
DOI 10.1140/epja/i2016-16044-y

Regular Article – Theoretical Physics

Eur. Phys. J. A (2016) 52: 44 THE EUROPEAN
PHYSICAL JOURNAL A

Cooling compact stars and phase transitions in dense QCD�

Armen Sedrakiana

Institute for Theoretical Physics, J. W. Goethe University, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main, Germany

Received: 19 September 2015 / Revised: 8 November 2015
Published online: 11 March 2016 – c© Società Italiana di Fisica / Springer-Verlag 2016
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Abstract. We report new simulations of cooling of compact stars containing quark cores and updated fits to
the Cas A fast cooling data. Our model is built on the assumption that the transient behaviour of the star
in Cas A is due to a phase transition within the dense QCD matter in the core of the star. Specifically, the
fast cooling is attributed to an enhancement in the neutrino emission triggered by a transition from a fully
gapped, two-flavor, red-green color-superconducting quark condensate to a superconducting crystalline or
an alternative gapless, color-superconducting phase. The blue-colored condensate is modeled as a Bardeen-
Cooper-Schrieffer (BCS)-type color superconductor with spin-one pairing order parameter. We study the
sensitivity of the fits to the phase transition temperature, the pairing gap of blue quarks and the timescale
characterizing the phase transition (the latter modelled in terms of a width parameter). Relative variations
in these parameter around their best-fit values larger than 10−3 spoil the fit to the data. We confirm the
previous finding that the cooling curves show significant variations as a function of compact star mass,
which allows one to account for dispersion in the data on the surface temperatures of thermally emitting
neutron stars.

1 Introduction

The central densities of compact stars (hereafter CSs) can
be by a factor of few up to ten times larger than the satu-
ration density of nuclear matter. In this range of densities
the mean interparticle distance may become of the order
of characteristic size of a baryon, therefore neutrons, pro-
tons, and heavier baryons will eventually lose their iden-
tity, as their wave functions start to overlap. Although
the detailes of the mechanism of deconfinement are not
well understood so far, it is plain that at sufficiently large
density the baryonic matter will undergo a deconfinement
phase transition to quark matter. Not only the transition
itself, but also the phase structure of quark matter is dif-
ficult to access, because the densities in CSs will not be
large enough for the perturbative QCD to be valid. Astro-
physics of CSs offers an avenue to explore and constrain
the possible deconfinement phase transition and the prop-
erties of dense QCD matter via modeling of CSs contain-
ing quark cores [1,2].

The focus of this work is the effects of the deconfine-
ment phase transition and the phase structure of dense
QCD on the cooling of CSs. This discussion extends the
previous work on the cooling of hybrid stars containing su-
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perconducting quark matter, including the interpretation
of the rapid cooling of the CS in Cassiopea A as a phase
transition within the QCD phase diagram [3,4]. Specifi-
cally, we report the results of new simulations of cooling
of CSs and fits to the Cas A updated data [5], which covers
the 10 year period from 2003 to 2013. These data indicate
an unprecedented fast cooling of the neutron star in Cas A,
which requires fast transient modeling of this object (as
opposed to the familiar long-timescale modeling of neu-
tron stars, where characteristic timescales of variations are
t ≥ 100 y). The best estimate of ref. [5] indicates a decline
in the temperature of the star 2.9± 0.9% over 10 years of
observation, which requires extremely fast transient cool-
ing of the star over this period. The currently available
data cannot be interpreted unambiguously; one reason is
the bright and varying supernova remnant background,
which makes a definitive interpretation difficult [5]. An-
other uncertainty arises from adopted constraints on the
temperature fitting parameters and the uncertainties of
the effective area calibration; for example, the apparent
decline in the temperature can be compensated if one
allows for variations in the emitting region size [6]. In
the following we leave aside the possible uncertainties in
the interpretation of the data and focus on its theoretical
modeling.

