counting.

3.6 Calculation of a posteriori probabilities

It is important to note that these measurements are inde-
pendent of each other. This means that we can compute
the complete conditional probability of an event E given−→π i that corresponds to the product of the conditional
probabilities of all measurements, in our case resulting
from the constraints on maximum mass EA, on maximum
radii EB , from gravitational mass - baryon mass relation
EP and for fictitious radii measurements for two objects
EFA

and EFD
,

P (E |−→π i ) =
∏
α

P (Eα |−→π i ) . (21)

Thus, we can derive the probability of the measurement
of an EoS represented by a vector of parameters −→π i using
Bayes’ theorem

P (−→π i |E ) =
P (E |−→π i ) P (−→π i)∑N−1

j=0 P (E |−→π j ) P (−→π j)
. (22)
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Symmetry energy→ soft medium stiffEoS ↓

DD2F (semi-soft)

DD2 (stiff)

Fig. 5. Probabilities with the gravitational mass vs. baryon mass constraint. The picture of fig. 4 is reversed: now the soft EoS
with small excluded volume parameter p are favored which correspond to stars with small radii and large gravitational binding.

In this article we consider BA for three different groups of
constrains (cases) as follows:

Case 1: α = A, B;

Case 2: α = A, B, P;

Case 3: α = FA, FD.

For the Case 3, we have chosen different sets of ficti-
tious radius measurements (see fig. 6), assuming that the
more massive object PSR J0348+0432 [2] should have the
smaller radius and, therefore, PSR J1614-2230 [1] has the
larger fictitious radius. Anyway, we also consider one case
where the less massive pulsar has the lower radius.

4 Results

In order to cover a relevant set of possible hybrid compact
star EoS in the pressure-energy density plane we have var-
ied the excluded parameter in the range p = 0, 5, . . . , 80
as well as the 8-quark vector current coupling in the range
η4 = 0, 1, 2, . . . , 30.

The hybrid EoS resulting from Maxwell constructions
between all combinations of hadronic and quark matter

EoS in this two-dimensional parameter space is shown in
fig. 2 together with the corresponding NS sequences.

Note that compact star sequences in the mass-radius
plane which have a vertical branch correspond to hadronic
stars and an almost horizontal branch corresponds to hy-
brid stars with a quark matter core. The parameters are
chosen in such a range that their variation entails that
the hybrid star branch becomes disconnected from the
hadronic one due to the appearance of a set of unstable
configurations. This characterizes the appearance of high-
mass twin stars and happens in particular when varying
the the excluded volume value in all of these models. We
have already observed in [8] that increasing the η4 param-
eter for a fixed p value corresponds to an increase of the
maximum mass, while the difference between the radius
of the hybrid star and its hadronic twin decreases. This
general behaviour is preserved for any fixed p.

The general behavior of the symmetry energy in each
class of EoS is to shift radius values while preserving the
maximum mass for each sequence. Even though the gen-
eral result is that the DD2F class presents lower average
radii NS than the DD2, the symmetry energy and the ex-
cluded volume can modify the average radius values. The
DD2+ class is therefore the stiffest EoS leading to larger
radii whereas the DD2F− shows the lowest radii by being
the softest EoS class.
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Radius error σ → 1.5 km 1.0 km 0.5 kmR A, R D

11 km, 13 km

11 km, 15 km

13 km, 13 km

15 km, 11 km

Fig. 6. Probabilities for an extra fictitious radius measurement. RA and RD denote NS with masses corresponding to the ones
measured by Antoniadis et al. and by Demorest et al., respectively.
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A posteriori probabilities of identification for these
twin EoS are shown in figs. 4 and 5. The models with
higher probabilities correspond to the ones that predict
large radii and are associated to large excluded volume
parameters p. The optimal value of the vector coupling
strength is η4 = 5. We note that the family of hybrid
EoS accessible within the given two-dimensional parame-
ter space describes sequences of compact stars that have
a hadronic branch and a hybrid star branch. The latter
appears connected to the former for not too large ex-
cluded volumina. For sufficiently large excluded volume
parameters the compact stars on the hadronic branch
have radii exceeding 14 km and the phase transition pro-
ceeds with a sufficiently large jump in the energy den-
sity so that the hybrid star sequence gets disconnected
from the hadronic one, forming a so-called “third family”.
The observation of a corresponding (almost) horizontal
branch in the M -R diagram would be a clear signal for
a strong first order phase transition in the high-density
neutron star EoS. Using Bayesian analysis technique we
have demonstrated that the measurement of significantly
different radii for two high-mass compact stars (like the
2M� objects we already know) would have sufficient dis-
criminating power to favor a hybrid EoS over a purely
hadronic one.

5 Conclusions

We summarize our conclusions from this study of a set of
six classes of two-parameter hybrid EoS for compact star
interiors:
1) The most probable models exhibit high-mass twin star

configurations with quite distinguishable radii, differ-
ing by about 2 km.

2) The region of the most probable models in the two-
dimensional parameter space is sufficiently narrow,
covering the ranges 40 < p < 80 and 3 < η4 < 7.

3) The most probable models have a large excluded vol-
ume parameter p > 40 and a not too large vector cou-
pling strength η4 ∼ 5.

4) The existence of the horizontal branch signals a strong
first order deconfinement phase transition and is a fea-
ture accessible to verification by observation. To that
end, at least for two high-mass pulsars with masses
∼ 2M� (like PSR J1614-2230 and PSR J0348+0432)
the radii should be measured to sufficient accuracy and
turn out to be significantly different.

5) Figure 6 shows that there are strong peaks of prob-
abilities in the parameter space, even if fictitious ra-
dius measurements have quite large uncertainties with
σRA = σRD = 1.5 km, where the “measurements”
have overlap of 5σ regions. It means that even quite
uncertain measurements of radii for massive pulsars
could have a strong selective power of EoS models;
cf. Cases 1) and 2) which demonstrate that knowing
only either mass or radius of an object results in a con-
straint which is not very robust against a possible third
observational constraint, like the gravitational binding
energy.

6) When fictitious radius measurements yield the smaller
radius for the object with the slightly smaller mass (see
the bottom line of fig. 6), then the most probable value
of the excluded volume parameter is lowered from p =
80 to the moderate p ∼ 50, while the optimal stiffness
of the quark matter remains unchanged, η4 ∼ 5.

The next two steps in the development of the approach
are devoted to an improvement of the variability of the
dense matter EoS within a two-dimensional parameter
space embodying, e.g., also the purely hadronic case with-
out a phase transition and to mimicking the occurrence of
structures (so-called “pasta phases”) in the phase transi-
tion region [37, 38].
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Note added in proofs.
After completion of this work, an update of the mass mea-
surement [1] for PSR J1614-2230 has been published [39]
with MGD

= 1.928(±0.017)M�.
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