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Abstract. In this review article, we argue that our current understanding of the thermodynamic properties
of cold QCD matter, originating from first principles calculations at high and low densities, can be used
to efficiently constrain the macroscopic properties of neutron stars. In particular, we demonstrate that
combining state-of-the-art results from Chiral Effective Theory and perturbative QCD with the current
bounds on neutron star masses, the Equation of State of neutron star matter can be obtained to an accuracy
better than 30% at all densities.

1 Introduction

Neutron stars represent a rare example of systems whose
macroscopic structure is determined via a subtle inter-
play between the physics of vastly different length and
energy scales, namely those of the strong nuclear force
and gravity. It is exactly the matching of these two scales
that makes describing their properties at the same time
so challenging and so rewarding; in essence, neutron stars
function as natural macroscopic laboratories of nuclear
physics. The task of figuring out the composition of the
stars reduces to solving the well-known Tolman-Oppen-
heimer-Volkov (TOV) equations [1], which need as input
the equation of state (EoS) of cold and dense strongly
interacting matter. This function, on the other hand, is
available from the underlying microscopic theory of the
strong interactions, Quantum Chromodynamics (QCD).

The problem in the above, conceptually rather straight-
forward story is of course the complexity of QCD. In par-
ticular, the theory has so far avoided a nonperturbative
first principles solution at nonzero baryon density due to
the well-known Sign Problem of lattice QCD [2]. In the ab-
sence of other nonperturbative tools, the remaining first
principles options are limited to various limits: at low den-
sity —typically below the nuclear saturation density— the
power counting of Chiral Perturbation Theory allows the
rigorous construction of an effective description, Chiral
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Effective Theory (CET) [3], to account for the two- and
higher-body forces between nuclei and the construction of
a reliable EoS of nuclear matter. In the opposite limit,
of asymptotically high density, the asymptotic freedom
of QCD guarantees that the interactions between quarks
become weak and that a perturbative description of the
bulk thermodynamics, i.e. perturbative QCD (pQCD),
becomes valid [4]. Between these limits, the range of com-
putational tools is at the moment very limited.

In the review article at hand, our goal is two-fold. First,
we want to provide a review of current perturbative cal-
culations of the EoS of cold quark matter, and in partic-
ular to discuss the potential future developments in this
field. At the same time, we also wish to illustrate how
a combination of the current state-of-the-art pQCD re-
sults together with the CET EoS of nuclear matter can
be used to place very stringent constraints on the behav-
ior of the neutron star matter EoS, and thereby also on
the structure of the stars. In the latter process, we follow
the approach of [5], where interpolating polytropes were
used to parameterize (our ignorance of) the EoS in the re-
gion between the CET and pQCD. The criterion that this
article used for switching from the low- and high-density
EoSs to the polytropes was that the relative errors of the
two approaches are ±24%. Somewhat remarkably, it then
follows that the simple requirements of thermodynamic
stability, subluminality and the ability to support a two
solar mass star [6, 7] are enough to constrain the EoS to a
±30% accuracy everywhere. The result of this procedure
is illustrated in the schematic fig. 1.

An important implication of the above exercise is that
the behavior of the perturbative EoS of quark matter
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Fig. 1. Known limits of the stellar EoS on a logarithmic scale.
On the horizontal axis we have the quark chemical potential
(with an offset so that the variable acquires the value 0 for pres-
sureless nuclear matter), and on the vertical axis the pressure.
The band in the region around the question mark corresponds
to the interpolating polytropic EoS used in [5].

contributes to that of neutron star matter irrespective of
whether deconfined quark matter is present inside neu-
tron stars or not. The existence of such quark matter cores
is naturally a very important question by itself (see e.g.
ref. [8] for a recent review), but also considerably more
challenging to approach in a model independent way than
the behavior of the EoS itself.

