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Abstract. Remnants of neutron-star mergers are essentially massive, hot, differentially rotating neutron
stars, which are initially strongly oscillating. As such they represent a unique probe for high-density matter
because the oscillations are detectable via gravitational-wave measurements and are strongly dependent
on the equation of state. The impact of the equation of state for instance is apparent in the frequency
of the dominant oscillation mode of the remnant. For a fixed total binary mass a tight relation between
the dominant postmerger oscillation frequency and the radii of nonrotating neutron stars exists. Inferring
observationally the dominant postmerger frequency thus determines neutron star radii with high accuracy
of the order of a few hundred meters. By considering symmetric and asymmetric binaries of the same
chirp mass, we show that the knowledge of the binary mass ratio is not critical for this kind of radius
measurements. We perform simulations which show that initial intrinsic neutron star rotation is unlikely
to affect this method of constraining the high-density equation of state. We also summarize different pos-
sibilities about how the postmerger gravitational-wave emission can be employed to deduce the maximum
mass of nonrotating neutron stars. We clarify the nature of the three most prominent features of the post-
merger gravitational-wave spectrum and argue that the merger remnant can be considered to be a single,
isolated, self-gravitating object that can be described by concepts of asteroseismology. We sketch how
the consideration of the strength of secondary gravitational-wave peaks leads to a classification scheme of
the gravitational-wave emission and postmerger dynamics. The understanding of the different mechanisms
shaping the gravitational-wave signal yields a physically motivated analytic model of the gravitational-
wave emission, which may form the basis for template-based gravitational-wave data analysis. We explore
the observational consequences of a scenario of two families of compact stars including hadronic and quark
matter stars. We find that this scenario leaves a distinctive imprint on the postmerger gravitational-wave
signal. In particular, a strong discontinuity in the dominant postmerger frequency as function of the total
mass will be a strong indication for two families of compact stars.

1 Introduction

Recently, the Advanced LIGO network measured for the
first time gravitational waves (GWs) from merging black
holes [1]. Before, the existence of GWs had been proven
only indirectly by the observation of neutron star (NS) bi-
naries [2–4], in particular the Hulse-Taylor binary pulsar
PSR B1913+16 [5]. The orbital period and orbital sepa-
ration of this binary decrease precisely as determined by
General Relativity, which predicts that the GW emission
continuously reduces the system’s angular momentum and
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energy. As the orbital frequency increases with time the
GW emission becomes stronger, and thus the decay of the
orbit proceeds increasingly faster. For PSR B1913+16 the
orbital period will decrease from currently 7.75 hours to
a few milliseconds in the next 3 × 108 years. The corre-
sponding GW emission reflects the dynamics of the orbital
motion and thus increases in frequency and amplitude re-
sulting in a chirp-like signal, which is determined by the
binary masses (see e.g. the first milliseconds in fig. 12 or
figs. 5 and 6 in [6]). Only during the last seconds of this
so-called inspiral (named after the shape of the stellar tra-
jectories) the signal will enter the sensitivity band of the
existing and upcoming GW detectors between roughly 10
and 10000Hz [7–9]. Importantly, the total population of
NS binaries within a distance of a few 100Mpc to our
Galaxy (i.e. the range that will be covered by GW instru-
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ments) is expected to be sufficiently high such that per
year of the order of 40 binaries in the last phase of their
inspiral will enter the sensitivity band of GW detectors at
their design sensitivity [10].

The continuously decreasing orbital separation of NS
binaries inevitably leads to the merging of the binary com-
ponents. On a dynamical time scale of the order of a mil-
lisecond the two stars form a single, massive, differentially
rotating object (see, e.g., fig. 9 and fig. 2 in [11]). Mostly
because of its rotation the merger remnant can be sup-
ported against the gravitational collapse even if the total
binary mass significantly exceeds the maximum mass of
non-rotating NSs. Only for very high total binary masses
a prompt gravitational collapse occurs. The stellar object
forming during a coalescence of two NSs is very interest-
ing from the perspective of high-density matter physics1
because it resembles a massive, hot, rotating NS, which
is strongly oscillating (see e.g. [12–16] for reviews). The
oscillations are induced by the merging process, notably
the fundamental quadrupolar fluid mode of the remnant
is strongly excited and dominates the postmerger GW
signal. The frequencies of the different excited oscillation
modes are characteristic of the remnant’s mass and of the
high-density equation of state (EoS). The mass of the rem-
nant is approximately identical to the total binary mass.
The binary mass as well as (in principle) most of the oscil-
lation frequencies of the merger remnant are observation-
ally accessible by GWs. Therefore, NS mergers offer the
possibility of NS asteroseismology and of inferring prop-
erties of the high-density EoS, or equivalently, of stellar
properties of non-rotating NSs, via observations with the
upcoming and existing GW detectors. The merger rate
is estimated to be roughly of the order of 10−5 events
per year per Milky way equivalent galaxy, which corre-
sponds to a detection rate of about 40 inspiral detections
per year for Advanced LIGO and Advanced Virgo when
the instruments operate at their design sensitivity (see,
e.g., [10] for a collection of rate estimates and their uncer-
tainties). With these instruments the oscillations during
the postmerger phase are detectable for relatively nearby
events [17, 18], which is an exciting prospect given that
already a single event is sufficient to provide tight con-
straints on the EoS [6,19].

Because of its high mass, the postmerger remnant is
particularly interesting since the central densities are rel-
atively high compared to those of many observed NSs in
binary systems, which have masses in the range of 1.2M�
to 1.5M� (see, e.g., [20]). This implies that the GW emis-
sion of the postmerger phase probes a density regime that
is hardly accessible by other observational methods. In
particular, attempts to infer NS properties via finite-size
effects in the GW signal during the inspiral phase pre-
ceeding the merger are restricted to the mass range of the
individual components of the binary (see, e.g., [21–30]).
In this sense the postmerger oscillations represent a com-
plementary approach by providing insights to NS proper-

1 Within this paper the term “high density” refers to den-
sities roughly above nuclear saturation density, which is the
regime most relevant for the stellar structure of NSs.

ties at higher masses and higher densities (e.g., [31, 32]).
Moreover, the collapse behavior of NS merger remnants
may reveal the properties of the very high density regime,
which is decisive for determining the threshold of the grav-
itational collapse [33]. The consideration of the collapse
behavior may be particularly rewarding for establishing
limits on the maximum mass of nonrotating NSs, which is
challenging given the paucity of NS systems with masses
close to the collapse threshold, while the mass range of
merger remnants partially overlaps with the mass range
where the gravitational collapse is expected to take place
for various EoSs. Therefore, an upper limit on the maxi-
mum mass may be established through NS mergers, which
may be hard to derive through other types of observations.

The basic impact of the EoS on the merger dynamics
and GW signal can be described as follows. Stiff EoSs lead
to NSs with large radii. Such stars can be deformed more
easily under the influence of an external tidal field. Con-
sequently, finite-size effects during the inspiral set in at
a larger orbital separation, i.e. a lower orbital frequency,
and the stars finally merge at a relatively low orbital fre-
quency. In contrast, soft EoSs yield more compact NSs,
which in comparison to larger NSs behave more like point
particles during the late inspiral phase. Stars described
by soft EoSs are harder to deform and during the inspi-
ral they reach higher orbital velocities before they merge.
This also implies a higher linear velocity before merging
and results in a merger with a higher impact velocity. The
stiffness also affects the dynamics of the postmerger phase
and, in particular, the frequencies of the excited oscilla-
tion modes. A stiff EoS leads to a relatively large merger
remnant, whose quadrupolar fluid oscillation frequency is
relatively low, since it scales approximately with the mean
density. In the case of a soft EoS, the merger remnant is
more compact and thus oscillates at higher frequencies.
(For such EoSs the higher impact velocity during merging
additionally leads to a stronger excitation of the quasi-
radial oscillation mode of the remnant.)

In this paper we summarize the current status of possi-
bilities to deduce NS properties and EoS constraints from
GW observations of the postmerger phase of NS mergers.
We focus mostly on the most prominent oscillation mode
in the GW spectrum of the postmerger phase, the funda-
mental quadrupolar fluid mode, since this is the feature
which is most likely to be detected. We prepend a discus-
sion of mass measurements through GW chirp signals of
NS mergers, which is essential to NS radius measurements
by the observation of GWs from the postmerger phase as
well as for constraints on the maximum mass of nonro-
tating NSs. We supplement a review of previous findings
by new results, which for instance clarify the role of in-
trinsic NS rotation of the binary components. Also, we
provide further evidence that the merger remnant can be
considered to be a single, self-gravitating object and can
thus be investigated by concepts of asteroseismology [34].
By considering certain oscillation modes and secondary
features of the postmerger GW spectrum, we arrive at a
unified classification scheme of the postmerger dynamics
and GW emission. We also present an analytic model of
the GW emission, which may represent a step towards
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the construction of GW templates that can be employed
in GW data analysis. Along the lines of the current Top-
ical Issue of “Exotic Matter in Neutron Stars” we also
discuss a scenario of the existence of two families of com-
pact stars [35] and identify certain observational features
which can test these ideas. This discussion represents an
example of how the postmerger phase can be employed to
test high-density matter properties at densities which are
not accessible through NSs of masses below ∼ 1.5M�.

The results presented in this paper rely mostly on the
calculations discussed in [6,11,19,31,33], where further in-
formation can be found. Additional new findings laid out
here are obtained within the same physical and numerical
model, for which further details are provided in [6,36–39].
We only consider mergers from quasi-circular orbits (for
a discussion of tidal capture events see, e.g., [40]). This
paper is written in a modular way such that the individ-
ual sections are mostly self-contained and the reader can
skip certain topics. Introductory remarks on mass mea-
surements via GWs are presented in sect. 2. NS radius
determinations via the postmerger phase are discussed in
sect. 3. We address the collapse behavior of NS merger
remnants and outline possibilities to measure the maxi-
mum mass of nonrotating NSs in sect. 4. The origin of the
major and of secondary features of the GW spectrum are
explained in sect. 5 as well as the dependencies of the sec-
ondary GW peaks, which lead to a classification scheme of
the postmerger dynamics and GW emission. In sect. 6 we
provide details on our analytic model of the postmerger
GW emission. The impact of intrinsic NS rotation is con-
sidered in sect. 7. The possible observational implications
of a scenario of two distinct families of compact stars is
explored in sect. 8. We summarize and conclude in sect. 9.

2 Mass measurements

The strongest part of the GW signal of a NS merger orig-
inates from the preceding inspiral phase, where the sys-
tem continuously losses angular momentum and energy
by the emission of GWs. The losses lead to inspiralling
trajectories of the binary components, while the GW sig-
nal is determined by the orbital motion of the NSs. The
inspiral accelerates, which results in a chirp-like GW sig-
nal with an increasing amplitude and an increasing fre-
quency. Finite-size effects become important only for the
last orbits before merging and may yield information on
the NS EoS, specifically on the tidal deformability, which
for fixed mass approximately scales with the stellar radius
(see, e.g., [21–30]).

