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Abstract. We use basic physics and simple mathematics accessible to advanced undergraduate students
to estimate the main properties of neutron stars. We set the stage and introduce relevant concepts by dis-
cussing the properties of “everyday” matter on Earth, degenerate Fermi gases, white dwarfs, and scaling
relations of stellar properties with polytropic equations of state. Then, we discuss various physical ingredi-
ents relevant for neutron stars and how they can be combined in order to obtain a couple of different simple
estimates of their maximum mass, beyond which they would collapse, turning into black holes. Finally, we
use the basic structural parameters of neutron stars to briefly discuss their rotational and electromagnetic
properties.

1 Introduction

Neutron stars (NSs) are extreme objects, with huge densi-
ties, gravitational and electromagnetic fields not encoun-
tered elsewhere, except (in some way) in black holes, but
with the advantage that NSs can be directly observed.
What makes them particularly fascinating for theorists
is that a serious study of their properties involves all
four fundamental forces of Nature (strong, electromag-
netic, weak, and gravitational) and essentially all areas of
physics: mechanics, electromagnetism, general relativity,
magneto-hydrodynamics, condensed matter physics, elas-
ticity theory, nuclear physics, quantum field theory, and
probably others. Of course this list is intimidating, partic-
ularly for students just being introduced to this subject.
The present article aims at lessening this feeling by using
undergraduate physics to explain the most fundamental
properties and estimate the numerical parameters charac-
terizing NSs, relating them to the properties of matter in
our surroundings and in white dwarfs (WDs). In this way,
we intend to give a first introduction to neutron stars,
transmitting a “feeling” for their properties and the phys-
ical basis of these. We do not aim at a comprehensive,
detailed, or rigorous discussion, which can be found in
various excellent textbooks, such as references [1–3], and
review articles like [4], complemented by introductory ar-
ticles aimed at undergraduate students, such as [5,6].
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Section 2 describes how quantum mechanics (through
the Heisenberg uncertainty principle), together with the
competition between kinetic and interaction energies, sets
the main properties of atoms and nuclei and the den-
sity of condensed matter around us. In sect. 3, we dis-
cuss the equation of state (EOS) of degenerate fermion
gases (based on the Pauli exclusion principle), in both the
non-relativistic and ultra-relativistic limits. Section 4 ap-
plies these to WDs, with strong parallels to the case of
atoms, obtaining numerical estimates for the sizes, max-
imum mass, and escape speeds of these stars, emphasiz-
ing that a non-interacting (though possibly relativistic)
fermion gas in Newtonian gravity gives physically mean-
ingful and reasonably accurate estimates. In sect. 5, these
results are reinterpreted in terms of the scaling relations
obtained for polytropic EOS. The longer sect. 6 deals with
the properties of NSs. First, it is shown that beta equi-
librium implies the coexistence of a majority of neutrons
with a small fraction of charged particles, which do not
contribute substantially to the EOS, but are crucial in
stabilizing the neutrons. Then, we apply the estimate of
WD sizes and maximum masses to NSs, obtaining results
that are not too far from accurate calculations, but point-
ing out that these ignore the important effects of General
Relativity and strong interactions between nuclei. Putting
these in, we discuss an alternative, simple estimate of the
maximum mass of NSs, proposed by Burrows and Os-
triker [7], assuming that the repulsion between neutrons
makes the stars incompressible and imposing that their
radius must remain larger than the Schwarzschild radius.
We discuss how this estimate, which at face value is un-
physical, because it implies an infinite speed of sound and
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thus violates causality, is actually quite similar to the lim-
its obtained by imposing the causality condition. Then, we
show estimates of the minimum rotation periods of various
astronomical objects and discuss the concept of the “light
cylinder” relevant for pulsars. Finally, we discuss the ex-
tremely small charge separation occurring inside NSs and
other astronomical objects and the strength and conse-
quences of NS magnetic fields.

2 “Everyday” matter

Even though NSs contain matter in a very extreme form,
or perhaps precisely because of this reason, it is useful to
start by having a look at the physics involved in the basic
properties of the matter we encounter around us, on the
surface of the Earth. This matter is composed of atoms,
which are bound states of tiny, very dense atomic nuclei (in
turn composed of protons and neutrons) surrounded by a
much larger cloud of electrons. In what follows, we discuss
some of their properties using simple physical estimates.
A similar discussion can be found in [8].

2.1 Size of atoms and density of condensed matter

In order to obtain the size of the electron cloud (and thus
of the atom), consider the simple case of a single electron
(of mass me and charge −e) bound to a nucleus of charge
+Ze. Of course we know how to solve this problem us-
ing the whole apparatus of Schrödinger’s equation, which
would give us a precise solution, but at the expense of
somewhat obscuring the relevant (rather simple) physics,
so we will take a much rougher approach. First of all, we
note that the nucleus is much more massive than the elec-
tron, so it remains essentially motionless while the electron
orbits around it. The energy of the electron, assumed to
be non-relativistic (to be confirmed later), can be written
as

E =
p2

2me
− Ze2

r
, (1)

where p is its momentum and r its distance to the nu-
cleus. Taking the electron wave function to have a char-
acteristic radius a, to be determined, we can estimate
r ∼ a. Identifying the latter as the uncertainty in the
position of the electron, Δr, the uncertainty in its mo-
mentum is bounded by Heisenberg’s uncertainty principle,
Δp � �/Δr, where � = h/(2π) is the “reduced” Planck
constant (and h the “standard” Planck constant). Thus,
we expect |p| ≡ p � �/a, so

E � �
2

2mea2
− Ze2

a
. (2)

In order to find the ground state, we minimize E with
respect to a, which yields the virial theorem, in the sense
that the potential energy −Ze2/a must be −2 times the
kinetic energy �

2/(2mea
2). Thus,

a ∼ 1
Z

�
2

mee2
=

a0

Z
, (3)

where a0 ≡ �
2/(mee

2) ≈ 0.5 × 10−8 cm = 0.5 Å is the
Bohr radius, in agreement with the much more difficult
solution of the Schrödinger equation1. From this, it is also
easy to estimate the typical electron velocity,

v =
p

me
∼ �

mea
∼ Z

e2

�
= Zαc, (4)

where c is the speed of light and

α ≡ e2

�c
≈ 1

137
(5)

is the fine-structure constant, a dimensionless measure of
the strength of the electromagnetic force.

This shows that the electron is non-relativistic (v � c)
as long as Z � α−1 ∼ 102, a condition (marginally) vio-
lated by the heaviest nuclei, but adequate for the lighter
ones. Note that in the opposite, ultra-relativistic limit, the
electron kinetic energy is pc ∼ �c/a, with the same depen-
dence on a as the potential energy, so the total energy will
no longer have a minimum. We will not dwell on this issue,
whose correct treatment requires quantum electrodynam-
ics, but we point it out because we will encounter a similar
situation later in this discussion.

