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Abstract. Numerous theoretical studies using various equation of state models have shown that quark
matter may exist at the extreme densities in the cores of high-mass neutron stars. It has also been shown
that a phase transition from hadronic matter to quark matter would result in an extended mixed phase
region that would segregate phases by net charge to minimize the total energy of the phase, leading to the
formation of a crystalline lattice. The existence of quark matter in the core of a neutron star may have
significant consequences for its thermal evolution, which for thousands of years is facilitated primarily
by neutrino emission. In this work we investigate the effect a crystalline quark-hadron mixed phase can
have on the neutrino emissivity from the core. To this end we calculate the equation of state using the
relativistic mean-field approximation to model hadronic matter and a nonlocal extension of the three-
flavor Nambu–Jona-Lasinio model for quark matter. Next we determine the extent of the quark-hadron
mixed phase and its crystalline structure using the Glendenning construction, allowing for the formation
of spherical blob, rod, and slab rare phase geometries. Finally we calculate the neutrino emissivity due
to electron-lattice interactions utilizing the formalism developed for the analogous process in neutron star
crusts. We find that the contribution to the neutrino emissivity due to the presence of a crystalline quark-
hadron mixed phase is substantial compared to other mechanisms at fairly low temperatures (� 109 K)
and quark fractions (� 30%), and that contributions due to lattice vibrations are insignificant compared
to static-lattice contributions.

1 Introduction

Seconds after the formation of a neutron star the mean
free path of neutrinos grows beyond the star’s radius, and
neutrinos from the core escape easily cooling the new star
rapidly. Neutrino emission continues to be the dominant
energy loss mechanism of a neutron star for thousands of
years until a temperature of about 107 K is reached [1].
It has been shown that the presence of quark matter in
the core of a neutron star can have a significant impact
on the neutrino emissivity, and suggested that this im-
pact could have an observable effect on the star’s thermal
evolution [2, 3]. In this work we investigate the effect that
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a mixed phase containing quark matter may have on the
neutrino emissivity of a neutron star.

If electric charge neutrality in a neutron star is to
be treated globally as proposed by Glendenning [4], then
the first order phase transition from hadronic matter to
quark matter in the core will result in a mixed phase in
which both phases of matter coexist. To minimize the to-
tal isospin asymmetry energy the two phases will segre-
gate themselves, resulting in positively charged regions of
hadronic matter and negatively charged regions of quark
matter, with the rare phase occupying sites on a Coulomb
lattice. Further, the competition between the Coulomb
and surface energy densities will cause the matter to ar-
range itself into energy minimizing geometric configura-
tions [3].

The presence of the Coulomb lattice and the nature
of the geometric configurations of matter in the quark-
hadron mixed phase may have a significant effect on the
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neutrino emissivity from the core. More specifically, the
presence of electrons in the mixed phase will lead to an ad-
ditional neutrino emissivity mechanism due to interactions
with the lattice. This process is analogous to neutrino-
pair bremsstrahlung of electrons in the neutron star crust,
where ions exist on a lattice immersed in an electron gas,
and for which there exists a large body of work (see, for
example, [5–11]). The situation is somewhat more compli-
cated in the quark-hadron mixed phase, but the operative
interaction is still the Coulomb interaction. Thus, to esti-
mate the neutrino-pair bremsstrahlung of electrons in the
quark-hadron mixed phase we rely heavily on this body
of work (particularly [11]).

Neutrino emissivity due to the interaction of electrons
with a crystalline quark-hadron mixed phase has been pre-
viously studied in this manner by Na et al. [12]. In the
present work we replace the MIT Bag Model used by [12]
to describe quark matter with a three-flavor nonlocal vari-
ant of the Nambu–Jona-Lasinio model. Next, we extend
the range of possible geometric structures in the mixed
phase beyond spherical blobs to include rods and slabs,
and calculate the associated static lattice contributions
to the neutrino emissivity. Phonon contributions to the
emissivity for rod and slab geometries are not considered,
though a comparison of the phonon and static lattice con-
tributions for spherical blobs is given and indicates that
phonon contributions may not be significant. Finally, the
extent of the conversion to quark matter in the core is de-
termined for the chosen parameterizations, and this allows
for a targeted comparison between emissivity contribu-
tions from standard neutrino emission mechanisms (mod-
ified Urca, nucleon-nucleon and quark-quark (NN+QQ)
bremsstrahlung) and contributions from electron-lattice
interactions. In this work the minimal cooling paradigm
is assumed, as the mechanism under investigation is not
expected to compete with the direct Urca process, but
may serve to enhance the cooling of neutron stars in its
absence.

This paper is structured as follows. In sect. 2 we dis-
cuss the zero temperature equation of state of a neu-
tron star containing hadronic matter, quark matter, and
a quark-hadron mixed phase. The crystalline structure
of the mixed phase is described in sect. 3. The neutrino
emissivity due to interactions between electrons and the
crystalline lattice in the quark-hadron mixed phase is de-
scribed in sect. 4. Our results, including neutron star
properties and neutrino emissivity calculations, are pre-
sented in sect. 5. Finally, we present our conclusions in
sect. 6.