The key parameter determining the GW signal during
the inspiral phase is the so-called chirp mass apart from
other parameters like the distance to the source, the in-
clination of the binary, the orientation of the instruments
and so on. The chirp mass is given by

Mchirp = (M1M2)3/5(M1 + M2)−1/5 (1)

with the NS masses M1 and M2. Being the crucial quantity
to determine the signal, the chirp mass will be measured
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Fig. 1. Total binary mass Mtot = M1+M2 as a function of the
mass ratio q = M1/M2 for systems with constant chirp mass
(solid lines), which will be measured with high precision by GW
detectors. Dashed lines show systems where the less massive
component has a mass of M1 = 1.1M� and M1 = 1.2M�,
which represent reasonable lower limits on the NS mass, and
thus restrict the allowed systems to the right of the respective
dashed curves.

with very high accuracy since it is one of the parameters
used to construct the template bank for matched filtering
searches that will be employed to actually detect GWs
from binaries [41–51]. In contrast, the mass ratio can only
be measured with higher accuracy for nearby events [41–
51].

It can be seen from eq. (1) that a measurement of
the chirp mass alone does not suffice to determine the
individual binary masses, which can only be achieved
by determining the mass ratio with sufficient precision.
However, for NS binaries the chirp mass alone provides
already a very good estimate of the total binary mass
Mtot = M1 +M2. Figure 1 shows the total binary mass as
a function of the mass ratio q = M1/M2 ≤ 1 for sequences
of constant chirp mass (solid lines). For a constant chirp
mass the total binary mass depends only weakly on the
mass ratio. The dashed lines define the binary systems,
where the less massive component has a gravitational mass
of 1.1M� and 1.2M�, respectively. Under the reasonable
assumption that NSs cannot be less massive than 1.2M�
(see discussion below), a measured chirp mass restricts the
possible binary parameters to the right of the dashed curve
for M1 = 1.2M�. This implies that for instance a mea-
sured chirp mass of 1.1752Mtot restricts the total binary
mass of this event to the range 2.7M� ≤ Mtot ≤ 2.73M�
(without any information about the mass ratio). From ob-
served NS binaries (see, e.g., listing in [20]) and theoreti-
cal population synthesis studies (e.g., [52]) it is expected
that most binaries have a chirp mass close to 1.1752Mtot

(corresponding to a total binary mass of roughly 2.7M�).
This means that for the most likely merger event the total
binary mass can be determined very accurately from the
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chirp mass measurement only. Even for very massive bi-
naries (with a chirp mass of 1.3058M�) the total binary
mass can be inferred with a precision of ±0.05M�.

To support the arguments above we remark that recent
core-collapse simulations for a large number of progenitor
stars find a minium NS rest mass of about 1.3M� [53].
A NS rest mass of 1.3M� corresponds to a gravitational
mass of roughly 1.2M�, somewhat dependent on the EoS.
These findings justify to assume that NS binaries are un-
likely to host NSs less massive than 1.2M�. Also other
formation channels like an accretion-induced collapse of a
white dwarf are unlikely to form less massive NSs. See also
the discussion of the minimum NS mass in [20]. Finally,
we note that a white dwarf-NS binary might have a chirp
mass in the range which is typical of NS-NS binaries, and
a more extreme mass ratio if the white dwarf is less mas-
sive than 1.2M�. The merger of a white dwarf-NS binary
will, however, lead to significantly altered inspiral dynam-
ics [54] and thus a different GW signal prior to merging
such that a white dwarf-NS merger can be easily distin-
guished from a NS binary merger.

The considerations above play a role for the following
discussions, because methods to infer EoS properties from
NS mergers rely on the ability to measure at least the to-
tal binary mass from the inspiral GW signal. Information
on the mass ratio and thus the individual binary compo-
nent masses is not critical, but improves the constraints
on NS properties. As outlined above, the determination of
the total binary mass via the chirp mass alone represents
the absolute minimum of what is achievable with existing
and upcoming GW detectors. However, it is important
to stress that for distances of order 50Mpc, which allow
to deduce EoS properties, the individual binary masses
are expected to be recovered with a precision of a few
per cent [41–51]. For instance, in [49] the individual NS
masses have been recovered within about 10 per cent at
a distance of 100Mpc. Assuming that the error scales lin-
early with the distance, an accuracy of a few per cent
could be reached in determining the individual masses of
the merging NSs at a distance of a ∼ 50Mpc. Therefore,
we will work in the following under the condition that the
individual masses can be measured sufficiently accurately
for our purposes and that, in particular, the total binary
mass can be determined very well.

3 Radius measurements

The outcome of a NS merger essentially depends on the
EoS of high-density matter and the total binary mass.
The binary mass ratio has a modest impact, while the ini-
tial NS rotation and magnetic fields have only a small
influence. Simulations show that for binary masses of
about 2.7M� the merging leads to the formation of
a massive, hot, differentially rotating NS remnant for
most EoSs, even for EoS models which yield a maxi-
mum mass of nonrotating NSs significantly below 2.7M�,
e.g. [6, 11, 19,31,33,34,37,55–84]. The rapid rotation sta-
bilizes the remnant against gravitational collapse. Accord-
ing to pulsar observations in NS binaries most systems are
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Fig. 2. GW spectrum of the cross polarization of a 1.35-
1.35M� merger with the DD2 EoS [85, 86] along the polar
direction at a distance of 20Mpc. heff = h̃(f) · f with the
Fourier transform of the waveform h× and frequency f . fpeak,
fspiral and f2−0 are particular features of the postmerger phase,
which can be associated with certain dynamical effects in the
remnant. Since the simulation started only a few orbits before
merging, i.e. at a relatively high orbital frequency, the power
at lower frequencies (below ∼ 1 kHz) is massively underrepre-
sented in the shown spectrum, and the low-frequency part of
the spectrum does not show the theoretically expected power-
law decay. The thin solid lines display the spectra of the GW
signal of the postmerger phase only revealing that the peaks
are indeed generated in the postmerger phase. Dashed lines
show the expected unity SNR sensitivity curves of Advanced
LIGO [87] (red) and of the Einstein Telescope [88] (black).

expected to have a total mass of roughly 2.7M� (see e.g.
the compilation of binary masses in [20]), which is also
supported by theoretical studies of the binary population,
e.g., [52]. Given this mass range, the most likely outcome
of a merger event should be expected to be the forma-
tion of a NS remnant (see [33] for the EoS dependence of
collapse behavior).

A typical GW spectrum of a NS merger resulting in
the formation of a NS remnant is shown in fig. 2. The
spectrum is computed from a simulation of a 1.35-1.35M�
merger with the DD2 EoS [85,86]. The dominant GW os-
cillation frequency fpeak of the postmerger phase is clearly
visible as a pronounced peak in the kHz range, which is
produced by the dominant quadrupolar remnant oscilla-
tion. Apart from the main peak one recognizes several ad-
ditional peaks, whose nature will be discussed in sect. 5.
By computing the spectrum of the GW signal of the post-
merger phase only, one can show that the different fea-
tures are related to the postmerger phase (see thin lines
in fig. 2).

The dominant oscillation frequency fpeak depends in
a specific way on the high-density EoS [6, 19]. This is un-
derstandable since the EoS affects the size of the rem-
nant, which in turn determines its oscillation frequency
(see fig. 13 in [6]). The structure of the remnant is also
influenced by its angular momentum. The available an-
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Fig. 3. Dominant postmerger GW frequency fpeak as a func-
tion of the radius R1.6 of a nonrotating NS with a gravitational
mass of 1.6M� for different EoSs and different total binary
masses (plus signs for 2.4M�, circles for 2.7M�, crosses for
3.0M�) and a mass ratio of unity. The solid lines are least-
square fits to the data of the different binary masses.

gular momentum, however, is given by the dynamics
of the late inspiral/merging phase, which is fully deter-
mined by the stellar structure of the inspiralling stars and
thus also depends on the EoS in a particular way. The
strong EoS dependence of the peak frequency can be ex-
pressed as follows. An EoS which is used in a given sim-
ulation, can be conveniently characterized by the radii
of nonrotating NSs, which are uniquely determined by
this EoS through the stellar structure equations (Tolman-
Oppenheimer-Volkoff equations [89,90]). Specifically, for a
set of calculations with a fixed total binary mass but differ-
ent EoSs2, we relate the peak frequency, which is extracted
from a simulation with a given EoS, to the radius of a
nonrotating NS (described by the same EoS) with a fixed
fiducial mass. A natural choice is to employ the NS radius
for a mass of MNS = Mtot/2, which for symmetric binaries
is just the radius of the inspiralling NSs (more precisely, at
infinite orbital separation). In this case a clear correlation
is found, where EoSs leading to more compact NSs yield
higher postmerger GW frequencies (see fig. 12 in [6], which
shows this relation for Mtot = 2.7M�). (Alternatively, one
can use the compactness C = GMNS/(c2R(MNS)) of fidu-
cial nonrotating NS models, which is equivalent to em-
ploying the radius R(MNS).)

The empirical relation between fpeak and R(MNS) is
very tight, which implies that a measurement of the peak
frequency can be used to determine the unknown radius

2 Except for some models considered in sect. 4, the EoSs
discussed in this study are temperature dependent and include
electrons, positrons and photons, while neutrino contributions
are neglected. With regard to the resulting stellar properties
these EoSs cover a representative range, which, for example,
can be seen from the range of radii in fig. 3 and maximum
masses in fig. 8.

of a nonrotating NS with a fixed mass by simply invert-
ing the empirical relation [6,19]. Thus, a future detection
of the GW postmerger phase and extraction of the peak
frequency (see [17,18]) will yield strong constraints on the
high-density EoSs. In [6, 19] the largest deviation of the
empirical data from a fit is only a few hundred meters.
The accuracy of a radius determination by the postmerger
GW signal is mostly affected by two sources of error. One
error is the uncertainty of the measurement of the peak
frequency. Apart from this, one should take into account
deviations between the data and the fit to the data de-
scribing the empirical relation. A measurement of the peak
frequency (of the true EoS) does not reveal in which way
the measured frequency slightly deviates from the empiri-
cal relation. Hence, one conservatively has to assume that
the true data point may deviate as much as the largest
deviation found in the large sample of candidate EoSs.

The peak frequency has been shown to be measurable
with very high precision by a coherent burst search anal-
ysis [17]. In this study waveforms from numerical models
were superimposed with the recorded data stream of pre-
vious GW detector science runs, which simulates the noise
of the future instruments. The model waveforms were in-
jected at random times and the noise was rescaled to the
anticipated sensitivity of the second-generation GW detec-
tors Advanced LIGO and Virgo. The existing GW data
analysis pipeline was able to recover the injected signal
and to determine the peak frequency with an accuracy of
∼ 10Hz, which is smaller than the spread in the empiri-
cal relation between fpeak and the NS radius. This implies
that the radii of the inspiralling stars can be determined
with a precision of a few hundred meters.