A variety of models account theoretically for the Cas
A data. Each class of models has its own specific trigger
for onset of rapid cooling around the age of the Cas A
(t � 300 y). A class of nucleonic models (i.e., models of
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CSs containing neutrons, protons, and electrons) attribute
the rapid cooling to the onset of Cooper pair-breaking for-
mation process in CS’s superfluid component [7–12]. The
rapid cooling occurs once the temperature drops below the
critical temperature Tc,n � 109 K of phase transition of
nucleons to the superluid state. This allows for additional
neutrino emission via Cooper-pair breaking and formation
(PBF) processes from S-wave [13–17] and P -wave conden-
sates [18,19]. These minimalistic models do not require
any additional new physics beyond the standard scenario
which is supplemented by pair-breaking processes [20].

The Cas A data was also explained in refs. [21,22]
within a model where modified Urca and bremsstrahlung
processes are enhanced compared to rates used in the min-
imalistic models quoted above by several orders of mag-
nitude due to a softening of pionic modes, as initially dis-
cussed in ref. [23]. Rotational changes in star’s composi-
tion may induced Urca process as the star slows down,
which in turn can cause a Cas A type fast transient [24],
which however would require very fine tuning of parame-
ters, as already discussed in ref. [3].

Color superconductivity was included in the simula-
tions of CS to account for Cas A data in refs. [3,25].
In ref. [25] the phase transition from purely nucleonic to
purely quark matter occurs via mixed phases, whereas
ref. [3] assumes sharp interface between the two; which
scenario is realized depends on the poorly known surface
energy between the nucleonic and quark phases. We ex-
plore here the second possibility.

This paper is organized as follows. In sect. 2 we discuss
the relevant features of the phase diagram of dense and
cold QCD. Section 3 describes the physical input needed
for cooling simulations, including neutrino emissivities of
various phases and specific heats. The results of numerical
simulations are presented in sect. 4 together with the fits
to the Cas A data. A summary and conclusions are given
in sect. 5.

2 The phase structure of dense QCD and
massive compact stars

This section provides the background information on the
QCD phase diagram, which is necessary for the under-
standing of the model of cooling of CSs presented in the
following sections. Readers interested in the astrophysi-
cal aspects of the modeling can proceed to sect. 3; those
interested in the results can go directly to sect. 4.

We consider a class of hybrid CSs, which contain dense
quark cores surrounded by a nucleonic envelope, with
a sharp phase-transition interface between these phases.
Stars with such hybrid structure naturally correspond to
the most massive members of the sequence of stellar equi-
libria modelled with an equation of state which contains
a phase transition from nucleonic to quark matter. These
massive members must be heavy enough to account for the
recently observed two-solar mass pulsars PSR J1614-2230
and PSR J0348+0432 [26,27].

If quarks in the deconfined phase of the star are un-
paired (i.e. do not form Cooper pairs) they will cool the
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Fig. 1. Phase diagram of color-superconducting quark mat-
ter in the temperature (T ) and isospin imbalance α = (nd −
nu)/(nu+nd) plane, where nd and nu are the number densities
of d and u flavors of quarks. The arrows schematically show the
path in the phase diagram during the cooling of a star.

star by neutrino emission rapidly to temperatures well
below those observed in Cas A [4,28–31]. However, cold
quark matter is expected to be in one of the conjectured
superconducting phases due to the attractive component
in the gluon exchange quark-quark interaction [32]. The
β-equilibrium and strange quark mass shift the Fermi sur-
faces of up and down quarks apart. As a consequence some
non-BCS phases can now emerge. Such non-BCS phases
include the gapless two-flavor phases [33,34] or, for exam-
ple, the crystalline color-superconducting phase [35,36].
The crystalline color superconductivity itself has a mul-
titude of realizations, which differ by the way the trans-
lational symmetry is broken by the condensate of Cooper
pairs carrying finite momentum. For concrete calculations
we will assume below the so-called Fulde-Ferrell phase
(hereafter FF phase), which is simple to model, but is
general enough to preserve a key feature of the crystalline
phases, which is the existence of gapless modes on the
Fermi surfaces of up and down quarks [35–38].