2 Equation of state

2.1 Neutron star crust

The neutron star outer and inner nuclear crust exists at
densities between 104 g cm−3 � εCrust � 1014 g cm−3 [13].
Matter in the inner crust consists mostly of nuclei in a
Coulomb lattice that is immersed in a gas of electrons
and, above neutron drip (� 4×1011 g cm−3), free neutrons.

In this work we use a combination of the Baym-Pethick-
Sutherland and Baym-Bethe-Pethick equations of state for
the nuclear crust [14, 15]. Compared to the neutron star
core the crust has less affect on the neutron star properties
that are to be studied in this work.

2.2 Confined hadronic phase

The hadronic phase of neutron star matter exists at den-
sities above that of the crust and is populated by baryons
(B = {n, p, Λ,Σ,Ξ}) and leptons (λ = {e−, μ−}). To
model the hadronic phase we use the relativistic mean-
field approximation (RMF), in which the interactions be-
tween baryons are described by the exchange of scalar (σ),
vector (ω), and isovector (ρ) mesons [16]. The mean-field
Lagrangian is given by [13, 17–21]

L =
∑

B

ψ̄B

[
γμ

(
i∂μ − gωBωμ − 1

2
gρBτ · ρμ

)

− (mn − gσBσ)
]
ψB +

1
2
(∂μσ∂μσ − m2

σσ2)

−1
3
bσmn (gσσ)3 − 1

4
cσ (gσσ)4

−1
4
ωμνωμν +

1
2
m2

ωωμωμ

+
1
2
m2

ρρμ · ρμ − 1
4
ρμν · ρμν

+
∑

λ

ψ̄λ (iγμ∂μ − mλ) ψλ. (1)

The σ and ω mesons are responsible for nuclear binding
while the ρ meson is required to obtain the correct value
for the empirical symmetry energy. In contrast to σ and ω
mesons, which are isoscalars, the ρ meson is an isovector
field that manifests itself in the occurrence of the Pauli
matrix τ (= (τ1, τ2, τ3)) in eq. (1). The cubic and quar-
tic σ terms in eq. (1) are necessary (at the relativistic
mean-field level) to obtain the empirical incompressibility
of nuclear matter [19, 20]. The field tensors ωμν and ρμν

are defined as ωμν = ∂μων−∂νωμ and ρμν = ∂μρν−∂νρμ.
The meson-baryon coupling constants (gσN , gωN , gρN ,

bσ, cσ) of the Lagrangian are set so that the proper-
ties of nuclear matter at saturation density are repro-
duced for the appropriate parameterization (table 1). In
this work we employ the GM1 and NL3 parameteriza-
tions as in refs. [22, 23]. To fix the meson-hyperon cou-
pling constants gmY we follow the method presented in
ref. [24]. The scalar meson-hyperon coupling constants
gσY are fit to the following hypernuclear potentials at
saturation density: U

(N)
Λ = −28MeV, U

(N)
Σ = +30MeV,

and U
(N)
Ξ = −18MeV. The vector meson-hyperon cou-

pling constants gωY are fixed in SU(3) flavor symmetry
by the mixing angle θv and coupling ratio z taken from
the Nijmegen extended-soft-core (ESC08) model [25]. The
isovector meson-hyperon coupling constants gρY are given
by the usual relations, gρΛ = 0 and gρΣ = 2gρΞ = 2gρN .
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Table 1. Properties of nuclear matter at saturation density for
the NL3 and GM1 parameterizations. Properties include the
nuclear saturation density ρ0, energy per nucleon E/N , com-
pression modulus K, effective nucleon mass m∗

N , and asymme-
try energy asy.

Nuclear saturation properties GM1 NL3

ρ0 (fm−3) 0.153 0.148

E/N (MeV) −16.3 −16.3

K (MeV) 300 272

m∗/mN 0.78 0.60

asy (MeV) 32.5 37.4

The field equations for the baryon fields follow from
eq. (1) as follows [2, 13, 17, 18]:

(iγμ∂μ − mB) ψB = −gσBσψB + gωBγμωμψB

+gρBγμ τ · ρμψB . (2)

The meson fields in (2) are solutions of the following field
equations [2, 13, 17, 18]:

(
∂μ∂μ + m2

σ

)
σ =

∑

B

gσBψ̄BψB − mNbNgσN (gσNσ)2

−cNgσN (gσNσ)3 , (3)

∂μωμν + m2
ωων =

∑

B

gωBψ̄BγνψB , (4)

∂μρμν + m2
ρρν =

∑

B

gρBψ̄BτγνψB . (5)

In the mean-field limit, the meson field equations (3)
through (5) are given by [2, 13, 17, 18]

m2
σσ =

∑

B

gσB
2JB + 1

2π2

∫ kB

0

m∗
B(σ)√

k2 + m∗2
B (σ)

k2 dk

−bmngσ(gσσ)2 − cgσ(gσσ)3, (6)

ω0 =
∑

B

gωB

m2
ω

ρB , (7)

ρ03 =
∑

B

gρB

m2
ρ

I3BρB , (8)

where the effective baryon mass m∗
B(σ) = mB − gσBσ.