These considerations show that the larger contribu-
tion to the error of a radius measurement originates from
the scatter in the empirical relation between fpeak and
R(MNS). In this context, the following observation is im-
portant. One has the freedom to choose any fiducial NS
mass different from MNS = Mtot/2 for characterizing
a given EoS by the TOV radius R(MNS). Empirically,
it turns out that using a fiducial NS mass somewhat
larger than MNS = Mtot/2 leads to tighter relations be-
tween fpeak and R(MNS). This is exemplified in fig. 3. For
Mtot = 2.7M� (circles in fig. 3) the maximum deviation
between the data and a fit amounts to only ∼ 175 me-
ters if MNS = 1.6M� is chosen. This implies that the
measurement of the dominant postmerger frequency for
Mtot = 2.7M� determines the radius of a nonrotating
1.6M� NS with an accuracy of better than 200 meters.

It is natural that a fiducial mass of MNS = 1.6M�
is somewhat more appropriate than MNS = 1.35M� for
characterizing the postmerger oscillations of 1.35-1.35M�
mergers (Mtot = 2.7M�). The maximum densities in
the massive, rotating merger remnant are higher than in
the initial NSs and they are comparable to the central
densities of nonrotating, static NSs with a mass of roughly
1.6M� (see, e.g., fig. 15 in [6]). For this reason, nonrotat-
ing NSs with MNS > Mtot/2 better represent the density
regime encountered in the merger remnant and thus pro-
vide a better description of the EoS.
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binary masses.

Figure 3 also shows that similar empirical relations
hold for other binary masses. The different symbols dis-
play the peak frequencies from calculations with total bi-
nary masses of 2.4M� (plus symbol), 2.7M� (circles), and
3.0M� (crosses) for symmetric mergers. The solid lines
are least-square fits to the data. One recognizes that also
for other binary masses there are only small deviations
from the empirical relations on the order of only a few 100
meters. Hence, these relations can be used for determin-
ing NS radii with similar precision after the total binary
mass was deduced from the inspiral signal (see discussion
in sect. 2). The total binary mass determines which of
the relations has to be employed to convert the measured
peak frequency to a NS radius. Note that all data are
plotted as a function of R(1.6M�) and hence the fidu-
cial mass is not optimized to yield the tightest relations
for total binary masses of 2.4M� or 3.0M�. Here we as-
sume that the determination of the binary masses does not
contribute a significant error, but that the binary masses
are known with sufficient precision as argued in sect. 2.
We also point out that very similar relations can be con-
structed for unequal-mass binaries with a fixed total mass
and mass ratio.

We here do not further discuss asymmetric binaries in
great detail, but refer for instance to [6]. There it is shown
that the peak frequencies of asymmetric binaries deviate
only somewhat from the ones of the symmetric binaries
of the same total mass. This can be also seen in fig. 4,
which shows the peak frequency as function of R1.6 for
symmetric and asymmetric mergers. The symmetric and
asymmetric binary systems are chosen such that they have
the same chirp mass of Mchirp = 1.1665M� (see sect. 2),
which will be measured very accurately from the GW in-

spiral signal. This chirp mass corresponds to a symmetric
setup with two stars of 1.34M� (black symbols3 in fig. 4),
i.e. Mtot = 2.68M� (see eq. (1)). The asymmetric config-
urations with Mchirp = 1.1665M� shown as blue symbols
in fig. 4 are 1.2-1.5M� mergers, which are arguable the
most asymmetric systems expected in the binary popula-
tion (see discussion in sect. 2). Less asymmetric binaries
lead to smaller deviations from the peak frequency of the
symmetric system. Importantly, the data in fig. 4 illus-
trate that even for the unlikely case that no information
on the binary mass ratio is available and only the chirp
mass was measured (sect. 2), the dominant postmerger
frequency fpeak still determines NS radii very accurately.
The data points deviate by at most 258 meters from a
fit (solid line), which is constructed from the data of the
symmetric and asymmetric binaries.

The precise form of the fits of the fpeak-R data in fig. 3
and the deviations from the fits of course depend slightly
on the chosen sample of candidate EoSs, which should
preferentially include all EoSs that are acceptable based
on current knowledge. Moreover, uncertainties in the nu-
merical or physical model may also lead to slight differ-
ences in the empirical relations, which, however, will di-
minish in the future by more detailed simulations. Also, it
is possible to choose different functional forms which may
to some small extent affect the accuracy of the empirical
relations. It is worth noting that in contrast to [77], we do
not see difficulties in fitting a function to their data for
the dominant oscillation frequency. Using the listed fre-
quencies4 and computing the radii of 1.6M� NSs for the
employed piecewise polytropic EoSs, it is easily possible
to fit for instance a bi-linear (or quadratic) function to the
data for a fixed Mtot. This, for instance, results in devi-
ations of at most 214 meters for the 1.3-1.3M� mergers,
and thus confirms our conclusions that a measurement of
fpeak is sufficient for a radius determination.

In this context we note that the peak frequencies from
our numerical simulations agree well with those of [69,72,
74,77,84]. Hence, it would be surprising if the data of [74,
77] did not yield a close relation for a fixed binary mass
while our data show a good correlation and the frequencies
essentially agree.

In [6] it was argued that relations between fpeak and
NS radii are not unexpected because the dominant emis-
sion is generated by the fundamental quadrupolar oscilla-
tion mode [34], whose frequency is known to scale tightly
with

√
M/R3 for nonrotating NSs (see [91]). This scaling

for nonrotating stars suggests that it may be possible to
rescale the frequency by dividing by

√
Mtot to describe

the data of different total binary masses by a single re-
lation. While this is indeed possible, empirically we find
that fpeak/Mtot results in an even tighter relation. Fig-

3 We did not simulate 1.34-1.34M� mergers, but interpo-
lated linearly the fpeak(Mtot) relation, which is given by the
results from 1.2-1.2M� binaries and 1.35-1.35M� binaries. In
this binary mass range a linear interpolation is a very good
approximation for symmetric systems (see fig. 1 in [31]).

4 Note that the dominant oscillation frequency is called f2

in [77] as well as in some other references.
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different total binary mass (plus signs for 2.4M�, circles for
2.7M�, crosses for 3.0M�) and a mass ratio of unity.

ure 5 shows the rescaled peak frequency fpeak/Mtot as a
function of R1.6 = R(1.6M�) for total binary masses of
2.4M�, 2.7M�, and 3.0M�. The rescaled frequencies can
be described by the quadradic least-squares fit

fpeak/Mtot = 0.0157 · R2
1.6 − 0.5495 · R1.6 + 5.5030, (2)

with fpeak in kHz, the binary mass in M� and R1.6 in
km. The data in fig. 5 deviate by at most 500 meters from
the fit. The reason why fpeak/Mtot yields a better uni-
versality than fpeak/

√
Mtot (which results in deviations of

up to ∼ 1 km) may be that the radius is also mass de-
pendent. A perfect scaling behavior with the mass cannot
be expected considering the findings in [31], which show
that different EoSs can lead to different dependencies on
the total binary mass (see fig. 1 in [31]). While such a
universal relation of the rescaled fpeak is theoretically in-
teresting, from a practical point of view it is preferable to
consider different sets of mass-dependent relations as in
fig. 3 (or possible interpolations between them) because
they yield tighter relations, and the total binary mass will
always be known from the GW inspiral signal. Concerning
mass-independent relations for fpeak we also note that a
relation between the dominant postmerger frequency and
the tidal coupling constant, pointed out in [79], is inter-
esting because it connects the inspiral and the postmerger
signals. Such a relation is understandable because essen-
tially both quantities are known to depend on the EoS
and to scale with the NS radius. As in the case introduced
above (fig. 5) the practical use of such relations depends
on their tightness and a spread of ∼ 500Hz may be large
compared to a typical width of the main postmerger peak.

For a first assessment of the detectability of the
dominant postmerger GW frequency by a morphology-
independent burst search data analysis, see [17]. A more
detailed study employing a principal component analysis

and evaluating the detectability for discussed future de-
tectors is presented in [18].

4 Gravitational collapse and estimates of the
maximum mass

Apart from determining NS radii as discussed in the previ-
ous section, the postmerger phase also offers the possibility
to constrain the maximum mass of nonrotating NSs. The
maximum mass is a key parameter regarding the proper-
ties of high-density matter because its value is determined
by the very high-density regime that is usually not encoun-
tered in most observed NSs, which have a lower mass. The
maximum mass is thus particularly interesting for prob-
ing exotic phases of matter, which potentially occur at
higher densities. Here we outline three different methods
to determine or at least constrain the maximum mass of
nonrotating NSs. An important quantity in the following
discussion is the threshold binary mass to prompt black
hole (BH) collapse. If one considers binary mergers with
different total binary masses for a given EoS, one finds
that for a binary mass above a certain threshold the merg-
ing leads directly to the formation of a BH and no (tran-
siently stable) NS remnant is formed because the merged
object is unstable against gravitational collapse. Note that
the gravitational collapse in a merger remnant sets in at
densities below the maximum density of non-rotating NSs.

The connection between this threshold mass and the
maximum mass of nonrotating NSs has the following back-
ground. The maximum NS mass Mmax is the threshold
for BH formation of static, nonrotating stars, while the
threshold mass Mthres represents the threshold for BH for-
mation of differentially rotating, hot NSs. Thus, a quan-
titive relation between those two quantities is expected;
and a determination of Mmax is possible since the thresh-
old mass can be determined from the binary masses of
different merger events considering their respective out-
come.

Method 1: An analysis of a large number of simulations
with different EoSs and different total binary masses has
revealed that the threshold binary mass Mthres depends in
a particular way on the EoS [33]. This dependence can be
described by TOV properties, which are uniquely defined
by the EoS. With very good accuracy the threshold mass
is given by

Mthres =
(
−3.606

GMmax

c2R1.6
+ 2.38

)
· Mmax (3)

with the gravitational constant G and the speed of light
c. Similarly, it can also be expressed as

Mthres =
(
−3.38

GMmax

c2Rmax
+ 2.43

)
· Mmax, (4)

i.e. using the maximum mass and the compactness of
the maximum-mass configuration. The coefficients in both
equations are obtained by fits to the ratio Mthres

Mmax
, where
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Fig. 6. Threshold binary mass for prompt BH formation as
function of the maximum mass of nonrotating NSs for different
R1.6. The solid lines are given by eq. (3), which describes the
empirical data with a good accuracy [33].

Mthres is given by the results from simulations [33]. Equa-
tions (3) and (4) reproduce the numerical results with a
precision better than 0.1M� (on average the deviations
between the numerical and the estimated threshold mass
are 0.024M� for eq. (3) and 0.031M� for eq. (4)). Bear in
mind that the numerical value of Mthres can only be de-
termined with a finite precision because apart from uncer-
tainties of the numerical and physical model only a limited
set of models with different Mtot has been analyzed. [78]
tested the collapse behavior for two EoS models, which
were also employed in [33], and found compatible results.