The structure of our article is as follows. First, in
sect. 2 we review the current status and prospects of
pQCD both at high temperatures and high densities, con-
centrating on the lessons to be learned from studies of
high-T Quark Gluon Plasma (QGP). Next, sect. 3 is de-
voted to explaining the matching and interpolation proce-
dure of [5], while in sect. 4 we review the implications of
these studies on neutron star structure. Section 5 finally
contains concluding remarks as well as our view of where
future efforts in the field should be directed, if we want
to decrease the current uncertainty of the EoS of neutron
star matter.

2 Equilibrium thermodynamics of cold quark
matter

The thermodynamic properties of deconfined quark mat-
ter has been a topic of active research for decades. In the
regime of high temperatures, the motivation stems from
ultrarelativistic heavy-ion physics and the early universe,
while at lower temperatures and high densities the pri-
mary motivator has been the desire to understand the
composition and properties of compact stars. While at
high temperatures the leading source of information is by
now unequivocally lattice QCD, at high densities its use is
prevented by the famous sign problem, leaving the prob-
lem to be tackled by a combination of phenomenological
models and perturbative approaches, as discussed above.

In this section, we review the current status of research
on the bulk thermodynamics of quark matter, and in par-

ticular explain the prospects and limitations of first princi-
ples weak coupling calculations as a means of determining
the EoS of cold and dense deconfined matter. Though his-
torically important for the development of the field, we
leave the topic of nonfirst-principles model calculations
aside in our presentation, as one of the main goals of our
exercise is to find out, how far one can proceed with min-
imal assumptions and truly first principles methods. For
reviews of model calculations and their present status, see
however [9, 10]. The section is structured such that we first
review the status of perturbation theory at high temper-
atures, paying attention to the agreement of the results
with lattice simulations. After this, we take a look at the
zero temperature limit, and finally discuss the interpola-
tion of perturbative results between these limiting cases
as well as briefly comment on the prospects of future de-
velopments.

2.1 Lessons from high temperatures

As the only nonperturbative first principles tool available,
lattice QCD has established itself as the method of choice
for the evaluation of thermodynamic quantities whenever
numerical Monte Carlo simulations are feasible. At van-
ishing baryon density, the efforts of several independent
groups have indeed led to pinning down both the EoS, the
(pseudo-)critical temperature of the deconfinement transi-
tion and various other quantities to a very good accuracy
(see, e.g., [11–13] for recent results), and by now there is
impressive agreement on all relevant observables. Proceed-
ing away from the μB = 0 axis, the complex-valuedness
of the lattice action, however, complicates things signifi-
cantly, and it is only for rather small values of μB/T that
methods such as Taylor expanding physical observables
around μB = 0 [14] or statistical reweighting [15] allow
one to accurately estimate their behavior. At the same
time, a different limit that has historically been problem-
atic for lattice methods, namely very high temperatures,
T � Tc, is by now quite well under control [16].

A different first principles method, with properties
largely complementary to lattice QCD, is again perturba-
tion theory, or more generally weak coupling expansions.
Here, one proceeds to expand the functional integral corre-
sponding to the partition function in a generalized power
series in the coupling constant g, relying on the fact that
asymptotic freedom guarantees that this is a well-defined
procedure at least at sufficiently high energy densities.
Just like with lattice simulations, there is a long history
of thermal perturbation theory, dating all the way back
to the late 1970s [17, 18]. At present, the EoS of the QGP
is known up to O(g6 ln g) at high temperatures and at
most moderate chemical potentials μB ≤ 10T [19–21] (see
also related work in Hard Thermal Loop perturbation the-
ory [22, 23]) and to order g4 at T = 0, including nonzero
quark masses [24]. Between these limits, there exists a
three-loop (i.e. O(g4)) result, which, however, relies on a
rather heavy numerics and has only been worked out for
one special case, namely a system of three massless quarks
in beta equilibrium [25].
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Fig. 2. The μB = 0 pressure and the second-order light quark number susceptibility as functions of temperature, both normalized
to their respective free theory values. The lattice data are from the Wuppertal-Budapest (left figure and WB in the right
figure) [28] and BNL-Bielefeld [29] Collaborations, while the yellow perturbative band in the left figure and the two perturbative
bands of the right figure are from [30] and [31], respectively.