To determine the equation of state we solve a nonlin-
ear system consisting of the meson mean-field equations
and the charge conservation conditions (baryonic, electric)
given by [13, 17, 18]

ρb −
∑

B

ρB = 0, (9)

∑

B

ρBqB +
∑

λ

ρλqλ = 0, (10)

where ρb is the total baryonic density and qB and qλ are
the electric charges of baryons and leptons, respectively.

Particles in the hadronic phase are subject to the chemical
equilibrium condition,

μi = biμN − qiμe, (11)

where μi is the chemical potential and bi is the baryon
number of particle i. New baryon or lepton states are pop-
ulated when the right-hand side of eq. (11) is greater than
the states’ chemical potential. The baryonic and leptonic
number densities (ρB , ρλ) are both given by

ρi = (2Ji + 1)
k3

i

6π2
. (12)

The free parameters of the system are the meson mean
fields (σ, ω, ρ), and the neutron and electron fermi mo-
menta (kn, ke). Finally, the energy density and pressure
of the hadronic phase are given by [13, 17, 18]

εH =
1
3
bmn(gσσ)3 +

1
4
c(gσσ)4 +

1
2
m2

σσ2

+
1
2
m2

ωω2
0 +

1
2
m2

ρρ
2
03

+
∑

B

2JB + 1
2π2

∫ kB

0

√
k2 + m∗2

B (σ)k2 dk

+
∑

λ

1
π2

∫ kλ

0

√
k2 + m2

λk2 dk, (13)

pH = −1
3
bmn(gσσ)3 − 1

4
c(gσσ)4 − 1

2
m2

σσ2

+
1
2
m2

ωω2
0 +

1
2
m2

ρρ
2
03

+
1
3

∑

B

2JB + 1
2π2

∫ kB

0

k4 dk√
k2 + m∗2

B (σ)

+
1
3

∑

λ

1
π2

∫ kλ

0

k4 dk√
k2 + m2

λ

. (14)

2.3 Deconfined quark phase

If the dense interior of a neutron star contains deconfined
quark matter, it will be made of up (u), down (d), and
strange (s) quarks in chemical equilibrium with a small
number of electrons and muons. To model the quark phase
we use a nonlocal extension of the Nambu–Jona-Lasinio
model (n3NJL) as described in refs. [22, 23]. The effective
action of this model is given by

SE =
∫

d4x
{

ψ̄(x)(i/∂ − m̂)ψ(x) +
1
2
GS [(ψ̄(x)λaψ(x))2

+(ψ̄(x)iγ5λaψ(x))2] + H
[
det[ψ̄(x)(1 + γ5)ψ(x)]

+ det[ψ̄(x)(1 − γ5)ψ(x)]
]
− GV [(ψ̄(x)γμλaψ(x))2

+(ψ̄(x)iγμγ5λaψ(x))2]
}

, (15)

where f denotes quark flavor (u, d, s), ψ is a chiral U(3)
vector that includes the light quark fields, ψ ≡ (u, d, s)T ,
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m̂ = diag(mu,md,ms) is the current quark mass matrix,
λa with a = 1, . . . , 8 denote the generators of SU(3), and
λ0 =

√
2/3 �3×3. The coupling constants GS and H, the

strange quark mass ms, and the three-momentum ultravi-
olet cutoff parameter Λ, are all model parameters. Their
values are taken from ref. [26], i.e., mu = md = 5.5MeV,
ms = 140.7MeV, Λ = 602.3MeV, GSΛ2 = 3.67 and
HΛ5 = −12.36. The vector coupling constant GV is
treated as a free parameter.

For the mean-field approximation, the thermodynamic
potential associated with SE of eq. (15) is given by

ΩNL =

− 3
π3

∑

f=u,d,s

∫ ∞

0

dp0

∫ ∞

0

dp

× ln

{
[
ω̂2

f + M2
f (ω2

f )
] 1

ω2
f + m2

f

}

− 3
π2

∑

f=u,d,s

∫ √
μ2

f−m2
f

0

dpp2 [(μf − Ef ) θ (μf − mf )]

−1
2

[
∑

f=u,d,s

(
σ̄f S̄f +

GS

2
S̄2

f

)
+

H

2
S̄u S̄d S̄s

]

−
∑

f=u,d,s

ω2
f

4GV
, (16)

where σ̄f , ωf , and S̄f are the quark scalar, vector, and
auxiliary mean fields, respectively. Moreover, we have
Ef =

√
p2 + m2

f , ω2
f = (p0 + iμf )2 + p2, and Mf (ω2

f ) =

mf+σ̄fg(ω2
f ) are the momentum-dependent quark masses.