Using eq. (3) fig. 6 visualizes how Mthres depends on
the maximum mass of nonrotating NSs for different cho-
sen values of R1.6. If the radius R1.6 has been determined
observationally, for instance through the detection of the
peak frequency of a 1.35-1.35M� merger (see sect. 3), then
the threshold mass becomes an unambiguous function of
Mmax. The threshold mass may be observationally deter-
mined by confirming or excluding the presence of post-
merger GW emission of a NS remnant for several merger
events with different total binary masses. (Note that the
prompt formation of a BH leads to very weak postmerger
GW emission, which can be distinguished from the for-
mation of a NS remnant for near-by events and sufficient
sensitivity.) The inversion of the relation between Mthres

and Mmax for a fixed R1.6 can then be employed for an
estimate of the maximum mass of nonrotating NSs.

We remark that a distinction between the prompt col-
lapse and the formation of a NS remnant may also be
possible by the observation of electromagnetic counter-
parts of mergers. In particular, the thermal emission of
the ejecta, which are heated by radioactive decays, may be
observable [92–95]. The ejecta mass depends on the EoS,
binary mass and mass ratio (see e.g. [96]). The prompt col-
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Fig. 7. Threshold binary mass for prompt BH formation as
function of the dominant postmerger GW frequency fpeak of
1.5-1.5M� mergers for different EoSs.

lapse to a BH leads to smaller amounts of unbound mat-
ter compared to mergers which form a NS remnant. This
should lead to a noticeable difference in the light curves
of these two different outcomes and may allow an obser-
vational identification of prompt collapse events. The de-
tectability of electromagnetic counterparts to GW events
has been addressed for instance in [95,97,98] and depends
on (currently) uncertain details like the observer angle,
the available instruments, the search strategy, the observ-
ing conditions, the ejecta mass, the outflow velocity, and
the neutron-richness of the ejecta determining the opac-
ity. The last three source properties are affected by the
high-density EoS and the binary parameters.

Method 2: We point out that already a single GW event
may provide a relatively precise estimate of the threshold
mass and a constraint on the maximum mass of nonrotat-
ing NSs. Figure 7 displays the threshold mass as a func-
tion of the peak frequency of equal-mass mergers with
Mtot = 3.0M� for different EoSs. We use here the thresh-
old masses estimated via eq. (3), which are very close
to the numerical values. The blue symbols show the re-
sults for additional simulations with representative EoSs
from [99], which are derived within a chiral effective field
theory at lower densities (up to roughly nuclear saturation
density) and supplemented by extrapolations of the EoS
at higher densities with physically motivated parameter
variations (minimum NS mass of 2M� and causality). For
more information on this set of EoSs see [6]. Since these
EoSs describe only cold NS matter, the EoSs are supple-
mented with an approximate treatment of thermal effects
for the merger simulations (see e.g. [38] for details and an
assessment of this approximation). In these calculations
the “ideal-gas” index Γth, which regulates the thermal
pressure support, was chosen to be 5/3. See, e.g., [38]
and [100] for a motivation of this value. One should keep
in mind that the exact choice of Γth introduces an ambi-
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frequency, see eq. (5).

guity and thus an uncertainty of the numerical values of
certain quantities extracted from simulations. This is the
reason why we did not include these models in the dis-
cussion in sect. 3. Note that from the original set of six
EoSs in [6], two models lead to the prompt formation of a
BH for 1.5-1.5M� binaries. This is fully compatible with
the theoretically estimated threshold mass from the TOV
properties of these EoSs via eqs. (3) and (4).

Figure 7 shows that the determination of fpeak of a
1.5-1.5M� merger yields the threshold mass with a pre-
cision of about 0.2M�. Note that a total binary mass of
3.0M� is only slightly larger than the masses of observed
binaries for which precise mass measurements exist. Thus,
a detection of a merger with Mtot = 3.0M� may not be
improbable.

At first glance it may seem tempting to use the peak
frequency of a 1.5-1.5M� merger to fix Mthres (fig. 7), then
to determine R1.6 as discussed in sect. 3 (fig. 3), and then
to estimate Mmax via eq. (3). This, however, represents an
attempt to determine two independent quantities (Mmax

and R1.6) by only one observable. In fact, a thorough error
analysis for only one peak frequency measurement reveals
that depending on the EoS the maximum mass can be de-
termined only with a large error bar. (Notice the flat slope
for small radii in fig. 6.) These considerations are summa-
rized in fig. 8, which shows Mmax directly as a function
of the peak frequency of 1.5-1.5M� mergers. Remarkably,
fpeak(Mtot = 3.0M�) immediately yields an upper limit
for Mmax, which for soft EoSs implies even a good estimate
of Mmax (recall the lower bound on Mmax by the measure-
ment of NSs with about 2M�). In fig. 8, the dashed line,
which is given by

Mmax,upperlimit =
2
3
fpeak + 4.53, (5)

with the frequency in kHz and the mass in M�, indicates
an exclusion region and thus defines an upper limit on
Mmax, which can be derived from a single detection of a
merger with Mtot = 3.0M�. We stress that some of the
EoSs within our sample (especially some of the models
by [99], blue symbols) have a speed of sound equal to
the speed of light at higher densities. These models are
thus maximally stiff, which is favorable for yielding high
maximum masses. We thus conjecture that the dashed line
represents a true upper limit and is not an artifact of the
chosen sample of EoSs. We also refer to fig. 16 in [6], which
shows a plot similar to fig. 8 but for simulations of 1.35-
1.35M� mergers.

Figure 8 shows that a single merger event can only con-
strain the maximum mass. However, we emphasize that
the estimate of the threshold mass, e.g. through fig. 7,
represents a viable goal on its own. The threshold mass
is the crucial quantity to judge the outcome of a detected
merger event. For instance, at larger distances only the
chirp mass can be measured (which determines the total
mass with some accuracy, see sect. 2). Having an estimate
of Mthres available from a previous near-by event, the to-
tal mass of a distant merger may be crucial information
for interpreting a possibly detected electromagnetic coun-
terpart, for instance from thermal emission by the ejecta,
which is powered by the radioactive decay of nucleosyn-
thesis products [92–94, 98]. It is known that the prompt
collapse leads to a reduced ejecta mass and thus to dim-
mer electromagnetic counterparts, which reach their peak
emission on a shorter time scale e.g. [96]. Also, for the co-
incident detection of a short gamma-ray burst [101–103]
and a GW signal of a merger the information on the col-
lapse behavior will provide valuable information and help
to understand the conditions leading to this gamma-ray
burst.

Method 3: While a single event can only yield an up-
per limit on the maximum mass Mmax, we have recently
shown that several events with a measurement of the dom-
inant postmerger GW frequency may suffice to determine
the maximum mass [31]. Specifically, mergers with differ-
ent binary masses (but in the most likely range of binary
masses) can be employed for an Mmax estimate. The pro-
cedure has the following background. Measuring the peak
frequencies for two different total binary masses allows
to estimate how the dominant GW frequency depends on
Mtot. This can be used to extrapolate fpeak(Mtot) and
thus to estimate the behavior at higher binary masses,
which is particularly sensitive to the maximum mass and
the radius of the maximum-mass configuration. In essence,
the absolute values of fpeak(Mtot) and its slope are very
sensitive to Mmax and Rmax and thus yield an estimate
of the maximum mass of nonrotating NSs with an ac-
cuarcy of roughly ±0.1M�. For details we refer to [31] and
note that a slightly different approach is described in [32],
which results in a similar precision. We also point out that
this extrapolation procedure determines the radius of the
maximum-mass configuration and the maximum density
of nonrotating NSs, which are quantities that are highly
characteristic for the high-density regime of the EoS.
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Fig. 9. Evolution of the lapse function of a 1.35-1.35M� merger with the DD2 EoS in the equatorial plane. The snapshots
should be compared to fig. 2 in [11] showing the density evolution for the same time steps of the same simulation.

The advantage of this approach lies in the fact that
it relies only on detections of mergers with binary masses
in the most likely range, i.e. roughly between 2.4M� and
3.0M� (see, e.g., [20]). This contrasts the procedure to
estimate Mmax by a direct measurement of the threshold
mass as sketched for Method 1. Estimating the thresh-
old mass directly by determining the outcome of mergers
with binary masses above and below Mthres requires sev-
eral merger detections at higher binary masses, which are
possibly very unlikely.

5 Characterization of GW peak frequencies

5.1 Origin of main and secondary GW peaks

We start with a brief summary of our current understand-
ing of the mechanisms which produce certain peaks in the
GW spectrum [11]. For the interpretation of the main and
secondary peaks it is important to realize that the merger
remnant can be considered as an isolated self-gravitating

object [34]. This view is supported by fig. 9 showing the
lapse function in the equatorial plane for a 1.35-1.35M�
merger with the DD2 EoS [85,86]. The lapse function may
be seen as the relativistic analog of the gravitational po-
tential. In the upper left panel the system is still composed
of two cores corresponding to the initial NSs. Shortly later,
the two cores have merged into a single potential well. The
time steps of the snapshots in fig. 9 are the same as the
ones in fig. 2 of [11], which shows the evolution of the rest-
mass density in the equatorial plane for the same model. It
is remarkable that in the density evolution, a double-core
structure persists for several milliseconds after merging,
whereas the lapse function exhibits already a single core
with partially strong deformations. (In the density plots
corresponding to the upper right and lower panels of fig. 9
a clear double-core structure is still visible.) These findings
imply that the double-core structure visible in the density
field for many milliseconds should not be interpreted as
two gravitationally interacting objects, but rather as local
overdensities moving in a single gravitational potential.
Hence, the double cores should be viewed as tracers of
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the lapse function is present. The dashed green line shows the
evolution of the central lapse function of a late-time remnant
of the same model where a quasi-radial velocity perturbation
was added to excite the fundamental quasi-radial oscillation
mode.

the dynamics of a single, isolated object, rather than two
independent dynamical objects.