In the region of the QCD phase diagram, where lattice
QCD is applicable, a direct comparison of the predictions
of lattice simulations and perturbative calculations for the
EoS and quark number susceptibilities (QNSs) shows re-
markably good agreement from temperatures of order 3Tc

onwards. This is demonstrated in fig. 2, where we display
the μB = 0 pressure as well as the second order diagonal
QNS as predicted by lattice QCD and resummed pertur-
bation theory. The resummation applied in the pertur-
bative results of fig. 2 (with the exception of the HTLpt
band on the right) is motivated by the dimensionally re-
duced effective theory EQCD [26, 27] that can be used
to express the contribution of the soft momentum scales
gT and g2T —respectively corresponding to the electro-
and magnetostatic screening masses— to the EoS. At the
same time, the prediction of the MIT bag model with a
commonly used bag constant B = 150MeV, displayed for
the pressure in fig. 2 (left), is seen to lead to a wildly
differing prediction that in particular approaches the free
theory limit in a rapid power-law fashion, in stark contrast
with the logarithmic approach of the perturbation theory
result.

An important feature of the weak coupling expansion
method is that the results come with a built-in error es-
timator, given by their dependence on the scale param-
eter λ̄ of the renormalization scheme in question (here
the so-called modified minimal subtraction scheme). This
parameter is an artifact of having had to truncate the
weak coupling series after a finite number of terms, and
its value is in principle completely arbitrary. As long as the
perturbative expansion converges (in an asymptotic series
sense), the dependence on this scale diminishes order by
order, and hence it makes sense to choose some reasonable
central value for it, corresponding to the dominant energy
scales in the system (such as 2πT at high temperature),
and gauge the uncertainty in the result by varying the pa-
rameter around this number. This is the leading source of
the perturbative error bands in fig. 2, and in particular

explains their widening at lower temperatures, where the
coupling constant of the theory grows rapidly.

2.2 Zero temperature limit

Proceeding next to the zero temperature limit, relevant
for neutron star physics, we no longer have the lattice
QCD results available for comparison. To add to the com-
plication, there is no longer any effective theory descrip-
tion available for the IR sector of the theory, and hence
no natural resummation scheme that would significantly
improve the convergence of the weak coupling expansion.
Fortunately, some technical simplifications do occur in the
exact T = 0 limit, which allow one to efficiently use the
so-called cutting rules, discussed in some length in [24]. In
brief, it is possible to reduce the computation of a vacuum
(bubble) diagram at zero temperature and finite chemical
potential to a sum of three-dimensional numerical phase
space integrals over amplitudes that are all evaluated at
μ = 0. This presents a significant simplification to the cal-
culations owing to the fact that results for the μ = 0 am-
plitudes can be efficiently evaluated using Integration By
Parts (IBP) techniques, and are in addition abundantly
available in the literature (for more discussion and refer-
ences, see [24]).

The fact that the weak coupling expansion of the T = 0
pressure has only been computed to order g4 and no
resummation has been carried out in it can be seen in
fig. 3, where we plot the state-of-the-art perturbative re-
sult of [24] —computed with nonzero quark masses— and
compare it to the same simple model prediction as in fig. 2
(left). We observe that just like in the high-temperature
case, the perturbative band narrows down at high (en-
ergy) densities, but this time it is somewhat wider than
in fig. 2 (left). Nevertheless, we observe that the error
bar decreases rapidly enough for the perturbative result
to have significant predictive power once μB becomes of
order 2.5–3GeV.
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Recently, it has been shown in [32] that in beta equi-
librium, the pQCD pressure can be cast in the form of a
very simple pocket formula,

PQCD(μB ,X) = PSB(μB)
(

c1 −
a(X)

(μB/GeV) − b(X)