The quantity g(ω2
f ) = exp(−ω2

f/Λ2) is the form fac-
tor which introduces nonlocality into the quark interac-
tions [22, 23]. The auxiliary mean fields are given by

S̄f = −48
∫ ∞

0

dp0

∫ ∞

0

dp

8π3
g(ω2

f )
Mf (ω2

f )
ω̂2 + M2

f (ω2
f )

. (17)

Due to the inclusion of the vector interaction the quark
chemical potentials are shifted as follows:

μ̂f = μf − g(w2
f )ωf , (18)

ω̂2
f = (p0 + iμ̂f )2 + p2. (19)

The scalar and vector mean fields are obtained by mini-
mizing the grand thermodynamic potential,

∂ΩNL

∂σ̄f
= 0,

∂ΩNL

∂ωf
= 0. (20)

The quark number densities are given by

ρf =
∂ΩNL

∂μf
. (21)

To determine the equation of state, one must solve a
nonlinear system of equations for the fields σ̄f and ω̄f ,

and the neutron and electron chemical potentials μn and
μe. This system of equations consists of the mean-field
equations,

σ̄i + GSS̄i +
1
2
HS̄jS̄k = 0, (22)

with cyclic permutations over the quark flavors,

ωf − 2GV
∂ΩNL

∂ωf
= 0, (23)

and the charge conservation equations,
∑

f=u,d,s

ρf − 3ρb = 0, (24)

∑

f=u,d,s

ρfqf +
∑

λ=e−,μ−

ρλqλ = 0. (25)

Finally, the pressure and energy density are given by

pQ = Ω0 − ΩNL, (26)

εQ = −pQ +
∑

f=u,d,s

ρfμf +
∑

λ=e−,μ−

ρλμλ, (27)

where Ω0 is the grand thermodynamic potential ΩNL cal-
culated for μf = ωf = 0.

2.4 Quark-hadron mixed phase

When the pressure in the hadronic phase grows to a level
equal to that of the quark phase at the same baryonic
density a first-order phase transition from hadronic mat-
ter to quark matter may begin. Since a theory that can
treat both the hadronic and quark phases simultaneously
is currently unavailable, we construct the mixed phase by
blending RMF and n3NJL. Each phase is solved for sep-
arately, and then the two are blended together under the
Gibbs condition, pH = pQ. The pressure (pM ) and energy
density (εM ) in the mixed phase are given by [3, 4]

pM =
1
2
(pH + pQ), (28)

and
εM = (1 − χ)εH + χεQ, (29)

where χ = VQ/VTotal is the quark fraction of the mixed
phase. Other properties such as the particle number den-
sities can be handled in a similar fashion.

3 Crystalline structure of the quark-hadron
mixed phase

A mixed phase of hadronic and quark matter will arrange
itself so as to minimize the total energy of the phase.
Under the condition of global charge neutrality this is
the same as minimizing the contributions to the total en-
ergy due to phase segregation, which includes the surface
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Fig. 1. (Color online) Spherical blob, rod, and slab rare phase
structures. VQ/VTotal denotes the quark fraction of the mixed
phase.

and Coulomb energy contributions. Expressions for the
Coulomb (εC) and surface (εS) energy densities can be
written as [3]

εC = 2πe2 [qH(χ) − qQ(χ)]2 r2xfD(x), (30)
εS = Dxσ(χ)/r, (31)

where qH (qQ) is the hadronic (quark) phase charge den-
sity, and r is the radius of the rare phase structure. The
quantities x and fD(x) in eq. (30) are defined as

x = min(χ, 1 − χ) (32)

and

fD(x) =
1

D + 2

[
1

D − 2

(
2 − Dx1−2/D

)
+ x

]
, (33)

where D is the dimensionality of the lattice. The quantity
σ(χ) in eq. (31) denotes the surface tension.

The phase rearrangement process will result in the for-
mation of geometrical structures of the rare phase dis-
tributed in a crystalline lattice that is immersed in the
dominant phase (fig. 1). The rare phase structures are
approximated for convenience as spherical blobs, rods,
and slabs [3]. The spherical blobs occupy sites in a three-
dimensional (D = 3) body centered cubic (BCC) lattice,
the rods in a two-dimensional (D = 2) triangular lattice,
and the slabs in a simple one-dimensional (D = 1) lat-
tice [11]. At χ = 0.5 both hadronic and quark matter
exist as slabs in the same proportion, and at χ > 0.5 the
hadronic phase becomes the rare phase with its geometry
evolving in reverse order (from slabs to rods to blobs).

3.1 Surface tension of the quark-hadron interface

Direct determination of the surface tension of the quark-
hadron interface is problematic because of difficulties in
constructing a single theory that can accurately describe
both hadronic matter and quark matter. Therefore, we
employ an approximation proposed by Gibbs where the
surface tension is taken to be proportional to the difference
in the energy densities of the interacting phases [3],

σ(χ) = ηL [εQ(χ) − εH(χ)] , (34)

where L is proportional to the surface thickness which
should be on the order of the strong interaction (1 fm), and

Fig. 2. (Color online) Rare phase structure charge number
per unit volume plotted against quark fraction for the given
parameterizations and vector coupling constant values. Slight
discontinuity at χ = 0.5 is due to a higher number of posi-
tively charged baryons (electrons make up difference in nega-
tive charge).