The time evolution of the remnant structure is also
summarized in fig. 10. It shows the time evolution of the
central lapse function, which may be interpreted as a mea-
sure for the compactness of the stellar object. The two ini-
tial NSs first touch at about t = 12.4ms. The vertical line
indicates the time when the two cores in the lapse func-
tion (upper left panel in fig. 9) merge into a single core,
which occurs already during the first compression phase,
i.e. right during the final plunge. The subsequent oscil-
lations in the central lapse function indicate quasi-radial
oscillations (bounces and compressions of the remnant).
The figure implies that matter accumulates into a sin-
gle, gravitational trough already at a very early time in
the remnant’s evolution. Consequently, right from its for-
mation the remnant’s evolution can be described by the
(non-linear) dynamics of a single, self-gravitating object.
For instance, the dominant osillation can be associated
with the fundamental quadrupolar fluid oscillation mode.
This can be seen by adding a velocity perturbation to the
remnant at late times, when it reaches a quasi-equilibrium
and the GW emission essentially has diminished. We add
an instantaneous perturbation of

δvθ = 0.4 sin
(

π
r

rsurface(θ)

)
sin (θ) cos (θ) cos (2φ), (6)

to the θ-component of the coordinate velocity as a func-
tion the polar angle θ, the azimuthal angle φ and the radial
coordinate r. (Geometrical units are adopted.) The radial
coordinate rsurface of the surface, which only depends on
θ, is defined by the coordinate at which the density drops
below some threshold. We evolve the remnant with the
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Fig. 11. GW spectrum of a 1.35-1.35M� merger with the
DD2 EoS (black line) given by heff = h̃(f) · f with the Fourier
transform of the waveform h×. The green dashed curve shows
the GW spectrum of a simulation of a late-time merger rem-
nant of the same model which was perturbed with a velocity
field suitable to excite the fundamental quadrupolar fluid os-
cillation mode. Thin dashed lines show the anticipated unity
SNR sensitivity curves of Advanced LIGO [87] (red) and of the
Einstein Telescope [88] (black).

added velocity perturbation for several milliseconds and
extract the GW signal. The spectrum of the GW signal of
the orginal simulation is compared to the spectrum of the
perturbed model in fig. 11. It is evident that the perturba-
tion excites an oscillation mode with the same frequency
as the dominant remnant oscillation, which strongly sug-
gests that fpeak is the frequency of the l = |m| = 2 funda-
mental mode5. This is corroborated by the extraction of
the oscillation eigenfunction in [34], which shows a clean
quadrupolar structure.

Also other (secondary) peaks in the GW spectrum
can be explained by oscillation modes of the remnant.
For instance, the peak at 1.5 kHz in fig. 2 is produced
by a quasi-linear interaction between the fundamental
quadrupolar mode and the quasi-radial oscillation of the
remnant [34]. This can be shown by determining the fre-
quency f0 of the quasi-radial mode, which itself does not
occur in the GW spectrum. However, it is very pronounced
in the time evolution of the central lapse function (fig. 10)
and in other characteristic properties of the remnant,
such as the maximum density and the size of the rem-
nant. Again, by adding a suitable velocity perturbation to
the late-time remnant, one can predominantly excite the
quasi-radial mode and can extract its frequency from the
time evolution of the central lapse function. This is visible
in fig. 10, where the green dashed curve shows the evolu-
tion of the radially perturbed model. The determination of
the frequencies of the quadrupolar mode (fpeak) and of the

5 For this reason it was called f2 in [34] in the context of
mode identification.
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radial mode (f0) reveals that a secondary peak is expected
to occur at fpeak − f0, which indeed is the case. The fre-
quency coincidence confirms the nature of this secondary
peak as being a coupling of two modes, which is why we
refer to this feature as the f2−0 peak. Another correspond-
ing combination frequency can be recognized in fig. 2 at
approximately fpeak + f0. The peak at fpeak + f0 is obser-
vationally less interesting because of its weakness and the
smaller sensitivity of GW detectors at higher frequencies,
but it substantiates the importance of mode couplings in
NS merger remnants.

Finally, there is one more secondary peak visible in the
GW spectrum displayed in fig. 2. Recently, we provided
evidence that this feature is generated by a spiral defor-
mation which is created during merging. This deformation
cannot follow the faster rotation of the inner remnant.
The spiral deformation forms antipodal bulges, which or-
bit around the central part of the remnant for several mil-
liseconds. Being a strong, non-axisymmetric, orbiting de-
formation, the antipodal bulges generate a GW signal at
a frequency which is twice the orbital frequency of the
bulges. A deeper analysis of the simulation data confirms
this origin of the GW peak at 2 kHz for the particular
model (e.g. by extracting the orbital motion of the antipo-
dal bulges and estimating their mass, by comparing the
presence of the bulges and the presence of the secondary
peak in the GW spectrum, and by computing GW spectra
for the inner and outer parts of the remnant separately to
estimate the contribution of the different remnant com-
ponents to the different GW features). See [11] for more
details. Clearly, this so-called fspiral feature cannot be ex-
plained within a perturbative approach. One can show
by an analytic model that a peak with an appropriate
strength in the GW spectrum can be produced by point
particles of a few 0.1M�, which orbit for only a few mil-
liseconds with an orbital separation of roughly the diam-
eter of the inner remnant (see also sect. 6).

5.2 Classification of postmerger GW emission

Considering models of NS mergers with varied binary
masses and with different EoSs, one realizes that the
three most prominent features in the GW spectrum can
be explained by the three mechanisms detailed above:
the fundamental quadrupolar mode, the coupling of the
quadrupolar and the quasi-radial mode, and the orbital
motion of antipodal bulges. The peak of the fundamental
mode is present in all models and it is always the strongest
feature. The presence and the strength of the different sec-
ondary features, however, are sensitively affected by the
total binary mass. Depending on the total binary mass
relative to the threshold mass Mthres (see sect. 4) the dif-
ferent secondary peaks are more or less pronounced. This
leads to a classification scheme that relies on the pres-
ence and strength of the different secondary features. One
can identify three different types of NS mergers and cor-
responding GW spectra.

For relatively high Mtot, i.e. close to but below Mthres,
the quasi-radial mode is strongly excited during merging,

and consequently the f2−0 feature is the most prominent
secondary feature (Type I). In comparison, the fspiral peak
is weaker and may even be hardly visible in the spectrum.
For moderate binary masses both secondary features are
clearly visible and can be clearly distinguished in the spec-
trum (Type II). The secondary peaks have a roughly com-
parable strength. In a third type of GW spectra, the f2−0

feature is absent (or hardly visible) and the GW peak by
the spiral deformation is the most prominent secondary
feature. This Type III occurs for relatively low total bi-
nary masses, that means for Mtot much below Mthres. (An
additional case is the prompt collapse to a BH as discussed
in sect. 4 for Mtot ≥ Mthres.)

Since the threshold mass depends on the EoS, the no-
tation of a “relatively high” or “relatively low” binary
mass is EoS-dependent as well. As a consequence, for
Mtot = 2.7M� all three types of mergers can occur de-
pending on the EoS (see fig. 5 in [11]). For EoSs which
lead to compact NSs, the initial stars merge with a higher
impact velocity (see fig. 3 in [96]), which is why the quasi-
radial mode is strongly excited resulting in a pronounced
f2−0 peak (Type I). For stiff EoSs, i.e. less compact stars,
the merging proceeds more gently with a lower impact
velocity, which suppresses the strong excitation of the
quasi-radial mode. Such models favor the formation of
pronounced spiral deformations, and thus the fspiral peak
becomes particularly pronounced. The same reasoning ex-
plains the occurence of the different merger types for a
fixed EoS dependending on the total binary mass.

We note that the classification of different merger sim-
ulations in [11] is done based on the GW spectrum of the
full signal (inspial and postmerger phase). Considering the
postmerger spectrum only (i.e. windowing6 the signal ap-
propriately) the two secondary peaks are weaker, which
suggests that they interfere with power from the inspiral
signal and that their actual strength is weaker. While the
frequency of the inspiral signal may not even reach such
high frequencies, some power may still be present at the
frequencies of the secondary peaks because the inspiral sig-
nal is finite. We also note that this classification scheme,
the description of the different mechanisms and the follow-
ing discussion of the frequency dependencies hold for sym-
metric and mildy asymmetric binary mergers. The cases
of strongly asymmetric mergers still need to be clarified
as well as the nature of several other features which are
even weaker than the secondary peaks.

Finally, we mention that windowing the GW data
has an impact in particular on the precise frequency of
the fspiral peak. Choosing the postmerger spectrum only
or even excluding the very early postmerger phase, the
fspiral peak shifts to higher frequencies and its strength de-
creases. The latter is understandable because one excludes
a part of the signal, when the mechanism generating the
fspiral feature is operating. The frequency shift may not
be unexpected, given that the fspiral peak is produced by
a highly dynamical feature. For instance, one may expect

6 By windowing we mean the application of a window func-
tion, e.g. a Tukey window, to the GW data, which can be used
to exclude certain parts of the whole signal.
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that the antipodal bulges orbit at slightly smaller radii
and thus lead to slightly higher orbital frequencies.

5.3 Frequency dependence of secondary peaks (and
EoS constraints)

The dependence of the dominant oscillation frequency
fpeak on the EoS was extensively discussed in sect. 3,
and especially the potential for an accurate determina-
tion of NS radii (or, equivalently, NS compactnesses at
fixed masses) was pointed out. The frequencies of the sec-
ondary peaks fspiral and f2−0 follow a behavior very sim-
ilar to that of fpeak, i.e. for a fixed total binary mass the
frequencies are higher for EoSs which yield smaller NS
radii. Relating the frequencies with the radii of nonrotat-
ing NSs (as in sect. 3) one finds similarly tight correlations
for fspiral and somewhat less tight for f2−0 (see [11], see
also [18] for a plot relating the secondary frequencies di-
rectly to the dominant frequency fpeak). The frequencies
follow the order f2−0 < fspiral < fpeak.

In principle, secondary frequencies may be employed
for EoS constraints [11, 74, 77], however, a few issues are
worth being mentioned. The secondary peaks are weaker
than the main peak even if one takes into account the
better sensitivity of GW detectors at lower frequencies.
Hence, secondary frequencies will be more difficult to mea-
sure. In addition, the secondary peaks are broader in com-
parison to fpeak and often do not stand out clearly from
the background. This will further impede an accurate de-
termination of the secondary frequencies. Also, a detection
of a single secondary peak will require additional informa-
tion, e.g. from a measurement of fpeak, to safely associate
the secondary peak with either fspiral or f2−0. In compar-
ison, a detection of the dominant peak frequency is more
likely because of its strength, and, as discussed in sect. 3,
a single detection of fpeak is sufficient to yield an accurate
determination of NS radii.

Given the similarity to fpeak we do not further discuss
the dependencies of the secondary peak frequencies here,
but we refer to [11,18] for more details. Regarding the im-
plications for EoS constraints we, however, note that our
simulations in [11] do not confirm the existence of a mass-
independent universal relation for the strongest secondary
peak as claimed in [74,77]7. Instead, we find tight relations
for the individual secondary frequencies for fixed total bi-
nary masses only. Note that there is no conflict between
the simulation data of [74,77] and [11], but different con-
clusions are explainable by the choice of the investigated
binary setups. In fact, comparisons of the secondary and
dominant frequencies for individual models yield a good
quantitative agreement. The relation proposed in [74, 77]
is built on simulations with a set of 6 EoSs, but with
different binary-mass ranges for each EoS. The choice of

7 In [74,77] no distinction between fspiral and f2−0 was made,
but their secondary frequency f1 should correspond to the
strongest secondary peak, which for most cases may be the
fspiral feature.

range of the binary masses, however, affects the distribu-
tion of GW frequencies. This is the reason why an EoS-
dependent choice of binary mass ranges introduces a bias
(depending on whether the mass range for a given EoS is
relatively high or low compared to the average), and why
a universal relation does not exist if the same range of
binary masses is chosen for all EoSs as in [11]. Apart from
this, for a robust universality and mass-independence the
mass range should comprise approximately the range that
is expected from observed binaries, and not only a small
variation of 0.2M� in Mtot. Finally, we note that a set
of only 6 EoSs may not be sufficient to allow for robust
conclusions about the spread in empirical relations and
thus the quality of certain relations and their usability
for EoS constraints, because models which may possibly
lead to outliers are not included. Since a mass-independent
relation of the secondary frequencies does not exist, the
relation proposed in [74, 77] cannot be employed for EoS
constraints as proposed. However, as detailed in sect. 3,
detecting the weaker secondary GW peaks is not essen-
tial for NS radius measurements if the stronger, dominant
postmerger oscillation was measured.