)
,

(1)
a(X) = d1X

−ν1 , b(X) = d2X
−ν2 , (2)

where X is a parameter proportional to the renormaliza-
tion scale of the theory (typically varied within X ∈ [1, 4]),
and we have denoted the pressure of three massless non-
interacting quark flavors (at Nc = 3) by

PSB(μB) =
3

4π2
(μB/3)4. (3)

The values of the constants c1, d1, d2, ν1, ν2 are fixed by
making sure that the pressure, quark number density and
speed of sound squared obtained from the fit agree with
the full results of [24], leading to

c1 = 0.9008 d1 = 0.5034 d2 = 1.452 (4)

ν1 = 0.3553 ν2 = 0.9101. (5)

For these values, one obtains a good fit whenever μB <
2GeV, P (μB) > 0, and X ∈ [1, 4]. Similar pocket for-
mulas can be equally well derived outside the limits of
beta equilibrium and charge neutrality, e.g. for fixed lep-
ton fraction.

The above pocket formula for the pressure allows for
the derivation of a simple analytic expression for the trace
anomaly εQCD − 3PQCD, where ε stands for the energy
density,

εQCD − 3PQCD =
μB

GeV
PSB(μB)

a(X)
[(μB/GeV) − b(X)]2

.

(6)
For the MIT bag model, the corresponding result would
be simply 4B, i.e. a constant. It is thus clear that a bag
model description completely misses important physics,
namely the degree of conformality violation in the system
that is measured by the trace anomaly.

2.3 Intermediate region and future prospects

Somewhat counterintuitively, the technically most com-
plicated region for thermal perturbation theory is that of
high densities and small but nonzero temperatures. Here,
the effective theories that allow for an efficient packaging
of the IR contributions to thermodynamic quantities are
not available, but neither are the computational simpli-
fications specific to the T = 0 limit. In the special case
of three massless quarks at the same chemical potential,
it was demonstrated in [25] that it is possible to perform
a direct all-orders resummation of certain classes of four-
dimensional vacuum Feynman diagrams, and thereby ob-
tain the EoS to the full g4 order. This method is, how-
ever, technically quite cumbersome and not automatically
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Fig. 3. The pressure of T = 0 quark matter, again normal-
ized by the noninteracting limit. The perturbative band cor-
responds to the state-of-the-art three-loop calculation of [24],
including a nonzero strange quark mass.

generalizable to nonzero quark masses or other values of
chemical potentials, away from the limits of charge neu-
trality and beta equilibrium. Thus, the technically most
straightforward alternative to obtain the EoS at temper-
atures of order 0 < T < 200MeV is to perform a simple
interpolation between the T = 0 and high-temperature
results, recalling that the latter are applicable as long as
T � μB/10. The result of this procedure is shown in fig. 4,
where we display the behavior of the pressure of a system
of three quark flavors, the electron and the electron neu-
trino at T = 30 and 200MeV and a fixed lepton fraction
of Yl = 0.4. We observe a rapid decrease of the uncertainty
when moving to higher temperatures, which is in part sim-
ply due to the larger energy densities there, and in part
to the resummation carried out in the high-T calculation.
Note that the interpolation is performed between the zero
quark mass T = 0 and high-T results due to the fact that
the latter only exists in this limit.

As will be demonstrated in the following two sections,
the most important way perturbative calculations can aid
studies of the neutron star structure in the near future is
by reducing the current uncertainties in the EoS of quark
matter at T = 0. To achieve this goal, the most crucial step
would undoubtedly be the determination of the next or-
ders in the weak coupling expansion: First the term of or-
der g6 ln g, and later the full O(g6) four-loop result. While
progress of this sort will not aid in building a physical re-
summation scheme for the EoS, there is reason to expect
that it will lead to a considerable reduction of the renor-
malization scale dependence of the pressure. This is due to
the fact that the four-loop order is the first one where an
optimization of the midpoint value of the scale parameter
becomes possible through schemes such as the Principle of
Minimal Sensitivity (PMS) or the Fastest Apparent Con-
vergence (FAC). Needless to say, such a four-loop compu-
tation is, however, a formidable challenge, and one that
will take a considerable amount of manpower and time to
tackle.
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3 Bridging the gap between nuclear and
pQCD matter