η is a proportionality constant. In this work we maintain
the energy density proportionality but set the parameter
η so that the surface tension falls below 50MeV fm−2, a
value consistent with those suggested for σ(χ) in recent
literature [27–30].

3.2 Rare phase structure size, charge, and number
density

The size of the rare phase structures is given by the ra-
dius (r) and is determined by minimizing the sum of the
Coulomb and surface energies, ∂(εC+εS)

∂r , and solving for
r [3],

r =

(
Dσ(χ)

4πe2fD(χ) [qH (χ) − qQ(χ)]2

) 1
3

. (35)

The primitive cell of the lattice is taken to be the Wigner-
Seitz cell, though it is simplified to have the same geom-
etry as the rare phase structure. The Wigner-Seitz cell
radius R is set so that the cell is charge neutral.

The density of electrons in the mixed phase is taken
to be uniform throughout. Charge densities in both the
rare and dominant phases are also taken to be uniform,
an approximation supported by a recent study by Yasu-
take et al. [27]. The uniformity of charge in the rare phase
also justifies the use of the nuclear form factor (F (q)) pre-
sented in sect. 4. The total charge number per unit volume
(|Z|/VRare) of the rare phase structures is given in fig. 2.

The number density of rare phase blobs will be impor-
tant for calculating the phonon contribution to the emis-
sivity. Since there is one rare phase blob per Wigner-Seitz
cell, the number density of rare phase blobs (nb) is simply
the reciprocal of the Wigner-Seitz cell volume,

nb = (4πR3/3)−1. (36)
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4 Neutrino emissivity in the quark-hadron
mixed phase

Modeling the complex interactions of electrons with a
background of neutrons, protons, hyperons, muons, and
quarks is an exceptionally complicated problem. However,
to make a determination of the neutrino emissivity that
is due to electron-lattice interactions in the quark-hadron
mixed phase we need only consider the Coulomb interac-
tion between them. This simplifies the problem greatly, as
a significant body of work exists for the analogous process
of electron-ion scattering that takes place in the crusts of
neutron stars.

4.1 Electron-lattice interaction

To determine the state of the lattice in the quark-hadron
mixed phase we use the dimensionless ion coupling param-
eter given by [1]

Γ =
Z2e2

RkbT
. (37)

Below Γmelt = 175 the lattice behaves as a Coulomb liq-
uid, and above as a Coulomb crystal [1]. It was shown in
Na et al. [12] that the emissivity due to electron-blob in-
teractions in the mixed phase was insignificant compared
to other contributions at temperatures above T � 1010 K.
Therefore, in this work we consider temperatures in the
range 107 K ≤ T ≤ 1010 K. At these temperatures the
value of the ion coupling parameter is generally well above
Γmelt, and so the lattice in the quark-hadron mixed phase
is taken to be a Coulomb crystal.

To account for the fact that the elasticity of scattering
events is temperature dependent we need to compute the
Debye-Waller factor, which is known for spherical blobs
only and requires the plasma frequency and temperature
given by

ωp =

√
4πZ2e2nb

mb
, (38)

Tp =
�ωp

kb
, (39)

where mb is the mass of a spherical blob [11]. The Debye-
Waller factor is then given by

W (q) =

⎧
⎪⎨

⎪⎩

αq2

8k2
e

(
1.399e−9.1tp +12.972tp

)
spherical blobs,

0 rods and slabs,
(40)

where q = |q| is a phonon or scattering wave vector,
α = 4�

2k2
e/(kBTpmb), and tp = T/Tp [11, 31]. In order

to smooth out the charge distribution over the radial ex-
tent of the rare phase structure we adopt the nuclear form
factor given in [11],

F (q) =
3

(qR3)
[sin(qR) − qR cos(qR)] . (41)

Screening of the Coulomb potential by electrons is taken
into account by the static dielectric factor ε(q, 0) = ε(q),
given in ref. [32]. However, the charge number of the rare
phase structures is high and the electron number density
is low, so setting this factor to unity has no noticeable
effect on the calculated neutrino emissivity. Finally, the
effective interaction is given by [11]

V (q) =
4πeρZF (q)

q2ε(q)
e−W (q). (42)

4.2 Neutrino emissivity

General expressions for the neutrino emissivity due to
electron-lattice interactions were derived by Haensel et
al. [33] for spherical blobs and by Pethick et al. [10] for
rods and slabs,

Qblobs ≈ 3.35 × 10−67nbT
6Z2L MeV s−1 fm−3, (43)

Qrods,slabs ≈ 3.00 × 10−88 keT
8J MeV s−1 fm−3, (44)

where L and J are dimensionless quantities that scale the
emissivities. Both L and J contain a contribution due to
the static lattice (Bragg scattering), but we consider the
additional contribution from lattice vibrations (phonons)
for spherical blobs, so L = Lsl + Lph.