6 Analytic model for postmerger GW
emission

The understanding of the most prominent GW emis-
sion mechanisms as detailed in sect. 5 motivate us to
set up an analytic model for the postmerger GW sig-
nal. This model may form the basis for GW templates
to be used in matched filtering GW searches (see [17] for
the potential of template-based searches in comparison to
morphology-independent burst search algorithms). We re-
port the model here by specifying the x-y component of
the reduced quadrupole moment of the GW source, which
can easily be interpreted as the cross polarization of the
GW signal along the polar direction. The other compo-
nents of the quadrupole moment can be deduced with the
same set of parameters, from which the complete GW sig-
nal can be derived (i.e. both polarizations in all emission
directions). For instance, the plus polarization can be ob-
tained by adding an appropriate phase shift. In [11] we
identify three main mechanisms that produce the domi-
nant postmerger GW emission. As also detailed in sect. 5
this includes the dominant oscillation by the fundamen-
tal quadrupole mode, the coupling of this mode with the
quasi-radial mode of the remnant and the transient emis-
sion from a spiral deformation. All three mechanisms can
be modelled by individual sine functions with given initial
amplitude, initial phases and exponential damping behav-
ior. Hence, our analytic model reads

h× ∝ Qxy = Apeak exp (−(t − t0)/τpeak)
sin (2πfpeak(t − t0) + φpeak)
+Aspiral exp (−(t − t0)/τspiral)
sin (2πfspiral(t − t0) + φspiral)
+A2−0 exp (−(t − t0)/τ2−0)
sin(2πf2−0(t − t0) + φ2−0), (7)
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for t ≥ t0 with a starting time t0. The particular advan-
tage of our model (for instance in comparison to the fits to
GW signals described by [72]) is that the parameters are
motivated by the underlying physical mechanisms. Hence,
it is not difficult to choose appropriate values for these pa-
rameters if one wants to reproduce a given GW signal, e.g.
from a numerical simulation. The frequencies fpeak, fspiral

and f2−0 can be chosen as found in the spectra. The am-
plitudes and the damping time scales can be estimated
from the time evolution of the GW signal and adjusted
such that the correspoding peaks in the GW spectrum co-
incide with numerically obtained spectra. Generally, the
amplitude and the damping timescale of the fundamen-
tal mode (“peak”) should be the largest. However, for the
model discussed above (fig. 2), Aspiral may have a com-
parable strength but a shorter damping time scale than
the contribution from the fundamental mode. As argued
in [11], the antipodal bulges of the spiral deformation dis-
appear after a few orbits, which suggests a damping time
scale τspiral of the order of a few milliseconds.

The physical background of the different parameters is
also advantageous because the individual parameters can
be constrained to certain ranges. For instance, the damp-
ing time scales τ2−0 and τspiral are always smaller than
τpeak. The restricted range of certain parameters is an
important property of our model because it signficantly
reduces the parameter space and thus the computational
costs in future applications as templates in matched fil-
tering searches. The range and number of parameters (for
instance the amplitudes and the frequencies) may be con-
strained if information about the total binary mass (or
at least the chirp mass) is available from the GW inspi-
ral signal. In this context, we point out that for a fixed
total binary mass and a fixed mass ratio the three frequen-
cies are highly correlated [11, 18]. For symmetric binaries
with Mtot = 2.7M�, fspiral and f2−0 are tight functions
of fpeak, which can be well approximated by

fspiral = 0.8058fpeak − 0.1895, (8)

and
f2−0 = 1.0024fpeak − 1.0798, (9)

with the frequencies in kHz. Since these relations are accu-
rate with deviations of typically only a few 10Hz, fspiral

and f2−0 can be essentially eliminated from our model,
which reduces the dimensionality of the parameter space.
If this precision is not sufficient for template searches one
can at least define a very narrow range of frequencies
around the estimates of eqs. (8) and (9). Further corre-
lations and constraints of the different parameters will be
explored in future work. For an application of this model
in a template-based GW search, which we leave to fu-
ture work, possible refinements of the damping behavior
or small frequency drifts may be considered as well. Also
a certain rise time of the signal may be implemented or
the model may be directly connected to an inspiral signal
(see [79]). For strongly aymmetric binaries modifications
may be necessary.

We note that our model naturally leads to a time vary-
ing instantaneous GW frequency if the signal is inter-
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Fig. 12. GW signal of a 1.35-1.35M� merger with the DD2
EoS (black). The analytic model GW signal is shown as dashed
blue line (hardly visible since overlaid by the black curve) and
is virtually indistinguishable from the actual signal.

preted as being produced by a single instantaneous fre-
quency (see [72,77,78]). The interpretation of a single in-
stantaneous frequency, however, cannot be supported by
the underlying physical mechanisms producing the GW
signal (see sect. 5 and [11, 18]). Instead, there is evidence
that several mechanisms with different frequencies con-
tribute simultaneously to the signal. (See also the time-
frequency map in [18], which clearly shows distinct fre-
quencies being simultaneously present and relatively sta-
ble in time.) This feature also distinguishes our analytic
model from the model in [77], which describes only a single
instantaneous orbital frequency which contributes to the
GW signal and thus neglects the presence of the orbiting
antipodal bulges generating the distinct fspiral peak.

To exemplify the potential of our analytic model we
show in fig. 12 the postmerger GW signal of a simula-
tion with the DD2 EoS (black) together with the signal
of our analytic model (dashed blue curve, eq. (7)) com-
puted for a chosen set of parameters. As described above,
the frequencies are taken from the GW spectrum and ap-
propriate values are chosen for the remaining parameters.
We stress that for this example the parameters were not
determined by a fitting procedure but simply by a visual
trial-and-error comparison of the numerical waveform and
the model signal. The very good match between the wave-
forms in fig. 12 is obtained without extensive fine-tuning of
the parameters, but only by a crude, physically motivated
choice of the parameters. An even better match can be
achieved by an appropriate fitting procedure or more elab-
orate tuning of the parameters of the model (see [72]). This
is shown in fig. 13, where we employ a publicly available
algorithm8 to generate an even better fit to the data. For
clarity we show only the initial postmerger phase but note

8 We use the Covariance Matrix Adaptation Evolution Strat-
egy downloaded from https://www.lri.fr/∼hansen/cmaes

inmatlab.html, which is described in [104].
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Fig. 13. Initial phase of the postmerger GW signal of a 1.35-
1.35M� merger with the DD2 EoS (black). The analytic model
GW signal is shown as dashed blue line.
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Fig. 14. Postmerger GW spectrum of a 1.35-1.35M� merger
with the DD2 EoS (black) given by heff = h̃(f) · f with the
Fourier transform of the waveform h×. The spectrum obtained
from the analytic model in shown as dashed blue line. Thin
dashed lines show the anticipated unity SNR sensitivity curves
of Advanced LIGO [87] (red) and of the Einstein Telescope [88]
(black).

that the late phase is equally well reproduced as in fig. 12.
In fig. 14 we show the correspodning spectrum of the nu-
merical waveform and of the analytic model, which appar-
ently reproduces well the prominent features. Note that it
is simple to include an additional feature in our analytic
model to account for the peak at about 3.8 kHz, which
is the coupling of the quadrupolar mode with the quasi-
radial mode appearing at a frequency f2+0 = fpeak + f0.

Since most of the parameters of this additional feature are
already determined by the current model (eq. (7)), the
consideration of this f2+0 contribution would not signifi-
cantly complicate the model. However, given the weakness
of this peak and the lower sensitivity of GW detectors at
higher frequencies we do not further investigate this op-
tion. Future work should investigate the performance of
our model in fitting other waveforms, especially for asym-
metric binary mergers, and the applicability of the model
for template-based GW searches.

Finally, we note that for the fspiral feature in the model
shown in figs. 12 and 14 we have chosen an amplitude of
Aspiral = 0.085 and a damping time scale of τspiral = 3ms.
An amplitude of this magnitude corresponds to two point
particles of about 0.2M� to 0.3M� orbiting at roughly
the surface of the remnant. This further substantiates the
finding in [11] that the fspiral peak in the GW spectrum is
generated by antipodal bulges which form during merging
and which orbit around the inner remnant for only a few
milliseconds.

7 Impact of rotation

Most NS merger simulations have focussed on binaries
with irrotational velocity profile, i.e. binaries with NSs
that do not rotate intrinsically. This is justified by the
conclusion that the viscosity is not sufficient to enforce
co-rotation of the binary components by tidal interactions
during the inspiral phase [105,106]. In addition, the intrin-
sic rotation of NSs in binaries is expected to be relatively
slow since the stars cannot be spun up by accretion be-
cause of a missing donor star. In fact, the fastest known
pulsar in a NS binary system has a rotation period of only
22ms (see, e.g., list in [107]), which is slow compared to
the orbital period of the binary prior to merging, which is
of the order of roughly 2ms. An intrinsic rotation period
of 22ms is also slow in the sense that the stellar structure
is practically unaffected by the rotation, which only be-
comes important for spin periods below ∼ 5ms. Finally,
one should bear in mind that most NSs in binaries rotate
even more slowly than 22ms, and that in the particular
case of a NS spin of 22ms the rotation will be further
reduced by pulsar spin down due to magnetic dipole radi-
ation until the binary components merge on a time scale
of roughly 100Myrs.