As explained in sect. 1, fig. 1 summarizes the current
first principles information available on the behavior of
the EoS of zero temperature strongly interacting matter.
At the lowest densities, the system corresponds to a lat-
tice of nuclei of increasing neutron fraction, which con-
tinues until the neutron drip line is reached in the in-
ner crust of the star [33]. At higher chemical potentials,
the matter on the other hand consists predominantly of
neutrons, whose interactions gradually become more im-
portant. The uncertainties in the EoS of neutron mat-
ter rapidly grow with density such that the function is
known within ±24% at the density of 1.1 times the nuclear
saturation density n0 [34]. This density corresponds to
μB ∈ [0.968, 0.978]GeV, to be contrasted with the chem-
ical potentials found inside stellar cores.

The value of the chemical potential in the center of
a maximally massive star is a strongly model dependent
quantity. A strict upper limit can, however, be given by
an elegant argument based solely on the maximally stiff
EoS and the TOV equation, limiting the chemical po-
tentials to μB � 2.1GeV [35]; this limit is denoted in
fig. 1 by the label “Maximal limiting μ”. The physical
EoS, however, is surely not maximally stiff, and typi-
cal values for the central chemical potential range within
μB ≈ [1.33, 1.84]GeV, denoted by the magenta line in
fig. 1. These chemical potentials are clearly far out of reach
for the present-day nuclear physics calculations. Strong
extrapolation is therefore needed in order to construct the
EoS of a maximally massive star using only the low den-
sity information, which suggests it should be very useful
to approach the relevant region of densities also from the
high density side.

The EoS of free quarks is displayed in fig. 1 as a dashed
line labeled “SB limit”, standing for the Stefan-Boltzmann
limit. This piece of information alone offers a constraint
for the high-density EoS by providing the limit to which

EoS must eventually asymptote. However, the constraint
is rather weak because it does not include information
about how the physical EoS is supposed to approach this
asymptote, and in particular at what chemical potentials
the free limit becomes numerically relevant. The higher-
order corrections to the EoS, discussed in the previous sec-
tion, however ameliorate this difficulty, allowing us to esti-
mate the accuracy and precision of the perturbative result.

The baryon number chemical potentials where the un-
certainties of the perturbative calculation become compa-
rable to those of the low energy EoS are around μB ≈
2.6GeV. While this value is clearly larger than the chem-
ical potentials expected to be found inside the cores of
maximal neutron stars, and even larger than the limit-
ing chemical potential, it nevertheless gives a strong con-
straint for the behavior of the EoS at high densities.

To quantify the power of the additional information
coming from pQCD, an interpolation between the two
presently known limits was considered in [5]. In the inter-
mediate region, the EoS of neutron star matter is param-
eterized using a polytropic interpolator, constructed from
a set of monotropes Pi(n) = κin

γi , with several (baryon
number) density intervals described by different polytropic
indices γi. The larger γi is, the stiffer the EoS is, while for
a given γi, κi is chosen such that the pressure and its first
derivative are continuous over the change of the polytropic
index and that the lower (higher) edge of the first (last)
monotrope matches smoothly to the CET (pQCD) EoS.
Also, it is required that the speed of sound stays always
subluminal, c2

s < 1.
Figure 5 (left) demonstrates in practice, how the proce-

dure explained above constrains the EoS at intermediate
densities. The figure shows an interpolation constructed
from two monotropes of different polytropic indices
(dashed line). The nuclear EoS is denoted by the small red
segment on the left, whereas the range of possible pertur-
bative EoSs allowed by scale variation is depicted by the
orange band on the right. A single realization of the pQCD
EoS with a particular choice of the renormalization scale is
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finally denoted by a dark green line labeled by “X = 1.2”.
In order for the interpolation to smoothly reach the pQCD
EoS at high densities, the first monotrope can not be too
soft (cf. the line with γ1 = 2.0); otherwise the pressure
irreparably overshoots the pQCD pressure. On the other
hand, the pQCD EoS itself is relatively soft with c2