Our conjecture concerning the behaviour observed in
Cas A is based on a robust feature of the phase diagram
of the two-flavor color-superconducting matter (and, in
fact, any two-component fermionic systems with attrac-
tive interaction). Just below the critical temperature and
at not too high isospin asymmetries, measured by param-
eter α = (nd − nu)/(nu + nd), where nd and nu are the
number densities of d and u flavors of quarks, the ro-
tational/translational symmetries are unbroken, i.e., the
fully gapped 2SC phase is favored (see fig. 1). At lower
temperatures a phase transition to a less symmetrical
phase (such as the FF phase) becomes favorable at larger
asymmetries, but not large enough to destroy the super-
conductivity completely. (This would correspond in fig. 1
to α > 0.2.) Note that the phase diagram shown in fig. 1
is valid only in the weak coupling limit, which is the case
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Fig. 2. Phase diagram of the same phases as in fig. 1, but
in the temperature and baryon density (nB) plane for quark
matter in β-equilibrium with electrons. The hadronic phase is
shown schematically on the left.

in the bulk of CSs. (If the coupling is large enough the
ensemble makes a transition from 2SC to Bose-Einstein
condensed phase without entering crystalline phase; see,
for example, refs. [39–41] for a generic and most complete
phase diagram of a fermionic system with imbalance.)

We next explore the consequences of the transition
from the symmetrical two-flavor BCS phase to the crys-
talline phase (in our case the FF phase) for the cooling of
CSs and the CS in Cas A. We anticipate such a transition
in CSs because a newly born proto-CS has temperatures
of the order of several tens of MeV and matter in nearly
isospin symmetrical (α � 0) state. Within short period of
time (minutes to hours) the CS cools to temperatures of
the order of 1MeV and becomes strongly isospin asym-
metrical as β-equilibrium among quarks and electrons is
established. The arrangement of phases shown in fig. 1 in
the case of β-equilibrated matter is shown in fig. 2, which
is taken from ref. [38]. A shell of quark matter phase in
the star with fixed density will traverse the T -α plane
from upper left corner to the lower right corner as shown
by arrows in fig. 1. The same path is shown in fig. 2 in the
temperature and density plane.

The transition temperature from the 2SC to the FF
phase is denoted by T ∗ and will be treated below as a
free parameter. Our fits to Cas A data below will demon-
strate that the values obtained from theoretical models
are larger than those obtained from fits. This uncertainty
is acceptable as the magnitude of the pairing interaction
among quarks in the non-perturbative regime of QCD is
model dependent and generally not well know.

Finally, assuming that the cross-flavor pairing occurs
between the green- and red-colored quarks we need to
address the pairing among the remaining blue-colored
quarks. The strength and the flavor content of pairing
among blue quarks is model dependent [42–44]. Obviously
blue-up and blue-down pairing is suppressed by a large

mismatch between the Fermi surfaces of the up and down
quarks. Pairing is more likely in the color 6S and flavor
3S channel, which is same-flavor and same-color pairing,
therefore it is not affected by the flavor asymmetry [42].
Calculations show that the gaps are in the range 10–
100 keV. Again because of uncertainties envolved in the
interaction generating the BCS state of blue quarks we
treat the blue quark gap Δb as a parameter of our model.