Here we are mostly interested in the impact of intrin-
sic NS rotation on the GW signal, in particular on the
dominant peak frequency of the GW spectrum, which can
be employed for accurate NS radius constraints. With re-
gard to the discussion in sect. 3, the most crucial ques-
tion is whether intrinsic NS rotation can substantially al-
ter fpeak for expected rotation rates compared to models
without intrinsic rotation. (The relations like the ones in
fig. 3 could still be used to determine NS radii but with
some loss of precision if the intrinsic rotation cannot be
measured from the GW inspiral phase (but see, e.g., [47]
for a discussion of spin measurements).) Comparing irro-
tational, co-rotating and counter-rotating spins (with re-
spect to the orbital motion) only very little influence on
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fpeak was observed by [62]. More recent studies in full gen-
eral relativity found a somewhat larger effect of the order
of 100Hz for intrinsic rotation rates roughly comparable
to 22ms [73]. A comparable influence was reported by [78]
but for roughly three times faster rotation rate, suggest-
ing a somewhat weaker effect. However, these results and
the observed impact of rotation may not be representative
because the chosen binary systems are close to the thresh-
old to prompt BH formation, and most of these simulated
NS merger remnants experience the delayed collapse to a
BH a few milliseconds after merging. For such binary se-
tups the postmerger object undergoes strong changes in
the stellar structure, and therefore the GW signal may
be more sensitively affected by small changes, e.g. by a
small difference in the angular momentum of the remnant.
Moreover, the calculations of [73] employed an ideal-gas
EoS, which may not represent a proper description of NS
matter at all densities. [81] considered unequal-mass bi-
naries with fast intrinsic rotation (exceeding the rotation
rate of the fastest known pulsar in binary systems) and
found a shift of fpeak by only a few 10Hz (in addition one
setup with a misalignment between orbital and intrinsic
rotation was investigated).

In order to assess the impact of intrinsic rotation for
a more representative setup we performed calculations
of 1.35-1.35M� binaries with the DD2 EoS and varied
the initial intrinsic rotation rate using spin periods of
19ms, 7ms, 4ms, and 2.2ms. These simulations were then
compared to the results from a calculation with irrota-
tional velocity profile, which represents the usual setup
used for deriving the results in sects. 3 to 5. Our simula-
tions were performed with the code described in [6,36–38],
which imposes the conformal flatness condition on the spa-
tial metric for solving the Einstein equations [108, 109].
For simulations of irrotational binaries this approximation
showed a very good quantitative agreement with fully gen-
eral relativistic calculations (comparisons were reported in
e.g. [6, 19,74,84]).

Figure 15 demonstrates that the impact of initial NS
rotation on the dominant postmerger GW frequency is
practically negligible. Note that all tested models with
NS spins rotate faster than the fastest known pulsar in a
binary. For the model with the very fast rotation period of
about 2.2ms the peak frequency shifts by roughly 50Hz
relative to the model without initial NS spin, whereas
the calculation with an initial NS spin period of 19ms is
practically identical to the computation without NS spin.
One observes that models with faster initial spin lead to
slightly lower peak frequencies and somewhat lower peak
heights. This behavior is understandable from the fact
that the remnants in such models have slightly more angu-
lar momentum. Hence, they are less compact and oscillate
at lower frequencies. Also, the higher angular momentum
slightly damps the excitation of the f-mode oscillation be-
cause of the centrifugal barrier, which is why the height
of the main postmerger peak is slightly reduced. This can
also be seen by considering the minimum of the central
lapse function in the first compression phase (see fig. 10
for the model without intrinsic NS rotation), which reveals
that mergers with initial spin are not as much compressed
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Fig. 15. GW spectra of a 1.35-1.35M� merger with the DD2
EoS with different initial intrinsic NS spins.heff = h̃(f) ·f with
the Fourier transform of the waveform h×.

during the plunge and during the first compression phase
as the corresponding model without spin.

Finally, the insensitivity of the peak frequency with re-
spect to variations of the initial NS spin is understandable
by considering the angular momentum of the remnant.
Compared to the model without NS spin, the remnant’s
angular momentum is only slightly higher in models with
spin because most of the angular momentum originates
from the orbital motion of the inspiralling NSs. The con-
tribution from the NS spins is only at the level of a few per
cent (only for the model with a spin period of 2.2ms the
additional angular momentum slightly exceeds 10 per cent
of the orbital angular momentum). Hence, differences in
the remnant’s structure are marginal, which explains why
the peak frequencies are hardly affected by initial rotation
even if the NSs spin relatively fast in comparison to mea-
sured spins in NS binaries. Therefore, the consideration of
intrinsic NS spins can be safely neglected for the purpose
of measuring the NS radii via the dominant postmerger
oscillation frequency fpeak (sect. 3).

The different models displayed in fig. 15 show that the
secondary peaks may be affected by very fast intrinsic NS
rotation. While the model with a rotation period of 19ms
does not exhibit important differences compared to the
calculation with an irrotational velocity profile, the bina-
ries with faster spinning NSs lead to a stronger fspiral fea-
ture. This makes sense considering our explanations about
the origin of this peak (sect. 5). Clearly, initial NS rotation
favors the formation of antipodal bulges and thus leads
to higher fspiral peaks. Future work should also consider
cases with different spin orientations and magnitudes of
the individual binary components.

8 Two-families scenario

Recently, it has been proposed by [35] that two differ-
ent families of compact stars, ordinary hadronic NSs and
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Fig. 16. Mass-radius relation of a hadronic EoS (black curve)
and an absolutely stable strange quark matter EoS (dashed
blue curve) within the two-family scenario [35]. M is the grav-
itational mass and R the circumferential radius (EoSs provided
by Giuseppe Pagliara). The dashed line indicates the conver-
sion from a hadronic star to a quark star for a fixed rest mass.

absolutely stable strange stars (SSs), might coexist un-
der the assumption that the strange matter hypothe-
sis is correct [110, 111] (see, e.g., [112–114] for similar
ideas and [115] for arguments against absolutely stable
strange matter). Specifically, the authors argued for a
soft hadronic EoS and a stiff quark matter EoS. In this
scenario, low-mass compact stars are NSs and compact
stars with masses above a certain threshold are absolutely
stable SSs, i.e. objects entirely composed of quark mat-
ter except for a dynamically unimportant crust of nucle-
onic matter with densities below the neutron drip density.
A conversion of NSs to SSs may be triggered by differ-
ent processes, e.g. mass accretion onto a NS. The mass-
radius diagram in fig. 16 illustrates such a jump from
the NS branch to the SS branch. During the conversion
(e.g. [35,116–120]) the baryon number of the compact star
is conserved, and the change in the binding energy leads to
a different gravitational mass. While clearly speculative,
the scenario of two families of compact stars represents
a possible solution to the hyperon puzzle, i.e. the sce-
nario is compatible with a hadronic EoS which is strongly
softened by the occurrence of hyperons, and a maximum
mass of compact stars above ∼ 2M�. Here we do not per-
form actual simulations which treat the conversion pro-
cess and the detailed postmerger evolution, but based on
theoretical arguments we discuss the observational signa-
ture of such a scenario without further commenting on the
likelihood of the scenario or considering possible counter-
arguments. For instance, it still remains to be explored to
which extent the existence of SSs could lead to a cosmic
flux of strangelets, which would prevent the existence of
NSs because seed strangelets would convert a NS into a
SS [121–123]. For SS EoSs which are compatible with the
lower observational bound of the maximum mass of nonro-

tating compact stars, we expect that significant amounts
of strange quark matter become gravitationally unbound
during a merger of SSs [124]. Whether there exists a cos-
mic flux of strangelets, however, depends also on the frag-
mentation and survival probability of the unbound strange
quark matter (see, e.g., [125] for a discussion of a possible
reconversion of quark matter nuggets to ordinary nucle-
onic matter). We focus on the GW emission of mergers of
compact stars within the described scenario.

We consider only one exemplary model of the two-
families scenario, i.e. one pair of nucleonic and quark mat-
ter EoSs (see fig. 16). (Specifically, for the hadronic EoS
we use the relativistic mean field model of [126], which in-
cludes hyperons and delta resonances and which is based
on the model of [127] with density-dependent coupling
constants. We consider the model where the ratios be-
tween the coupling constants of the mesons to the Δ iso-
bars and the coupling constants of the mesons to the nu-
cleons are chosen to be xσΔ = 1.15, xωΔ = 1, xρΔ = 1.
The EoS of absolutely stable strange quark matter adopts
the model of [128] with the parameter X fixed to 3.5. The
EoS tables were provided by G. Pagliara.) Clearly, vari-
ations to this model are possible, but the case discussed
here is sufficient for the sake of outlining the special obser-
vational signatures of such a scenario and the qualitative
behavior. We expect no qualitative differences for other
realizations of the two-family scenario. We consider only
the GW emission of the postmerger phase and assume
that several GW observations of compact-star mergers are
made with different total binary masses (see also [39] for
an earlier discussion of the GW signature of SS mergers).
We restrict the discussion to symmetric mergers.

For the particular model discussed here the transition
of a NS to a SS occurs for NSs more massive than ∼
1.45M� (gravitational mass), which corresponds to a cen-
tral energy density of ρconv = 1.5×1015 g/cm3 (see fig. 16).
This means that for total binary masses below 2.9M� two
NSs will merge, since the mass of each binary component
is below 1.45M�. This should be considered as the generic
case given that many observed NS binaries have a total
mass below ∼ 2.9M�. Prior to merging the maximum den-
sity in the initial stars starts to decrease because of the de-
formations in the very last inspiral phase. During merging
the densities then increase again (see, e.g., fig. 3 in [39]).
The maximum density in the merger remnant shows some
oscillations and typically the maximum density in the
remnant is larger than the one of the initial stars. How-
ever, in particular for low-mass mergers with Mtot below
∼ 2.4M�, the maximum densities do not significantly ex-
ceed the one of the inspiralling stars because of the strong
rotational (and thermal) effects in the remnant. Hence, for
lower total binary masses the densities in the remnants re-
main below ρconv and are thus not sufficient to trigger the
conversion of the NS matter to absolutely stable quark
matter (here we neglect a possible influence of thermal
effects on the conversion threshold). For larger Mtot the
densities in the remnanst may exceed the central density
of a nonrotating NS with 1.45M�, and thus the conversion
of NS matter to quark matter will set in. We note that a
first density maximum is reached directly in the very first
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compression phase during merging. During the subsequent
evolution of the remnant the densities are typically lower
than this first maximum. Only after many ms, the redistri-
bution of angular momentum in the remnant may lead to
an increase of the maximum density above the first max-
imum. Hence, the conversion to absolutely stable strange
quark matter is triggered right after merging or it occurs
only on a longer time scale, after the remnant oscillations
and thus the GW emission have ceased. In summary, this
results in the following picture. Binaries below a certain
binary mass threshold Mtot,conv lead to a merger rem-
nant made of NS matter. For total binary masses above
Mtot,conv the remnant encounters conditions that trigger
the immediate conversion of NS matter to quark matter
right during merging. Here we assume that the conversion
takes place on a very short time scale that is shorter or at
least comparable to the dynamical time scale of the rem-
nant [118, 120]. Hence, a quark matter remnant forms es-
sentially immediately, which has the same total rest mass
(but a somewhat reduced gravitational mass compared to
the corresponding NS merger remnant).

By performing a simulation for a 1.2-1.2M� binary
with the hadronic EoS, we find that the maximum density
after merging is only somewhat lower than the transition
density ρconv, which triggers the conversion of a NS to a SS
in a static configuration. From this we estimate that the
binary mass which triggers a conversion is only slightly
higher than 2.4M�, and thus we adopt in the following
Mtot,conv = 2.5M�. We stress that thermal effects may ac-
tually trigger the conversion (during merging) already at
lower densities. Hence, Mtot,conv may be somewhat lower,
which we neglect for simplicity because it would require
a detailed microphysical calculation of the temperature-
dependent threshold.