From eqs. (2) and (3), it follows that the total energy
in the ground state is thus

E0 ∼ −Ze2

2a
∼ −Z2e2

2a0
= −Z2 Ry, (6)

where 1Ry = 13.6 eV = 2.2 × 10−11 erg is the ionization
energy of the hydrogen atom. Although we had no right to
expect it given our very rough approximations, the latter
result is exactly the same as one obtains from solving the
Schrödinger equation. Note that 1 eV (= 1.6×10−12 erg) is
the typical thermal energy at a temperature T ∼ 1 eV/k ∼
104 K, much higher than “room temperature”, ∼ 300K.
Therefore, thermal effects can generally be ignored when
studying the internal properties of atoms2.

When there are two or more electrons, the Pauli exclu-
sion principle will not allow them to be in the same quan-
tum state. This effect and their mutual repulsion (which
results in an effective screening of the attraction of the
nucleus on the outer electrons by the inner ones) makes
the electron cloud bigger, resulting in most neutral atoms

1 In fact, a0 could be obtained in an even simpler way, as the
only length that can be constructed from the three relevant
dimensional constants in the problem, namely e, �, and me.
Of course this requires to first have the judgement to eliminate
other constants, such as the speed of light and the mass of the
nucleus.

2 It is also interesting to note that the kinetic energies
reached by protons in the Large Hadron Collider (LHC) are
about 1 TeV ≡ 1012 eV ∼ 1 erg, a macroscopic energy scale,
corresponding to the kinetic energy of a marble of 2 g (thus
containing ∼ 1024 nucleons) moving at 1 cm/s, whereas the
highest-energy cosmic ray particles detected so far, also likely
protons, have energies exceeding ∼ 1020 eV ∼ 10 J, about the
kinetic energy of a tennis ball in a professional match.
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having sizes of a few Å [8]. Writing the radius of an atom
as fa0, where f is a dimensionless constant in the range
∼ 1–10, the typical mass density of “condensed matter”,
i.e., liquids or solids, in which atoms essentially touch their
neighbors (and thus are difficult to compress further), will
be

ρ ∼ 3
4π

AmN

(fa0)3
∼ 3.2

A

f3
g/cm3, (7)

where mN is the mass of a nucleon (proton or neutron).
This is in rough agreement with the observed densities of
typical liquids and solids, ∼ 1–10 g/cm3 (recall that the
gram was originally defined as the mass of 1 cm3 of wa-
ter), but unfortunately the expression is very sensitive to
f , which in turn is difficult to estimate for specific sub-
stances. For one pure substance, diamond, we know its
constituents are carbon atoms (A = 12), so its observed
density of 3.5 g/cm3 would require a “reasonable” f = 2.2.

2.2 Atomic nuclei and strong interactions

The protons and neutrons in the nucleus are held together
by the strong nuclear force, which can be described as
an exchange of virtual pions. Contrary to photons and
gravitons (the carriers of electromagnetic and gravita-
tional forces), pions are massive (mπ ≈ 135MeV/c2 for
neutral pions [π0], 140MeV/c2 for charged ones [π±]), so
the Heisenberg uncertainty principle allows them to move
only a finite distance

λ̄ ≡ �

mπc
∼ 10−13 cm ≡ 1 fm, (8)

where the latter unit is called fermi or femtometer
(10−15 m), setting the characteristic scale of nuclei, as
well as their nucleon density, nnuc ∼ 2 × 1038 cm−3

(not far below λ̄−3
π ), or equivalently their mass density,

ρ ≈ nNmN ∼ 3 × 1014 g/cm3. Note that, by the same
arguments given above for the electrons, any particle con-
fined to such a small volume must have a momentum
p � mπc, which for a nucleon of mass mN ≈ 940MeV/c2

(approximately the same for protons and neutrons) cor-
responds to a speed v � (mπ/mN )c ∼ 0.14c and kinetic
energy � (mπc)2/(2mN ) ∼ 10MeV, scales we will en-
counter again when discussing NSs. For comparison, the
electromagnetic repulsion energy between two protons at
such a distance is ∼ αmπc2 ∼ 1MeV, a relatively minor
contribution to the total energy budget of the nucleus, un-
less there is a large number Np of protons, in which case
their total repulsion energy goes up roughly as the number
of proton pairs, ∼ N2

p .

3 Degenerate Fermi gases

Let us now think about WDs and NSs, which are final
states of stellar evolution, whose nuclear fuel has been
exhausted, and thus their thermal energy is rapidly radi-
ated away, so their thermal pressure can no longer support
them against their own gravity. However, both contain

spin-1/2 particles (electrons and neutrons, respectively),
called fermions and subject to the Pauli exclusion princi-
ple, which states that each orbital (or one-particle quan-
tum state) can be occupied at most by one particle. As
we will see, this forces the particles to remain in motion
even in the zero-temperature limit and thus provides a
“degeneracy pressure” that does not depend on thermal
effects.

3.1 The Fermi sphere

To determine their properties, let us start by considering
the Heisenberg uncertainty principle again. From its usual
form (ΔpΔr � �) we recognize that each particle fills at
least a phase-space volume of ΔpxΔxΔpyΔyΔpzΔz ∼ �

3.
The precise form of the latter relation gives h3/gs, since
the phase-space volume h3 can be occupied by particles
with gs different spin projections sz along an arbitrary
quantization axis. (For the spin-1/2 particles of interest
to us, sz = ±1/2, so gs = 2.) Thus, in a real-space volume
V and in a spherical shell in momentum space, p < |p| <
p + dp, there can be up to

dN =
gs

h3
× V × 4πp2dp (9)

fermions of the same species. If we have N fermions of
the same kind in the lowest possible energy state (which
we assume corresponds to the lowest values of |p|, but
otherwise not yet assuming a particular relation between
momentum and energy), they will fill up all orbitals with
|p| ≤ pF , satisfying

N =
gs

h3
× V × 4π

3
p3

F , (10)

where V is the (real-space) volume occupied by the par-
ticles, the term (4π/3)p3

F is the volume of the “Fermi
sphere” in momentum space, and so the whole expression
is the ratio between the total phase-space volume of the
system and the phase-space volume per particle. Thus, for
gs = 2, the “Fermi momentum” is

pF =
(

3h3N

4πgsV

) 1
3

= �(3π2n)1/3, (11)

depending only on the particle density n ≡ N/V , an in-
tensive variable, not on the extensive variables N and V
separately. This is reassuring, as it is independent of the
dimensions of the box we chose for our analysis. It is also
interesting to note that, defining a typical inter-particle
distance as d ≡ n−1/3, we have pF = (3π2)1/3

�/d, quite
similar to the relation p � �/a used in the previous section
(both related to the Heisenberg uncertainty principle).

3.2 Energy and pressure

In order to obtain thermodynamic quantities such as the
pressure, it is convenient to consider the first law of ther-
modynamics, dE = TdS − PdV + μdN , where E is the
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total (internal) energy of the thermodynamic system, T its
temperature, S its entropy, P its pressure, V its volume, μ
its chemical potential, and N the number of particles (as-
sumed to be all of the same species, otherwise the last term
should be replaced by a sum over species,

∑
α μαdNα). We

are interested in the ground state, in which T = 0 = S, so
we drop the first term and ignore these variables. Defining
the energy density ε = E/V , we can write

P = −
(

∂E

∂V

)
N

= −
(

∂(E/N)
∂(V/N)

)
N

= n2 d
dn

( ε

n

)
, (12)

a useful relation between intensive variables, valid for any
single-species thermodynamic system at T = 0.