4.3 Phonon contribution to neutrino emissivity

The expressions for determining the neutrino emissivity
due to interactions between electrons and lattice vibra-
tions (phonons) in a Coulomb crystal, with proper treat-
ment of multi-phonon processes, were obtained by Baiko et
al. [34] and simplified by Kaminker et al. [11]. The phonon
contribution to the emissivity is primarily due to Umklapp
processes in which a phonon is created (or absorbed) by an
electron that is simultaneously Bragg reflected, resulting
in a scattering vector q that lies outside the first Bril-
louin zone, q0 � (6π2nb)1/3 [35, 36], where nb is given by
eq. (36).

The contribution to the neutrino emissivity due to
phonons is contained in Lph and given by eq. (21) in
ref. [11],

Lph =
∫ 1

y0

dy
Seff(q)|F (q)|2

y|ε(q, 0)|2
(

1 +
2y2

1 − y2
ln y

)
, (45)

where y = q/(2ke), and the lower integration limit y0 ex-
cludes momentum transfers inside the first Brillouin zone.
The structure factor Seff is given by eqs. (24) and (25) in
ref. [11],

Seff(q) = 189
(

2
π

)5

e−2W

∫ ∞

0

dξ
1 − 40ξ2 + 80ξ4

(1 + 4ξ2)5 cosh2 (πξ)

×
(
eΦ(ξ) − 1

)
, (46)

Φ(ξ) =
�q2

2mb

〈
cos (ωst)

ωs sinh (�ωs/2kBT )

〉
, (47)
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Fig. 3. Temperature below which Umklapp processes are
frozen out (TUmklapp) as a function of quark fraction, and con-
tributions to the neutrino emissivity due to electron-phonon
interactions become negligible.

where ξ = tkBT/� and 〈. . .〉 denotes averaging over
phonon frequencies and modes,

〈fs(k)〉 =
1

3VB

∑

s

∫

VB

dkfs(k). (48)

It is assumed that there are three phonon modes s, two
linear transverse and one longitudinal. The frequencies of
the transverse modes are given by ωti

= aik, where i =
1, 2, a1 = 0.58273, and a2 = 0.32296. The frequency of the
longitudinal mode ωl is determined by Kohn’s sum rule,
ω2

l = ω2
p − ω2

t1 − ω2
t2 [37].

Umklapp processes proceed as long as the temperature
TUmklapp � TpZ

1/3e2/(�c), below which electrons can no
longer be treated in the free electron approximation [36].
This limits the phonon contribution to the neutrino emis-
sivity to only a very small range in temperature for a crys-
talline quark-hadron mixed phase (see fig. 3), and renders
it negligible compared to the static lattice contribution as
will be shown in the next section.

4.4 Static lattice contribution to neutrino emissivity

Pethick and Thorsson [10] found that with proper han-
dling of electron band-structure effects the static lattice
contribution to the neutrino emissivity in a Coulomb crys-
tal was significantly reduced compared to calculations per-
formed in the free electron approximation. Kaminker et
al. [11] presented simplified expressions for calculating the
static lattice contribution (Lsl) using the formalism devel-
oped in ref. [10]. The dimensionless quantities Lsl and J
that scale the neutrino emissivities for spherical blobs and
rods/slabs, respectively, are given by

Lsl =
1

12Z

∑

K �=0

(1 − y2
K)

y2
K

|F (K)|2
|ε(K)|2 I(yK , tV )e−2W (K)

(49)

Fig. 4. Equations of state of this work. Shown are the hadronic
and mixed phases. Square markers indicate the beginning of
the quark-hadron mixed phase, and dot markers indicate the
location of the maximum mass.

and

J =
∑

K �=0

y2
K

t2V
I(yK , tV ), (50)

where K = |K| is a scattering vector and restricted to
linear combinations of reciprocal lattice vectors, yK =
K/(2ke), tV = kBT/[|V (K)|(1 − y2

K)], and I(yK , tV ) is
given by eq. (39) in ref. [11]. The sum over K in eqs. (49)
and (50) terminates when K > 2ke, prohibiting scattering
vectors that lie outside the electron Fermi surface.

5 Results

The neutron star equation of state has been calculated us-
ing the relativistic mean-field approximation to describe
the hadronic phase and the three-flavor nonlocal Nambu–
Jona-Lasinio model for the quark phase, with the Gibbs
condition governing the combination of the two in the
mixed phase (fig. 4). Using the equation of state we
solve the Tolman-Oppenheimer-Volkoff equation [38, 39]
and find the mass-radius relationships given in fig. 5. The
maximum masses of the neutron stars obtained for the
given parameter sets are able to account for the recently
discovered high-mass pulsars PSR J3048+0432 and PSR
J1614-2230 [40–42], excluding GM1 with no vector cou-
pling. It is evident from fig. 5 that increasing the vector
coupling constant increases the maximum mass for the
particular parameterization.