Based on these remarks we can now estimate the post-
merger GW emission of these binary mergers without ac-
tually performing simulations, which are technically non-
trivial because the burning of NS matter to quark mat-
ter needs to be treated in an appropriate way including
for instance an implementation of turbulent combustion.
For the model discussed here we find R1.6 = 10.47 km for
the hadronic EoS and R1.6 = 14.53 km for the SS EoSs
by computing the TOV solutions (see fig. 16). Using these
properties we can estimate the peak frequency of the post-
merger phase by employing the fits discussed in sect. 3,
which relate R1.6 and fpeak. From the fits we can com-
pute the expected peak frequency for total binary masses
of 2.4M�, 2.7M� and 3.0M� for both EoSs. With these
data we can then interpolate linearly to predict the GW
peak frequency as a function of Mtot, where we distinguish
the cases Mtot < Mtot,conv and Mtot > Mtot,conv. In the
former case we employ the estimates from the hadronic
EoS, while for the latter case we use the peak frequency
derived from R1.6 = 14.53 km, i.e. the quark matter EoS.
In fig. 17 one can read off which GW peak frequency is
expected for a given total binary mass, which is measured
by the inspiral GW signal (see sect. 2). It is clear that
the formation of a SS remnant leads to dramatic changes
of the postmerger GW signal compared to the GW emis-
sion from a NS remnant, which occurs for low total bi-
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Fig. 17. Dominant postmerger GW frequency fpeak as a func-
tion of the total binary mass for symmetric mergers with a two-
family scenario [35]. For low binary masses the merger remnant
is composed of hadronuc matter (black curve), whereas higher
binary masses lead to the formation of a strange matter rem-
nant with a lower peak frequency (dashed blue curve). The
vertical dashed line marks a lower limit on the binary mass
which is expected to yield a remnant that is stable against
gravitational collapse (see text).

nary masses. Figure 17 demonstrates that two families of
compact stars result in a jump to lower peak frequencies
at Mtot,conv. Such a scenario can be clearly distinguished
from only one family of compact stars, because in this case
one expects a continuous increase of fpeak with Mtot (see
fig 1 in [31]). Observationally, this requires the detection
of several merger events with different total binary masses
to probe whether or not a jump to lower peak frequencies
occurs with increasing binary mass.

The vertical dashed line in fig. 17 displays the thresh-
old mass for prompt BH formation for the hadronic EoS
estimated via eq. (4). Thus, at least up to this binary
mass we expect the remnant to be stable independent of
how fast the onset of the conversion to strange matter can
stabilize the remnant.

We note that also SS EoSs roughly follow the fpeak-
R1.6 relation, which justifies the use of the relations dis-
cussed above (see [6]9). Given the small spread in the fits
to the empirical data of the fpeak-R1.6 relations, the pre-
diction of a frequency jump is a very robust feature of the
two-family scenario. We remark that the transition from
hadronic to quark matter leads to a change in the grav-
itational mass, which we do not take into account. Since
these changes are small, they have only a secondary im-
pact on the quantitative behavior in fig. 17.

9 The SS EoSs considered in [6] describe bare SSs. While
the inclusion of a nuclear crust would not have an impact on
the peak frequency, which is mostly determined by the high-
density regime of the EoS, the nuclear crust would lead to
somewhat larger stellar radii (a few hundred meters) and thus
would fulfill the fpeak-R1.6 relation even better than indicated
in fig. 11 of [6].
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The results in fig. 17 represent the realization of only
one possible model of the two-family scenario. However,
we expect a qualitatively similar effect for other EoS mod-
els within the two-family scenario. In this context it is
worth mentioning that for the particular model discussed
here (i.e. the pair of hadronic and quark EoSs) the to-
tal binary mass Mtot,conv for formation of a SS remnant
is relatively low compared to the expected mass range
of NS binaries. As argued in sect. 2, binaries with total
masses below 2.4M� should be considered unlikely. Hence,
the probability to detect a binary with Mtot < Mtot,conv

may not be high. However, we point out that there may
be a second way to discern the two-family scenario from
the ordinary model of only one family of compact stars,
which may succeed with only one detection of a binary
in the most likely mass range of about 2.7M�. GW de-
tectors may measure finite-size effects during the last cy-
cles of the inspiral [21–30]. Therefore, if the EoS infor-
mation revealed from the inspiral phase is in stark con-
flict with the EoS constraint from the postmerger phase,
this could be a strong indication for the two-family sce-
nario, too. Note that for binaries in the most likely mass
range, the inspiral probes only the hadronic EoS as long as
Mtot < 2×1.45M� for the model discussed here. Thus, the
GW signal from the inspiral alone may not be sufficient to
exclude the two-family scenario if no binary merger with
Mtot > 2 × 1.45M� is measured. Only the consideration
of both merger phases may be conclusive in this respect.
Finally, we note that also the possibility of SS-NS mergers
for asymmetric binaries with individual masses above and
below Mtot,conv/2 should be considered. We leave this for
future work.

9 Conclusions

We summarize the main ideas to infer EoS and NS prop-
erties from the postmerger GW emission of NS binaries
and in particular we review the new findings of this work.

– The minimum requirement for accurate constraints of
NS properties from the GW emission of NS merger
remnants is the measurement of the total mass of the
binary via the GW inspiral signal. The knowledge of
the binary mass ratio is not critical, since the rem-
nant’s dominant oscillation frequency depends only
weakly on the initial binary mass ratio. We illustrate
that in the context of NS mergers the total binary mass
can be estimated very well from the chirp mass, which
will be measured with very high accuracy.

– For a fixed total mass the dominant oscillation fre-
quency of the NS merger remnant scales tightly with
the radii of nonrotating NSs of chosen fiducial mass
for different EoSs. This in turn allows to determine
the NS radius from a measurement of the dominant
postmerger GW frequency, fpeak. The error is given
by the maximum deviation from the empirical relation
between the GW frequency and the NS radius found
among all EoSs. Choosing a fiducial NS mass some-
what higher than the mass of one of the merging NSs

minimizes the deviations in the empirical relation and
allows NS radius measurements with an accuracy of
about 100 to 200 meters. Consequently, already a sin-
gle detection of only the dominant peak frequency is al-
ready sufficient for a tight constraint on the NS radius
and thus the high-density EoS through the frequency-
radius relation.

– We investigate asymmetric and symmetric binaries of
the same chirp mass, which can be measured very accu-
rately during the inspiral phase. The frequency-radius
relation for the combined data from symmetric and
asymmetric binaries is very tight (with maximum de-
viations below 300 meters). Therefore, even under the
pessimistic assumption that only the chirp mass was
measured accurately and no information on the binary
mass ratio is available, the frequency-radius relation
can be employed for accurate NS radius measurements.

– For a broad range of binary masses (in the representa-
tive range between 2.4M� and 3.0M�) a single rela-
tion between the dominant postmerger GW frequency
and the NS radius can be constructed by rescaling
the frequency with the total binary mass. Deviations
from this relation are of the order of 500 meters. Thus,
for practical purposes, relations for fixed total binary
masses may be more useful because they are tighter
and the total binary mass will be known.

– From our representative simulations we conclude that
intrinsic rotation of the initial NSs has no significant
impact on the dominant oscillation frequency for initial
rotation rates as expected in NS binaries. Thus, intrin-
sic NS rotation can be safely neglected for deriving NS
properties and EoS constraints from GW signals of the
postmerger phase.

– We present three different possibilities to constrain the
maximum mass of nonrotating NSs from the collapse
behavior of NS mergers or from the measurement of
the dominant GW frequency. One of the key observa-
tions is that the binary threshold mass for prompt BH
formation is well described by pure TOV properties,
specifically by the maximum mass of nonrotating NSs
and by the compactness of the maximum-mass TOV
configuration. Thus, the threshold mass, which can be
observationally determined, depends in a specific way
on pure EoS properties. Also other properties of the
maximum-mass configuration of nonrotating NSs like
its radius or the maximum central density can be ob-
tained from measuring postmerger GW emission, thus
probing the very high density regime of NSs.

– Our analysis provides further evidence that the dom-
inant oscillation mode of the merger remnant is the
fundamental quadrupolar fluid mode. In addition, our
calculations show that the merger remnant forms a
single, self-gravitating object right from the time of
its formation. Although there are overdensities visible
in the evolution of the density in the equatorial plane,
which appear as a rotating double-core structure, these
features should not be considered as independent dy-
namical features, but as tracers of the nonaxisymme-
tries of a single star.
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– Besides the dominant GW emission frequency (dis-
cussed above), we identify two distinct processes which
produce prominent secondary peaks in the GW spec-
trum. One GW peak is prodcued by the orbital motion
of an outer antipodal spiral pattern that forms during
merging and persists for several milliseconds. Another
GW peak is generated by the coupling of the funda-
mental quadrupolar mode with the quasi-radial mode.
Depending on the exact system parameters (EoS and
total binary mass) one or the other secondary feature
is more prominent or, for some cases, both GW peaks
can have comparable strengths. The presence and the
prominence of the different features follows a clear be-
havior and can thus be embedded in a classification
scheme of the postmerger dynamics and GW emission.

– We present details of an analytic model for describ-
ing the structure of the postmerger GW signal that
is based on the physical mechanisms producing the
GW emission. A given postmerger GW signal can be
well described by our analytic model. The model pa-
rameters are physically motivated and thus specific,
physically motivated bounds on the parameters can be
imposed, which is advantageous for a template-based
GW search by reducing the computational effort. We
point out the existence of certain parameter correla-
tions which further reduce the dimensionality of the
problem, and thus our description may form the basis
for future matched-filtering GW data analysis.

– We finally explore a more speculative scenario of two
families of compact stars. Within this scenario massive
compact stars are made of absolutely stable strange
matter, whereas low-mass compact stars are ordinary
NSs. Observationally this scenario can be revealed by
a strong discontinuity in the dependence of the dom-
inant postmerger GW frequency on the total binary
mass. For the falsification or verification of this sce-
nario the postmerger GW signal may be crucial, since
the inspiral phase may only test the hadronic regime
for the expected range of binary masses.

Overall, these conclusions show that the postmerger
evolution is a highly interesting phase for understanding
NS and EoS properties. In particular, it seems that cer-
tain characteristics are only accessible through the post-
merger phase. Clearly, apart from advances in the mod-
elling of the different aspects of this object, further stud-
ies of the data analysis capabilities of the advanced GW
detectors are required. The highly rewarding prospects
sketched in this work strongly motivate the construction
of even more sensitive GW detectors, such as upgrades
of Advanced LIGO and Advanced Virgo or the Einstein
Telescope, e.g. [18, 88,129–131].
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