s � 1/3,
and in order for the last monotrope to smoothly reach
pQCD, the latter cannot be too hard (cf. the line with
γ2 = 4.0). This gradual softening of the EoS restricts
the values of γi that fulfil both the low and high density
constraints. Indeed, fig. 5 (right) displays all the possible
polytropic solutions consisting of 2 or 3 monotropes and
fulfilling the low and high density constraints, and has
been obtained by varying the polytropic indices as well
as the chemical potentials where the indices change. It
is noteworthy that adding an additional monotrope does
not significantly widen the envelope of the set of allowed
EoSs, so that the systematic error caused by choosing only
2 monotropes is numerically small. Also, it should be em-
phasized that due to the high densities involved in the
matching, we use the full result of [24] rather than the
simple parametrization of [32] as the quark matter EoS.

If there is a first order transition in the intermediate
density region, it will appear as a discontinuity of the first
derivative of the pressure as a function of μB , proportional
to the latent heat of the transition when passing from one
monotrope to the next. Thermodynamical consistency re-
quires that the discontinuity is positive, such that the EoS
is softer (smaller γi) in the high density monotrope than
if we have no transition at all. This, combined with the
requirement of matching with the pQCD EoS significantly
constrains the possible EoSs even with the first order tran-
sition. Indeed, assuming a first order transition can be seen
to not lead to new solutions outside of the envelope shown
in fig. 5.

The effect of the constraint at high density is perhaps
most clearly seen by comparing the interpolated EoS to
an extrapolation not taking into account the pQCD con-
straint. This is shown in fig. 6, where the cyan and blue
bands (including the area of the green band) correspond
to the interpolation with two and three monotropes, re-
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spectively. The band denoted HLPS is the extrapolation of
Hebeler et al. [36], who in addition required that the EoS
is able to support a 2Msol star and imposed additional ad
hoc constraints on the γi’s (1 < γ1 < 4.5, 0.5 < γ2 < 8.5).
The additional constraints on the γi’s imposed by Hebeler
et al. are roughly compatible with the constraints deter-
mined from pQCD (2.23 < γ1 < 9.2, 1.0 < γ2 < 1.5),
though the pQCD constraint additionally excludes EoSs
that are too soft at small densities, so that γ1 > 2.23. The
pQCD constraint can thus be viewed as providing an a
posteriori justification for the choices made in [36].

Finally, imposing the additional condition on our EoSs
that the they must be able to support a 2Msol star leads
to the green band of fig. 6. Summarizing our finding here,
using the constraints at low and at high densities, the
EoS (pressure as function of chemical potential) is known
within ±30% at all densities, irrespective of the amount of
quark matter that is present in the cores of neutron stars
or whether there is a physical phase transition between
the quark matter and nuclear matter phases.
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Fig. 8. Left: The internal structure of the maximally massive stars corresponding to three representative EoSs I–III (see [5]
for details). Right: The maximal chemical potential reached at the center of a maximum mass star as a function of the critical
chemical potential. See the main text for details.

4 Implications on neutron star properties

In addition to severely constraining the EoS of cold
strongly interacting matter, the calculations explained
above have implications on the macroscopic properties of
neutron stars. Besides the mass-radius relation, one can
investigate the internal structure of stars in terms of their
energy density distribution, the effects of allowing for a
first order transition to quark matter, as well as the de-
pendence of the amount of quark matter inside a star on
the latent heat of the transition.