In order to obtain the pressure of the degenerate Fermi
gas, we consider its total energy, obtained by integrating
over momentum using eq. (9),

E =
∫

p<pF

ε(p)dN =
gs

h3
V × 4π

∫ pF

0

ε(p)p2dp, (13)

where we are using spherical coordinates in momentum
space, with a radial coordinate p = |p|. In Special Relativ-
ity, the energy of a free particle is ε(p) =

√
(mc2)2 + (pc)2,

where c is the speed of light. The integral can be obtained
analytically [1], but the calculation is not trivial and the
result not very illuminating, so here we consider only the
two limiting cases of non-relativistic (p � mc) and ultra-
relativistic (p � mc) particles.

3.3 Non-relativistic limit

In the non-relativistic limit, we expand ε(p) = mc2 +
p2/(2m). (We need at least these two terms, because the
first, although it is much larger, corresponds to particles
at rest, that do not exert any pressure.) Now, we can in-
tegrate easily and use eqs. (10) and (11) to obtain

E = N

(
mc2 +

3
5

p2
F

2m

)
, (14)

where we identify the term mc2 as the mass energy of each
particle and p2

F /(2m) as the kinetic energy of the fastest
moving ones. We could have guessed this relation, except
for the factor 3/5, which accounts for the fact that the
kinetic energies of the particles are distributed between 0
and p2

F /(2m). From this, we obtain the energy density

ε = mc2n +
35/3π4/3

10
�

2

m
n5/3 (15)

and (using eq. (12)), the pressure

P =
(3π2)2/3

5
�

2

m
n5/3. (16)

The latter also has a simple kinetic interpretation, which
can be used as a reminder or order-of-magnitude deriva-
tion: Pressure is force per unit area or momentum flux

(momentum transfer per unit time per unit area). For
our fermions, the typical momentum is some fraction
(not much smaller than 1) of pF , and their velocity is
some fraction of the “Fermi velocity” vF = pF /m, so
the pressure (momentum flux) should be some fraction
of nvF pF = (3π2)2/3(�2/m)n5/3. Comparing to eq. (16),
we confirm this result, also seeing that here “some frac-
tion” is in fact 1/5. Note also that, for a given number
density n, the pressure is inversely proportional to parti-
cle mass. Thus, for a mix of different fermion species with
similar abundances, the pressure is dominated by those of
the lowest mass.

3.4 Ultra-relativistic limit

In the ultra-relativistic limit, ε(p) = pc. Following the
same procedure, we obtain an energy per particle E/N =
(3/4)pF c (i.e., 3/4 of the “Fermi energy”), energy density

ε =
3
4
(3π2)1/3

�cn4/3, (17)

and pressure

P =
ε

3
=

1
4
(3π2)1/3

�cn4/3, (18)

which again can be interpreted as a fraction of nvF pF , but
now with vF = c.

It is interesting to take a look at the density at
which the smooth transition between the non-relativistic
and ultra-relativistic regime takes place. The condition
pF ∼ mc implies n ∼ (8π/3)λ−3, where λ ≡ h/(mc) is the
Compton wavelength for the relevant fermion. For elec-
trons, λ = 2παa0 ≈ 2 × 10−10 cm, thus n ∼ 1030 cm−3,
whereas for nucleons (protons or neutrons), λ ≈ 10−13 cm
(about the strong interaction scale) and n ∼ 1040 cm−3.
These are easily remembered, but huge densities, as seen
by comparing with the density of molecules in liquid water
at “normal” (Earth’s surface) conditions, 3 × 1022 cm−3.

At this point, it is also interesting to briefly eval-
uate the assumption of zero temperature. As usual in
physics, this is not an exact statement, but means that
the temperature is so small that it can be ignored. In this
case, it means that the thermal energies ∼ kT are much
smaller than the typical kinetic energies of the particles,
which are assumed to be due to the Pauli principle. At
the transition between the non-relativistic and the ultra-
relativistic regime, these energies are ∼ mc2, where m
is the mass of the relevant particles, so the condition be-
comes kT � mc2. Thus, for WDs, kT � mec

2 ∼ 0.5MeV,
so T � 1010 K, whereas for NSs kT � mNc2 ∼ 1GeV,
so T � 1013 K. Thus, the limits for the zero-temperature
approximation are actually quite high and are amply sat-
isfied by all but the very youngest WDs and NSs.

4 White dwarfs

4.1 White dwarf matter and equation of state

Just as “everyday matter”, WDs are composed of nuclei,
such as He, C, O, Ne, and Mg (typically with the same
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number of protons and neutrons, so their “mass number”
A is twice the atomic number Z), as well as Z electrons
per nucleus. However, their typical density is much higher,
and thus their inter-electron spacing d = n

−1/3
e is much

smaller than the size of an atom. We know that, for a non-
relativistic electron gas of number density ne, the average
kinetic energy per electron is

εNR
K =

3
5

�
2

2me
(3π2ne)2/3, (19)

whereas the Coulomb interaction energy with the closest
nucleus is

εe−nuc ∼ −Ze2
(ne

Z

)1/3

= −Z2/3e2n1/3
e . (20)

Thus, the kinetic energy increases faster than the interac-
tion energies as ne increases. At high densities, we reach
the ultra-relativistic regime, in which

εUR
K =

3
4

�c(3π2ne)1/3, (21)

which scales in the same way as the interaction ener-
gies. However, their ratio is εe−nuc/εUR

K ∼ 0.4Z2/3α ∼
10−2(Z/6)2/3, so the interaction energies are negligible,
and the electrons can be regarded as free particles, not
bound to any nucleus. Over larger scales, there will be
as many positive as negative charges, so their effects will
cancel.

Thus, the matter in WDs can be regarded as a mix of
two species of non-interacting particles: heavy, essentially
motionless nuclei, which dominate the mass density,

ρ =
ne

Z
AmN , (22)

and low-mass, fast moving electrons, which provide most
of the pressure, given by eqs. (16) or (18). Thus, in both
the non-relativistic and the ultra-relativistic limit we ob-
tain polytropic (power-law) EOSs,

P =
(3π2)2/3

5
�

2

me

(
Z

A

ρ

mN

)5/3

(23)

and

P =
(3π2)1/3

4
�c

(
Z

A

ρ

mN

)4/3

, (24)

respectively.

4.2 Energy, radius, and maximum mass

The hydrostatic equilibrium state of these stars will be
set by a balance between the gradient of this pressure and
the gravitational force. As in the case of the electron wave
function in the atom (see sect. 2), we can also think of
this problem as minimizing the energy of a star of fixed
mass total M (or electron number Ne = ZM/A) as a
function of its radius R. Of course, a real star will have

a certain density profile, which is characterized by more
than a single parameter, but for heuristic purposes we
will think of a uniform star, whose properties (for a given
mass) depend only on radius.