Figures 6 and 7 show the relative particle densities for
the NL3 and GM1 parameterizations and three different
values of the quark vector coupling constant. Hyperoniza-
tion does not occur at all in the NL3 parameterization,
as it is preceded by the low density onset of the quark-
hadron phase transition at 2–3 times nuclear density. The
same is true of the GM1 parameterization except in the
case that GV = 0.10GS . Here the onset of the quark-
hadron phase transition occurs at a much higher density
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Fig. 5. (Color online) Mass-radius relationship of neutron stars
for the given parameterizations and vector coupling constant
values listed in table 1. Square markers indicate the beginning
of the quark-hadron mixed phase, and dot markers indicate
the location of the maximum mass. The green shaded region
indicates the mass constraint set by PSR J3048+0432.

Fig. 6. (Color online) Relative particle number densities as
a function of baryonic density (in units of nuclear saturation
density) for the NL3 parameterization and given values of the
vector coupling constant. Grey shaded region indicates den-
sities beyond the maximum mass neutron star for the given
parameterization.

due to the presence of the Ξ− and Λ hyperons which soften
the equation of state considerably, an effect that can be
seen in the right panel of fig. 4. The low density onset of
the quark-hadron phase transition is due in part to the
choice of meson-hyperon coupling constants, which have
been shown to postpone the onset of hyperonization, stiff-
ening the low density equation of state [24]. Figure 5 shows
that neutron stars within about 0.1–0.2 M� of their max-
imum mass contain a quark-hadron mixed phase in their
core, with most possessing a maximum quark fraction of
around 30% (see table 2).

Fig. 7. (Color online) Same as fig. 6 but for the GM1 param-
eterization.

Table 2. Properties of the maximum mass neutron star for
the given parameterizations.

GM1 NL3

GV /GS 0 0.05 0.10 0 0.05 0.10

M/M� 1.89 2.05 2.20 2.04 2.24 2.43
χmax 0.32 0.31 0.15 0.31 0.30 0.32
ρb [1/fm3] 0.75 0.76 0.80 0.61 0.61 0.62
ε [MeV/fm3] 851 883 969 687 696 726

Figure 8 shows the neutrino emissivity that is due
to the crystalline structure of the quark-hadron mixed
phase for all parameterizations and temperatures be-
tween 107–1010 K, as well as the modified Urca and
bremsstrahlung (NN+QQ) emissivities for comparison.
Electron-phonon interactions contribute to the neutrino
emissivity when the mixed phase consists of spherical
blobs (χ < 0.21 and χ > 0.79) and only at T > TUmklapp

(fig. 3). Figure 10 shows that the static-lattice contribu-
tion to the emissivity dominates the phonon contribution
rendering it negligible, particularly at quark fractions rel-
evant to the neutron stars of this work (χ � 0.3). Equa-
tions (49) and (50) indicate that the static-lattice contri-
bution is calculated as a sum over scattering vectors NK

that satisfy K < 2ke. At the onset of the mixed phase
the electron Fermi momentum ke is at a maximum, which
is particularly large in magnitude due to the lack of hy-
perons that would typically aid in the charge neutraliza-
tion process. However, as the quark-hadron phase tran-
sition proceeds the negatively charged down and strange
quarks take over the process of charge neutralization, re-
sulting in a rapidly decreasing electron number density
(ke = (3π2ne)

1
3 ). This and the exponentially decreasing

size of the Wigner Seitz cell in the spherical blob phase
(χ < 0.21) lead to the steep decline in NK (fig. 11), which
accounts for the rapid decrease of the neutrino emissivity
in the mixed phase.
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Fig. 8. (Color online) Comparison of the neutrino emissivity due to electron-lattice interactions in the quark-hadron mixed
phase to modified Urca and bremsstrahlung (NN+QQ) processes in the mixed phase for different parameterizations [43]. Shading
represents geometric structures as shown in fig. 9.

Fig. 9. (Color online) Rare phase structure radius r and Wigner-Seitz cell radius R plotted against quark fraction for the given
parameterizations and vector coupling constant values. The change in background color refers to a change in structure as shown
in the right panel. Discontinuities in the radii are also associated with changes in the crystalline structure.
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Fig. 10. (Color online) Comparison of the static lattice and
phonon contributions to the neutrino emissivity for the NL3
parameter set at T > TUmklapp. The comparison is performed
for only the spherical blob geometry, as the phonon contribu-
tion is not determined for other geometries.

The geometrical structure of the quark-hadron mixed
phase terminates with the rod phase at χ ∼ 0.3 for nearly
all the chosen parameterizations. Up to this point the neu-
trino emissivity due to the structure of the mixed phase
is either larger or comparable to the modified Urca and
bremsstrahlung (NN+QQ) emissivities for T � 108 K.
The emissivities in the NL3 and GM1 parameterizations
are comparable, though the effect of the mixed phase
structure appears more substantial for NL3 due to lower
modified Urca and bremsstrahlung (NN+QQ) emissivi-
ties. The emissivity at very low quark fraction (χ � 0.05)
may be overestimated due to the finite blob radius at
χ = 0 that results from the fact that fd(0) = 0.4. Finally,
beyond the rod-slab structure transition at χ ≈ 0.35 the
electron-lattice contribution to the overall neutrino emis-
sivity is negligible, though this is beyond the extent of the
mixed phase of the neutron stars in this work.