Figure 7 (left) exhibits two clouds of M − R curves
corresponding to all of our generated EoSs. The maxi-
mal masses of the stars are seen to fall inside the interval
Mmax ∈ [1.4, 2.5]M�, while their radii lie in the range
R ∈ [8, 14] km. At the same time, the maximal chemi-
cal potentials encountered at the center of the star satisfy
μcenter ∈ [1.33, 1.84]GeV, corresponding to maximal cen-
tral densities of n ∈ [3.7, 14.3]n0. This falls right in the
middle of the interval between the nucleonic and pQCD
regions, where the EoS is equally constrained by its low
and high density limits.

As discussed previously, the stellar matter EoS can
be further constrained by demanding that it is able to
support the observed two solar mass stars. This require-
ment produces the dark green area in the figure, corre-
sponding to the band of the same color in fig. 6. For
these EoSs, the maximal chemical potentials are bound
from above by μcenter < 1.77GeV, and the central den-
sities by n < 8.0n0. From fig. 7, one can in addition
read that for 1.4M� neutron stars, our allowed radii
range between 11 and 14.5 km, while for 2M� pulsars,
R ∈ [10, 15] km. It is also worth noting that within the
bitrope approach, we find no configurations with masses
above 2.5M�.

In fig. 7 (right), we add the effects from tritropic cor-
rections and the presence of a possible first-order phase
transition in the EoS for comparison. Both effects are seen
to introduce only minor corrections to the earlier results.
For a more complete analysis of the case of a first-order
phase transition, we refer the reader to [37], where the au-
thors also investigate the case of twin star configurations,
which we have completely omitted in our study.
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In fig. 8 (left), we finally show the inner structure of
three maximally massive stars corresponding to the cases
I–III of fig. 7. The energy densities are all continuous due
to the smoothness of the matching procedure (no first-
order phase transition), while one can witness the soften-
ing of the EoS when approaching the perturbative densi-
ties as the faster growth of the energy density near the
center of the star. Figure 8 (right) on the other hand dis-
plays the maximal chemical potential reached at the cen-
ter of a maximum mass star as a function of the critical
chemical potential. As a test on the effects of a possible
first-order transition to quark matter, we consider several
values of the parameter ΔQ, standing for the strength
(latent heat) of the phase transition: ΔQ = 0 (blue),
ΔQ = (175MeV)4 (magenta), and ΔQ = (250MeV)4
(black). The open points correspond to EoSs that can-
not support a M = 2M� star, while the solid points are
allowed by the mass constraint and the diagonal line sepa-
rates the region that allows for the presence of deconfined
quark matter in the core of the compact star from the one
where no quark matter phase is realized.

5 Final remarks

One of the main challenges in the investigation of the mi-
croscopic and macroscopic properties of neutron stars is
how to account for the Equation of State of strongly in-
teracting matter in the relevant density interval, cover-
ing possibly both confined and deconfined phases. First-
principle approaches to the problem are unfortunately
scarcely available, given the intrinsic difficulty of lattice
QCD at nonzero baryon density. The most common al-
ternative is to resort to one of the multitude of different
models that try to capture some features of the fundamen-
tal theory. Their use is, however, typically accompanied by
the introduction of systematic errors that are often hard
to quantify.

As a viable alternative to models, there are at least
two limits of phenomenological relevance in which QCD
admits a first-principle approach. One of these is the limit
of high densities, where pQCD provides robust results that
furthermore come with a built-in measure of their inherent
uncertainties. Up to now, these results have, however, not
been fully taken advantage of by the neutron star commu-
nity, even though several attempts in this direction have
been made over the years [5, 24, 32, 38–42].

In the paper at hand, we have discussed, how the EoS
for cold nuclear matter can be constrained by using first
principles results from two opposite limits in baryon den-
sity and combining these insights together with observa-
tional constraints on the maximum mass of neutron stars.
As discussed in detail in [5], the strong constraints that
emerge from this are remarkably independent of the exis-
tence of deconfined quark matter in the cores of neutron
stars. This demonstrates that quark matter physics is rele-
vant for the equation of state for cold nuclear matter even
at densities below the critical density for the hadron-quark
transition.
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