In the non-relativistic limit, taking into account the
kinetic energy of all the electrons and the gravitational
binding energy of the star, the total energy is

E ∼ Ne ×
3
5

p2
Fe

2me
− 3

5
GM2

R

∼ 3
10

(
9π

4

)2/3
�

2

meR2

(
ZM

AmN

)5/3

− 3
5

GM2

R
. (25)

Again, as in the case of the single electron in an atom (and
for the same physical reasons), the kinetic energy scales
with the inverse square of the radius, whereas the potential
energy scales just with the inverse radius, so there is again
an equilibrium radius (satisfying the virial theorem),

RWD ∼
(

9π

4

)2/3 (
Z

A

)5/3
�

2

Gmem
5/3
N M1/3

∼ 0.7 × 104

(
2Z

A

)5/3 (
M�
M

)1/3

km. (26)

Thus, for masses close to the solar mass, a WD will have a
radius of several thousand km, not very different from that
of the Earth, but with a much higher average mass density,
ρ ∼ 1.3 × 106(A/2Z)5(M/M�)2 g/cm3, and an electron
density ne ∼ 4× 1029(A/2Z)4(M/M�)2 cm−3, roughly at
the boundary where electrons become relativistic.

Contrary to planets, asteroids, and other small bod-
ies (in which the density is roughly constant and thus
R ∝ M1/3), when the mass of a WD is increased, its size
decreases, and thus the density strongly increases, causing
the electrons to become relativistic at large enough mass.
Thus, we consider the ultra-relativistic version of eq. (25),

E ∼ Ne ×
3
4
pFec −

3
5

GM2

R

∼ 3
4

(
9π

4

)1/3
�c

R

(
ZM

AmN

)4/3

− 3
5

GM2

R
. (27)

Now, both the kinetic and the potential energies are ∝
R−1, but the latter increases more strongly with M than
the former. The two terms are equal at a critical mass,

MCh ∼ 15
16

(5π)1/2

(
Z

AmN

)2

m3
P ∼ 1.7

(
2Z

A

)2

M�,

(28)
where

mP ≡
(

�c

G

)1/2

= 2.2 × 10−5 g (29)

is the so-called Planck mass, the characteristic scale at
which quantum gravity effects are expected. For M <
MCh, the kinetic energy dominates, and the star will
expand towards the non-relativistic regime, whereas for
M > MCh the gravitational energy dominates, and the
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star will contract, without finding a stable equilibrium as
long as its constituents remain the same and no other
forces come into play. Thus, MCh is our estimate of the
maximum mass of a WD, the so-called “Chandrasekhar
limit”, although it was first found by E. C. Stoner (see [9]
for a nice and comprehensive discussion of the early his-
tory of white dwarf research). Since it combines quantum,
relativistic, and gravitational effects (as evidenced by the
presence of the constants �, c, and G in eq. (29)), it could
be called “the first quantum gravity calculation in his-
tory”. Above this mass, no WDs can exist, and the stable
equilibrium states will be either NSs or black holes.

4.3 Escape speed

Since the random velocities of the electrons inside a WD
are not far from the speed of light (vFe ∼ c), one might
wonder whether their escape speed is also relativistic. A
direct evaluation for M ∼ M� and R ∼ 104 km gives
vesc =

√
2GM/R ∼ 5 × 103 km/s ∼ 0.02c, thus not ter-

ribly relativistic. However, vFe and vesc are connected by
the virial theorem: The average kinetic energy per elec-
tron, ∼ (3/10)mev

2
Fe in the non-relativistic limit, must

be −1/2 times the gravitational binding energy per elec-
tron. Note, however, that the latter is not the gravitational
binding energy of the electrons, because the gravitational
binding energy is dominated by the much more massive
nuclei. Thus, dropping constant factors of order unity, we
require mev

2
Fe ∼ (A/Z)mNv2

esc, thus

vesc

vFe
∼

(
Zme

AmN

)1/2

∼ 0.02, (30)

consistent (in the limit vFe → c) with the evaluation at
the beginning of this paragraph.

5 Newtonian stellar structure and polytropes

5.1 Stellar structure equations

Degenerate stars such as WDs and NSs (in addition to
rocky planets and smaller bodies) are described quite well
by a “barotropic” EOS, in which the pressure depends
only on density, P = P (ρ), not on other variables such
as temperature (or, equivalently, specific entropy). This
allows us to restrict the stellar structure equations to only
two, which, for Newtonian (non-relativistic) gravity, can
be written as

dP

dr
= −Gmρ

r2
,

dm

dr
= 4πρr2, (31)

where the first gives the balance between the outward-
pushing pressure gradient and the inward-pulling gravity
caused by the mass m enclosed within a radius r, and the
second gives the increment in m(r) as successive shells
of mass density ρ(r) are added. These two equations, are
combined with the EOS P = P (ρ), in order to calculate

the stellar structure. This is done numerically by inte-
grating outward in small steps starting from r = 0 (where
m = 0 and the central pressure Pc or density ρc is taken
as a parameter that characterizes the star) to the point
r = R where P = 0, marking the stellar surface, where
m(R) = M , the total mass of the star. Thus, one obtains
the three initially unknown functions P (r), ρ(r), and m(r)
describing the structure of the star3. In non-degenerate
stars, such as, e.g. main sequence stars, energy generation
and transport need to be accounted for as well, adding two
additional equations for the luminosity and temperature
gradients, dL/dr and dT/dr, respectively [10].

5.2 Polytropes and scaling relations

As pointed out above, the EOS of WD matter with both
non-relativistic and ultra-relativistic electrons is a very
special kind of barotropic EOS, namely a polytrope, P =
Kργ (with the usual notation P = Kρ1+1/n, where the
constant n is called “polytropic index”). Mathematically,
this is interesting, because it allows to define dimensionless
functions P̂ = P/Pc and ρ̂ = ρ/ρc that, by definition, take
the value P̂ (0) = ρ̂(0) = 1 in the center of the star, and
have a unique relation (independent of Pc and ρc) to each
other4 (P̂ = ρ̂γ). If we now also define a dimensionless
radial coordinate r̂ = r/r̄ and mass m̂ = m/m̄, where

r̄ =
(

Pc

4πGρ2
c

)1/2

=
(

Kργ−2
c

4πG

)1/2

(32)

and

m̄ =
(Pc/G)3/2

(4π)1/2ρ2
c

=
(K/G)3/2

(4π)1/2
ρ(3γ−4)/2

c , (33)

the stellar structure equations take the simple form

dP̂

dr̂
= −m̂P̂ 1/γ

r̂2
,

dm̂

dr̂
= P̂ 1/γ r̂2, (34)

with a unique solution P̂ (r̂), ρ̂(r̂), m̂(r̂) for a given γ. In
general, this solution must be found numerically, but the
reader is invited to solve the special cases with γ = 2 and
γ → ∞ (an incompressible fluid, with ρ = constant but P
variable), which can be done analytically.