6 Summary and conclusions

Exploring the properties of compressed baryonic matter,
or, more generally, strongly interacting matter at high
densities and/or temperatures, has become a forefront
area of modern physics [44]. Experimentally, such mat-
ter is being created in relativistic particle colliders such as
the Relativistic Heavy Ion Collider RHIC at Brookhaven
and the Large Hadron Collider (LHC) at Cern, and great
advances in our understanding of such matter are ex-
pected from the next generation of collision experiments
at FAIR (Facility for Antiproton and Ion Research at
GSI) and NICA (Nucloton-based Ion Collider fAcility at
JINR) [45, 46].

Complementary to these experiments, astrophysics
provides a natural laboratory in which to explore the
physics of compressed baryonic matter too (see [47–49]
and references therein). The Hubble Space Telescope and
X-ray satellites such as Chandra and XMM-Newton in
particular have proven especially valuable. New astrophys-
ical instruments such as the Five hundred meter Aper-
ture Spherical Telescope (FAST), the square kilometer Ar-
ray (skA), Fermi Gamma-ray Space Telescope (formerly
GLAST), Astrosat, ATHENA (Advanced Telescope for
High ENergy Astrophysics), and the Neutron Star Inte-
rior Composition Explorer (NICER) promise the discov-
ery of tens of thousands of new neutron stars. Of partic-
ular interest will be the proposed NICER mission, which
is dedicated to the study of the extraordinary gravita-
tional, electromagnetic, and nuclear-physics environments
embodied by neutron stars. NICER will explore the ex-
otic states of matter in the core regions of neutron stars,
confronting nuclear theory with unique observational con-
straints.

With that in mind, we focus in this paper on quark
deconfinement in the cores of neutron stars. The neu-
tron star equation of state for cold catalyzed matter
(T � 1MeV) has been determined using the relativistic
mean-field (RMF) approximation to model the hadronic
phase and the nonlocal three-flavor Nambu-Jona-Lasinio
model (n3NJL) for the quark phase. The mass-radius re-
sults indicate that a neutron star containing quark matter
in the core can account for the high mass of the recently
discovered pulsars PSR J3048+0432 and PSR J1614-2230,
and that a maximum mass neutron star can be expected
to contain approximately 30% quark matter at the center.
If the surface tension between hadronic and quark mat-
ter is low as suggested in the recent literature, a phase
transition that results in a mixed phase will occur in the
core of a neutron star. The relaxed condition of global
charge neutrality will lead to charge segregation in the
mixed phase resulting in the formation of a crystalline
lattice of quark matter immersed in a hadronic matter
background. Expanding on Na et al. [12], we considered
the presence of two additional geometrical structures in
the mixed phase in addition to spherical blobs: rods, and
slabs (fig. 1).

Using the formalism developed for analogous neutrino-
pair bremsstrahlung processes in the neutron star crust we
have estimated the neutrino emissivity due to electron-
lattice interactions in the quark-hadron mixed phase.
The emissivity is highly dependent on the electron num-
ber density, which has been shown to decrease consider-
ably in the presence of negatively charged hyperons and
quarks (figs. 6 and 7). However, we have shown that at
temperatures between 107 K and 109 K and quark frac-
tions less than around 30% the neutrino emissivity due
to electron-lattice interactions is significant when com-
pared to the standard baryon and quark modified Urca
and bremsstrahlung (NN+QQ) processes (fig. 8). Further,
we have also shown that the emissivity due to electron-
phonon interactions is insignificant compared to contribu-
tions from Bragg diffraction at temperatures above which
Umklapp processes are frozen out (fig. 10).
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Fig. 11. (Color online) The number of scattering vectors that satisfy the condition K < 2ke as a function of the quark fraction
in the mixed phase for the equations of state of this work.

Before we can determine the effect the presence of
quark matter and the crystalline structure of the quark-
hadron mixed phase has on the thermal evolution of a
neutron star the following steps need to be taken. First,
RMF should be replaced with a model for hadronic matter
that softens the equation of state and produces results for
neutron star radii that are more compatible with observa-
tions and recent statistical studies (see, for example, [50,
51]). To this end, we are currently working on combining
an RMF model that accounts for density dependence in
the values of the meson-baryon coupling constants with
the three-flavor n3NJL model (see, for example, [52–59]).
Next, the thermal conductivity and specific heat should
be calculated for the quark-hadron mixed phase as out-
lined in Na et al. [12] using the updated equation of state
for quark matter (n3NJL) and accounting for additional
rare phase geometries (rods, slabs). Finally, these results
would be incorporated into a neutron star cooling simula-
tion capable of properly accounting for the complexity of
the crystalline quark-hadron mixed phase.
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