However, regardless of the form of these specific solu-
tions, their existence and uniqueness implies the scaling
relations

M ∝ m̄ ∝ ρ(3γ−4)/2
c (35)

and
R ∝ r̄ ∝ ρ(γ−2)/2

c ∝ M (γ−2)/(3γ−4), (36)

from which we note various consequences:

3 See [5] for an accessible discussion on how to implement
this procedure.

4 The readers are invited to convince themselves that this is
not possible for any other functional form P (ρ).
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(a) For γ = 5/3, as applicable for non-relativistic elec-
trons, we recover the scaling R ∝ M−1/3, as in
eq. (26), and calculate the numerical factor more pre-
cisely, yielding

RWD = 4.5
(

Z

A

)5/3
�

2

Gmem
5/3
N M1/3

= 0.87 × 104

(
2Z

A

)5/3 (
M�
M

)1/3

km. (37)

(b) For γ = 4/3, we see that M is constant (independent
of ρc), corresponding to the Chandrasekhar limit, as in
eq. (28). Again, the numerical solution yields a precise
numerical value,

MCh = 3.0
(

Z

AmN

)2

m3
P = 1.4

(
2Z

A

)2

M�. (38)

Note that, in spite of the rough estimates made in the
previous section, the results differed from the exact
ones by only ∼ 20%.

(c) For all γ > 4/3, M is an increasing function of ρc,
corresponding to stable stellar models [11], whereas
for γ < 4/3 it is a decreasing function, corresponding
to unstable and thus unphysical solutions.

(d) Among the “physical” solutions with γ > 4/3, the
harder ones (γ > 2) have a radius that increases with
mass or central density, whereas the opposite is true
for the softer ones (4/3 < γ < 2).
A more general conclusion, to which we will come back

later, is that, since the relations between ρc, R, and M are
always power laws, there are no “special values” of any
of these variables, except for mathematically degenerate
cases like γ = 4/3 (a single mass, independent of ρc) and
γ = 2 (a single radius). Thus, in Newtonian gravity, the
only way to obtain a sequence of models that cuts off at
a certain parameter value (maximum mass) is to have a
non-polytropic EOS, in which γ ≡ d log P/d log ρ is not
constant. For the specific case of WDs, the EOS has γ =
5/3 at low densities (implying that M increases with ρc),
but slowly softens to γ = 4/3 at higher densities, setting
an upper limit to the mass. It is important to keep this in
mind for the analysis of NSs to be done below.

6 Neutron stars

6.1 Beta equilibrium

Neutrons in vacuum are unstable, decaying with a 15
minute half-life through the weak-interaction process
called beta decay,

n → p + e + ν̄e, (39)

where n denotes a neutron, p a proton, e an electron, and
ν̄e an electron antineutrino, releasing

Q = (mn − mp − me)c2

= (939.57 − 938.28 − 0.51)MeV
= 0.78MeV ≈ 1.5mec

2 (40)

in the form of kinetic energy of the decay products. (The
masses of neutrinos and antineutrinos are small enough
to be negligible, mνc2 < 1 eV.) On the other hand, if a
proton and an electron collide with center-of-mass kinetic
energy > Q, they can undergo “inverse beta decay”:

p + e → n + νe, (41)

where νe is an electron neutrino. This process can happen
even at zero temperature if the electron density is high
enough so that the electrons are highly relativistic.

The neutrinos and antineutrinos generated in these
processes are highly relativistic and very weakly interact-
ing, therefore they will escape, making the star lose energy
and approach its ground state. If the neutron, proton, and
electron chemical potentials satisfy μn > μp +μe, neutron
beta decay is more frequent than inverse beta decay, and
vice versa for the opposite inequality, so generally a chem-
ical equilibrium state with

μn = μp + μe (42)

is approached.
If thermal effects and interactions can be ignored (both

of which we will discuss later), the chemical potentials
are simply the Fermi energies (including the rest mass
contribution), μi = (m2

i c
4 + p2

Fic
2)1/2. In the regime in

which the electrons are highly relativistic (pFe � mec),
but the protons and neutrons are still non-relativistic
(pFn, pFp � mNc), eq. (42) becomes

p2
Fn

2mN
=

p2
Fp

2mN
+ pFec. (43)

Recalling eq. (11), pFi = �(3π2ni)1/3, the condition of
charge neutrality, np = ne, implies pFp = pFe, and thus
makes the first term on the right-hand side negligible com-
pared to the second, yielding the number density ratio

Y ≡ np

nn
=

ne

nn
∼ nN

n0
, (44)

where n0 ≡ (64π/3)λ−3
N ≈ 3 × 1040 cm−3, a density at

which the neutrons would already be quite relativistic
(pFn = 2mNc). Thus, as long as the neutrons are non-
relativistic, Y � 1. The analogous derivation for the case
in which all three species are relativistic is straightforward,
yielding Y = 1/8. In both cases, np = ne � nn, and cor-
respondingly the energy density and the pressure will be
dominated by the neutrons, although the presence of pro-
tons and electrons is of course crucial for the neutrons to
be stable and thus present in the first place.

Up to this point, we have considered only the pres-
ence of neutrons, protons, and electrons, which is likely
adequate for the lowest-density, outermost regions of the
neutron star core. However, when μe > mμc2, where
mμ = 105.7MeV/c2 is the mass of the muon (a much
heavier lepton that otherwise shares the properties of the
electron), it allows the reactions n → p + μ + ν̄μ and
p + μ → n + νμ, where νμ and ν̄μ are the muon neutrino
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and antineutrino, respectively. This allows muons to co-
exist in equilibrium with neutrons, protons, and electrons
at somewhat higher densities. Similarly, at higher densi-
ties, other particles such as pions, kaons, hyperons, and
others can appear, which are unstable in vacuum (and in
nuclear physics laboratories) but, just like neutrons, are
stabilized in dense matter, thanks to the Pauli exclusion
principle. At progressively higher densities, the state of
matter becomes increasingly uncertain, and it might even
include a state of “quark-gluon plasma”, in which all nu-
cleons are effectively merged and quarks can move around
independently.

In what follows, we will not consider the (fairly uncer-
tain) presence of “exotic” particles. In general, the pres-
ence of additional degrees of freedom reduces the neu-
tron Fermi energy and thus the pressure, “softening” the
EOS and thus reducing the maximum mass allowed for
the stars. Therefore, the observation of a couple of stars
with masses as high as 2M� implies that such particles,
if present at all, do not play an important role in the
EOS [12].

6.2 Neutron star size and mass: a first attempt

Thus assuming that the effects of all particles other than
neutrons on the EOS are unimportant, we treat the neu-
tron star as being composed just of neutrons. In this case,
neutrons play a double role, providing both the mass
(like the atomic nuclei in WDs) and the pressure (like
the electrons in WDs), and one might attempt to apply
the formulae derived for WDs, eqs. (37) and (38), putting
A = Z(= 1) and replacing me → mN . The radius of
a star composed of non-relativistic, non-interacting neu-
trons would thus be

RNS ≈ 4.5
�

2

Gm
8/3
N M1/3

= 15
(

M�
M

)1/3

km, (45)

corresponding to an average mass density ρ̄NS ≈ 1.4 ×
1014(M/M�)2 g/cm3 and neutron number density nn ≈
0.8 × 1038(M/M�)2 cm−3, not far below the density of
atomic nuclei.

Similarly, considering the limit in which the neutrons
become relativistic, we can use eq. (38) with A = Z = 1
to obtain a maximum mass for NSs (beyond which they
would turn into black holes),

MNS
Ch ≈ 3.0

m3
P

m2
N

= 5.7M�. (46)

One of the authors (A. R.) has for many years taught
his students this result as a “reasonable physical esti-
mate” of the maximum mass of NSs. Note that it relies
on two key ingredients: 1) Newtonian gravity, and 2) non-
interacting fermions (in this case neutrons), whose EOS
becomes “softer” (γ reduced to 4/3) as they become rel-
ativistic. Neither of the two is obviously true, because,
as we will discuss below, the effects of General Relativity

(GR) and strong interactions are important in NSs. How-
ever, one might hope that these do not make a crucial
difference, and the estimate might still be correct both
qualitatively and as an order-of-magnitude estimate.

There are, in fact, a few arguments supporting it.
First, it is higher than the Chandrasekhar limit for WDs
(eq. (38)) and thus allows the formation of NSs, which un-
doubtedly exist in the real Universe. Second, it is higher
than (but of the same order of magnitude as) the largest
NS masses, ∼ 2.0M�, that have been well measured from
the dynamics of binary pulsars [13,14]. Third, it is not
enormously higher than the estimates of the maximum
mass obtained from the best theoretical and observational
constraints, which lie in the range ∼ 2–3M� [12].

Of course, given that potentially important physical in-
gredients have been ignored, the rough quantitative agree-
ment observed could be just coincidental. In what follows,
we discuss the effects of GR and strong interactions, their
implications for the maximum mass of NSs, and an al-
ternative estimate of the maximum mass based on these
two ingredients, which was suggested by Burrows and Os-
triker [7].

6.3 Escape speed and Schwarzschild radius

Applying again the “rule” that NS properties can be
obtained from WD properties through the substitutions
me → mN and A = Z = 1, we find that in the NS case
vesc is of the same order of magnitude as the neutron
Fermi velocity vFn, a result of applying the virial theo-
rem to just one type of particles, namely the neutrons
(cf. eq. (30)). Thus, when the neutrons become relativis-
tic (vFn → c), vesc also approaches c. This is confirmed by
evaluating for “typical” NS parameters, M ∼ 1.5M� and
R ∼ 10 km, and obtaining vesc ∼ 2 × 105 km/s ∼ (2/3)c.
Thus, particles orbiting near the neutron-star surface will
have relativistic speeds, and GR is essential for a correct
description of NS gravity.

One of the crucial concepts arising in the description
of static, spherical objects (a.k.a. “stars”) in GR is the
“Schwarzschild radius”. It can be obtained through an un-
reasonable extrapolation of Newtonian gravity, asking for
the radius of an object whose escape speed is c, which
yields

RS =
2GM

c2
= 3

M

M�
km. (47)

Although our derivation relied on an unjustified
Newtonian-relativistic hybrid, the result, when inter-
preted in terms of “Schwarzschild coordinates”,5 plays a
crucial role in GR, as the radius of the “event horizon”
of a black hole, out of which no information can escape.

5 Since GR describes the space-time as curved, Euclidean
geometry is not valid, and the Euclidean notion of “radius” can
be generalized in different ways. In Schwarzschild coordinates,
it is defined as the perimeter of a circle divided by 2π, but this is
not equivalent, e.g., to a radial distance or to a radius inferred
for a spherical surface from the thermal radiation received from
it at a large distance.
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Thus, it is also a lower limit for the radius of a star of a
given mass M in hydrostatic equilibrium.

We saw that, for Newtonian polytropes with γ > 4/3,
M increases with ρc, and there is no maximum mass. How-
ever, it is straightforward to verify that M/R ∝ ργ−1

c , so
this ratio increases with ρc, meaning that at some, large
enough central density, the condition R > RS(M) will
no longer be satisfied. Applying this to the polytrope for
non-relativistic neutrons, eq. (45), we obtain the following
upper bound for the maximum mass:

MS ∼ 3π1/2

27/4

m3
P

m2
N

∼ 3M�, (48)

nearly identical to eq. (46), except for the constant multi-
plying factor (which is not accurate in either case). This
agreement is not accidental: In both cases we used the
condition of hydrostatic equilibrium for non-interacting,
degenerate neutrons (contained in eq. (45)). In order to
obtain eq. (46), we combined it with the requirement of
vFn → c (relativistic random motions of the neutrons),
whereas for eq. (48) we combined it with R = RS (equiv-
alent to vesc → c). Thus, the virial theorem, which relates
vFe with vesc (and is contained in eq. (45)) actually forces
the same result. This strongly suggests that, in GR, there
will be a maximum mass similar to the one we already es-
timated, but which applies regardless of an eventual soft-
ening of the EOS.

6.4 “Tolman-Oppenheimer-Volkoff” (TOV) equations

In order to confirm this, we consider the stellar structure
equations in GR, the so-called TOV equations, derived
from the Einstein field equations (e.g., [1,15]):

dP

dr
= −Gmε

c2r2

(
1 +

P

ε

) (
1 +

4πr3P

mc2

)(
1 − 2Gm

c2r

)−1

,

dm

dr
= 4π

ε

c2
r2. (49)

Comparing to their Newtonian counterpart (eq. (31)), we
see that the mass density ρ has been replaced by the
energy density ε (divided by c2), which, in addition to
the rest mass, includes the energies corresponding to ran-
dom motions and (non-gravitational) inter-particle inter-
actions. In addition, there are three correction terms in the
first equation. The Newtonian form is recovered when the
energy density is dominated by the rest mass (ε ≈ ρc2,
thus P � ε ∼ mc2/r3) and the escape speed is much
smaller than the speed of light (2Gm/r ≤ 2GM/R �
c2)6. However, the general-relativistic corrections can be
very important for NSs near their maximum mass, and
all of them act in the direction of increasing the effec-
tive gravity (right-hand side of the first equation) with
respect to the Newtonian case, thus decreasing the radius
at a given mass, and decreasing the maximum mass the

6 All these corrections are ∼ (vesc/c)2, thus ∼ 4 × 10−4 for
a WD, and even smaller for “normal” stars.

Fig. 1. Mass-radius relation for a polytropic EOS in Newto-
nian gravity and GR. The solid curves show the mass-radius
relation for the polytropic EOS with γ = 5/3 corresponding to
non-relativistic, non-interacting neutrons (arbitrarily applied
even in the density range where neutrons become relativistic),
calculated with the stellar structure equations in Newtonian
theory (eq. (31); thin line) and GR (eq. (49), thick line). For
reference, the dashed line relates each mass to its Schwarzschild
radius (eq. (47)). The Newtonian relation crosses the latter at
M = 3.39M�, R = 10.04 [km], whereas the GR relation has a
maximum at M = 0.96, R = 8.03 [km].

stars can reach. In particular, the potentially divergent
term 1 − 2Gm/(c2r) will not allow the radius of the star
to become as small as the Schwarzschild radius, whereas
the correction terms involving P imply that the pressure
has a “weight” that increases the effective gravity, so at
large P the pressure gradient can no longer prevent the
collapse [11].

Figure 1 shows that, while the stellar radius is much
larger than the Schwarzschild radius, the GR mass-radius
relation follows the power law obtained from the Newto-
nian analysis. However, while nothing prevents the New-
tonian relation from crossing the Schwarzschild radius
at a certain value of the mass (estimated in eq. (48)),
the GR relation curves down before reaching it, setting
a maximum mass that is lower than the previous esti-
mate. Although the plot represents a particular polytrope,
namely that of non-interacting, non-relativistic neutrons,
the same qualitative behavior is observed for all poly-
tropes with 4/3 < γ < +∞.

6.5 Strong interactions

Since NSs have densities around and exceeding that of
atomic nuclei, strong interactions will be important. A rig-
orous, precise description of strong interactions is still not
possible and certainly far beyond the scope of this paper.
However, it is clear that the interaction between nucle-
ons is attractive at long range, being able to hold nuclei
together, and becomes increasingly repulsive at shorter
range, as first suggested by Zel’dovich [16]. Thus, beyond a
certain neutron density n ∼ λ̄−3

π (see eq. (8)), matter will
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Fig. 2. EOSs for dense matter. The solid lines are three dif-
ferent EOS proposed by Hebeler et al. [12] to cover the range
allowed by the best currently available constraints from the-
ory and observations (thick: stiff, medium: intermediate, thin:
soft), with superimposed big dots representing the centers of
stars of 2M�. The other lines correspond to idealized cases:
the EOS for non-interacting neutrons (thick dotted), an EOS
for fully relativistic, non-interacting particles (P = ε/3; thin
dotted), the maximum pressure allowed at a given energy den-
sity by the causality constraint (P = ε; thin dashed), and an
EOS constructed from a causal-limit EOS (P = Ptr + ε − εtr)
matched continuously to a standard BPS crustal EOS [17,18]
at a transition density εtr = 1.21×1035 erg/cm3 (thick dashed).
For these curves, the superimposed large stars represent the
centers of maximum-mass stars for the respective EOSs.

become harder to compress than in the non-interacting
case, as can be seen in fig. 2, where the “realistic” EOSs
proposed by Hebeler et al. [12] stiffen around this den-
sity, contrary to the progressive softening of the EOS for
non-interacting neutrons as they become more relativistic.

This motivated Burrows and Ostriker [7] to estimate
the maximum mass of NSs by assuming that the density
is set to a fixed value ε̄, thus M ∼ (4π/3)(ε̄/c2)R3, and
imposing that R = βRS = 2βGM/c2, where β > 1 (plau-
sibly β ∼ 2), which yields

MBO =
(

3
32πβ3

)1/2
c4

G3/2ε̄1/2
, (50)

or, for the specific choice ε̄ ∼ mNc2/λ̄3
π,

MBO ∼ (3/π)1/2

25/2β3/2

(
mN

mπ

)3/2
m3

P

m2
N

∼ 2
(

2
β

)3/2

M�. (51)

The result is again of the same order of magnitude as
the previous estimates in eqs. (46) and (48), however the
formal expression is slightly different, including the ra-
tio mN/mπ ∼ 7, because it is the Compton wavelength of
the pions, λ̄π, rather than that of the neutrons, which sets
the neutron density. On the other hand, as pointed out by
them, this ratio is not a large number, so in comparing this

estimate with the previous ones it is overcompensated by
the different (but in all cases uncertain) numerical factors.
In fact, Burrows and Ostriker point out that this similar-
ity between mπ and mN is the reason for the similarity
between the maximum masses of WDs and NSs.

It is interesting to note that the constant-energy-
density case allows for an exact analytic solution of
the TOV equations, the so-called Schwarzschild solution
(e.g., [15]), but it applies only for β > 9/8, i.e., for radii R
not quite as small as the Schwarzschild radius. At β = 9/8,
the central pressure of the star diverges, signaling that
hydrostatic equilibrium is no longer possible, and the star
will collapse, as discussed in depth in reference [11]. On the
other hand, one might argue that this solution is unphys-
ical, because the assumption of uniform density strongly
contradicts the “causality” constraint, namely that the
speed of sound, cs, cannot be larger than the speed of
light, c2

s ≡ c2dP/dε ≤ c2, since for uniform density (but
non-uniform pressure, as obtained from the TOV equa-
tions) one has dP/dε → ∞. The closest we could get to
this incompressible EOS would be to have dP/dε = 1,
i.e., P = ε − ε0, where ε0 is a constant. Using such a
“causal limit” EOS everywhere in the star, the TOV equa-
tions obey scaling relations like those of the Newtonian
equations with polytropic EOSs, which can be derived
as an exercise or consulted in ref. [3], appendix E. (The
same scalings also hold for the Newtonian equivalent, with
P ∝ ρ − ρ0.) The numerical solution of the resulting di-
mensionless equations gives a maximum-mass star with
central density only 3.03 times higher than ε0, thus not
extremely different from the uniform-density solution, and
mass

MCL
max = 0.0851

c4

G3/2ε
1/2
0

, (52)

with the same scaling as eq. (50), and in exact agreement
if one identifies ε0 = 0.24β3ε̄.

Somewhat closer to reality, one can use a well-
established EOS at low densities and match it to a causal-
limit EOS at some density εtr. Such an EOS is illustrated
(together with several others) in fig. 2, where one can see
that, just above εtr, where P � ε, the effective polytropic
index

γ ≡ d ln P

d ln ε
=

ε

P

dP

dε
=

ε

P
� 1, (53)

so there is a “wall” that keeps ε nearly constant over a sub-
stantial range of pressures, again supporting the Burrows-
Ostriker estimate. Figure 3 shows the mass-radius rela-
tions for such constructions with two different values of
εtr, demonstrating that the mass and radius scale just as
expected from that estimate, taking ε̄ ∼ εtr.

6.6 Rotation and light cylinder

Once the mass M and radius R of a star are known, vari-
ous other quantities can be calculated. Particularly inter-
esting and historically important for NSs is the maximum
rotation rate (or minimum rotation period). This is ob-
tained by considering a matter element at the equator of
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Fig. 3. Causal limit vs. Schwarzschild and constant-density
models. The solid lines represent mass-radius relations for
EOSs that match a realistic crustal EOS for low densities to
a causal-limit EOS at high densities, with the transition oc-
curring at the crust-core interface (thick) and at a ten times
lower density (thin). For comparison, the dashed lines are mass-
radius relations for uniform-density stars with densities corre-
sponding to the respective transition densities. The dotted line
corresponds to R = 9

8
RS = 9

4
GM/c2 and the grey region rep-

resents the prohibited zone due to the Schwarzschild condition.

a rotating star. In order for it to stay there, its gravita-
tional acceleration must be at least as large as the cen-
tripetal acceleration. Neglecting the distortion of the star
due to the rotation, this can be written in terms of the
angular velocity of the star, Ω, as

GM

R2
� Ω2R. (54)

Thus, the maximum angular velocity

Ωmax ∼
(

GM

R3

)1/2

∼
(

4π

3
Gρ̄

)1/2

(55)

depends only on the mean density of the star, ρ̄, and the
minimum period is

Pmin =
2π

Ωmax
∼

(
3π

Gρ̄

)1/2

=
1.2 × 104 s

(ρ̄ [g/cm3])1/2
. (56)

For the Earth, the Sun, a WD, and a NS, the respective
densities are ρ̄ = 5.5, 1.4,∼ 106, and ∼ 1014 g/cm3, so
their minimum periods turn out to be Pmin = 1.4 hours,
2.8 hours, ∼ 10 s, and ∼ 1ms. Thus, when the first pulsars
were found, with periods � 1 s, and the slowly increasing
periodicity was interpreted as a stellar rotation slowing
down, it was clear that the only viable physical realizations
of such objects would be NSs (or even more exotic objects,
such as quark stars). This conclusion was strengthened by
the discovery of “millisecond pulsars” with periods down
to 1.4ms [19,20]. “Sub-millisecond pulsars”, although al-
lowed by more precise estimates of the minimum rotation
period, have not yet been found.

The tangential velocity of the hypothetical matter el-
ement on the equator of the maximally rotating star is
related to the escape speed, vmax = ΩmaxR = vesc/

√
2,

which is not far from c in the case of NSs. This has an
important consequence for the NS magnetosphere, the
plasma halo around the NS coupled to it through its mag-
netic field. The magnetosphere is expected to co-rotate
with the NS, therefore its velocity at a point at distance
r⊥ from the rotation axis is v = Ωr⊥, which can of course
never exceed the speed of light, and therefore the mag-
netosphere is limited to the so-called “light cylinder”, of
radius

rLC
⊥ =

c

Ω
=

cP

2π
= 48P [ms]km. (57)

6.7 Electromagnetism

6.7.1 Internal electrostatic field

One little-known feature of all self-gravitating objects con-
taining charged particles is that they must have an inter-
nal electrostatic field.

If the object contains N+ particles of charge +e and
N− particles of charge −e, we will show that these two
numbers must be almost exactly identical. To see this,
let us assume that there is a small difference δN ≡
N+ − N−, which can be either positive or negative. Be-
cause of Gauss’ law, there will be a radial electric field
E = (eδN/R2)r̂ on the surface of the object, exert-
ing a force Fe = ±(e2δN/R2)r̂ on a charged particle of
charge ±e and mass m located there. For one of the two
signs of charge, this force is directed outwards, and must
thus be (at least) compensated by the gravitational force
Fg = −(GMm/R2)r̂, so the particles of this type are not
expelled (which would reduce |δN |). This requires

|δN | ≤ GMm

e2
∼ GmNm

e2
NN ∼ 10−36 m

mN
NN , (58)

where NN = M/mN is the total number of nucleons in the
object. In a NS, NN is roughly the same as the number
of neutrons, and perhaps ∼ 10–100 times larger than the
number of charge carriers, N+ or N−. Thus, because of the
much smaller magnitude of gravitational forces between
charged particles compared to their electrostatic interac-
tions (Gm2

N/e2 ∼ 10−36), the numbers of positive and
negative charge carriers must be identical to at least 34
significant figures in order to prevent charged particles to
be ejected from a NS.

Inside a NS, since the proton and electron densities are
similar, but their masses are very different, the electrons
are subject to a much larger degeneracy pressure, whose
radial gradient pushes them outwards, whereas the pro-
tons feel a much larger gravitational force, pulling them in-
wards. The only way to hold the two species in equilibrium
is through a slight charge separation (a small excess of pro-
tons closer to the center) that creates an outward-directed
electric field that pushes protons outwards (balancing
their gravitational force) and pulls the electrons inwards
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(balancing their pressure gradient). From the former con-
dition, and following essentially the same derivation as in
the previous paragraph, now applied to a sphere of radius
r < R, we obtain δN(r)/NN (r) ≈ Gm2

N/e2 ∼ 10−36, i.e.,
there must be a tiny charge imbalance, causing a radial
electric field such that its outward force on the protons is
roughly the same as their weight (in fact slightly smaller,
because we have ignored the small correction from the
proton pressure gradient). This effect has been consid-
ered, e.g., in ref. [21], but we are not aware of any im-
portant observational consequences. Also, the readers are
invited to estimate the magnetic field produced by ro-
tating this charge distribution and verify that it is much
smaller than the magnetic fields observed in NSs, which
we discuss next.

6.7.2 Magnetic field

As far as we know, and contrary to nearly everything said
so far in this article, the magnetic field of NSs cannot be
inferred from fundamental physical principles, but likely
depends on the formation history of the particular star.
The reason is that NS interiors, like most astrophysical
systems, can be regarded as highly conducting plasmas,
in which the magnetic field and its supporting currents
evolve only on very long time scales (e.g., [22–24]).

However, since the magnetic field has a positive energy
density B2/(8π), and a hypothetical expansion of a star
conserves the magnetic flux, BR2 = constant, such an
expansion will reduce the total magnetic energy,

EB ∼ B2

8π
× 4πR3

3
=

B2R3

6
∝ 1

R
. (59)

Thus, this expansion will occur as long as it is not pre-
vented by the gravitational force. Therefore, a firm (and
likely very conservative) upper bound on the (root-mean-
square) magnetic field in any star can be obtained by re-
quiring that EB is smaller than the absolute value of the
gravitational binding energy, resulting in the condition

B �
(

18
5

GM2

R4

)1/2

∼ 1018 M/M�
(R/10 km)2

G. (60)

More stringent upper bounds on the magnitude, as well as
conditions on the geometry of the magnetic field, can be
obtained (so far non-rigorously) by analyzing the hydro-
magnetic stability of the magnetized stellar fluid (e.g., [25,
24]). The dipole components of NS magnetic fields inferred
from their spin-down (see below) range from ∼ 108 G for
millisecond pulsars through ∼ 1012 G for “average” classi-
cal pulsars up to ∼ 1015 G for magnetars, still much lower
than the upper limit. Stronger toroidal fields might be
present inside the NSs. For comparison, the strongest mag-
netic fields ever produced by humans (and only for a few
microseconds) are ∼ 107 G.

As mentioned above, the charge density inside NSs is
much too small for its solid-body rotation to produce the
observed fields. On the other hand, the energy cost of
aligning the spins of the degenerate particles, given the

constraints set by the Pauli exclusion principle, is also
quite prohibitive. Thus, the magnetic field must be sup-
ported by a current density j due to a relative veloc-
ity vrel between positive and negative charges (taken to
have charges ±e and number densities np = ne). Using
Ampère’s law (and neglecting the “displacement current”
term, because we are considering an essentially static elec-
tromagnetic field), we have

c

4π
∇× B = j = neevrel. (61)

Thus, if we assume that B varies on a spatial scale ∼ R
and thus estimate |∇ × B| ∼ B/R, we have

vrel ∼
cB

4πneeR
∼ 5 × 10−12 B12

n36R6
cm/s, (62)

i.e., due to the huge density of charge carriers the required
relative velocity is so small that it would take two given,
opposite charges ∼ 1010n36R

2
6/B12 years to move away

from each other by a distance comparable to one neutron-
star radius.

7 Conclusions

We hope to have been able to give students a first glimpse
at the very extreme properties of neutron stars, showing
how they can nearly all be understood in terms of basic
physical principles. We believe that this can give them a
firm grounding to study the vast specialized literature on
the subject and to put more specific and precise result in
context.
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