3 Physical input into simulations

3.1 Equilibrium structure of hybrid stars

Prior to computing the time evolution of CS models with
color-superconducting phases discussed in the previous
section we need to construct the equilibrium models of
such stars. Two classes of models were developed and used
by us in the studies of color-superconducting quark mat-
ter. Both classes are based on equations of state (hereafter
EoS) with a sharp phase transition between the nuclear
core and quark phases; the first class features crystalline
color-superconducting quark matter in the quark core and
nuclear envelope, which is described by a relativistic den-
sity functional model with a stiff parameterization of the
EoS [45,46]. The second class of models contains 2SC
phase discussed in the previous section and the color flavor
locked (CFL) phase at high densities [47,48]. Both mod-
els produce stable sequences of color-superconducting CSs
with maximal masses above the lower observational bound
mentioned above. We model the high-density matter EoS
within the effective Nambu–Jona-Lasinio four-fermion in-
teraction model supplemented by pairing interaction be-
tween quarks. The nuclear and quark equations of state
were matched by a Maxwell construction. If one uses al-
ternative constructions mixed phases will appear, which
we do not discuss here (see refs. [25,49]). We will assume
that strange quarks because of their large mass are not
important at the densities relevant to our models. The
nucleonic phase itself can contain non-zero strangeness in
form of hyperons. But the compatibility of hyperons with
large masses of pulsars needs special attention. Indeed
their appearance softens the EoS and the maximal masses
of neutron stars are lower than those observed. This “hy-
peronization puzzle” is a fundamental problem on its own
right and will not be discussed here (see refs. [50–56] for
recent discussions of this problem). Below we will exclude
the hyperons from the consideration.

The parameters of our models are listed in table 1. The
models with low central densities (ρc ≤ 3ρ0) have masses
M ≤ 1.85M� and are purely hadronic. The models with
larger central densities contain quark cores, with the size
of the core increasing with the central density.

3.2 Neutrino emissivities in quark phases

We consider first unpaired quark matter. Because quarks
are ultra-relativistic the Urca process works without any
kinematical restrictions (as opposed to baryonic matter).
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Table 1. The table lists the central density ρc,14, quark core
radius RQ, quark plus hadronic core radius RQ+H , the isother-
mal core radius Rcr, the star radius R, and the masses of the
quark core MQ, the hadronic core MH , the crust Mcr, and the
total mass M . The density is in units of 1014 g cm−3, the radii
in kilometers, and the masses in units of M� [4].

ρc,14 RQ RQ+H Rcr R MQ MH Mcr M

5.1 – 11.47 13.39 13.53 – 1.03 0.07 1.10

8.2 – 12.57 13.55 13.57 – 1.81 0.04 1.85

10.8 0.68 12.54 13.49 13.5 0.001 1.866 0.0397 1.906

11.8 3.41 12.40 13.31 13.32 0.093 1.802 0.0374 1.932

21.0 6.77 11.34 11.91 11.92 0.888 1.143 0.0191 2.050

For two-flavor quark matter consisting of u and d flavors
of quarks the main modes of neutrino emission are given
by

d → u + e + ν̄, u + e → d + ν, (1)

where e stands for electron, ν and ν̄ electron neutrino and
antineutrino. The corresponding emissivity (energy out-
put per unit volume and time) was calculated to leading
order in the strong coupling constant αS ; the emissivity
per quark color is given by [57],

εβ =
914
945

G2 cos2 θpdpupeαsT
6, (2)

where G is the weak coupling constant, θ the Cabibbo
angle, and pd, pu, and pe are the Fermi momenta of down
quarks, up quarks, and electrons.

The quark pairing modifies the temperature depen-
dence of process (2). If the quark condensate was a BCS-
type superconductor, the emission would have been sup-
pressed linearly for T � Tc and exponentially for T � Tc,
where Tc is the critical temperature. However, in the
gapless superconductors there is an additional new scale
δμ = (μd − μu)/2, where μu,d are the chemical poten-
tials of light quarks. Depending on the relative ratio of
the two scales in the problem, namely δμ and Δ0 defined
as the pairing gap for δμ = 0 the suppression of emis-
sivity is qualitatively different. In terms of the parameter
ζ = Δ0/δμ one finds that in the ζ > 1 regime the Fermi
surfaces of quarks are gapped and the emissivity is sup-
pressed as in the case of BCS superconductors [58]. In
the opposite case ζ < 1 the Fermi surfaces have nodes
and particles can be excited around these nodes without
energy cost needed to overcome the gap. In the case of
the FF phase the shift in the chemical potential is re-
placed by a more general function —the anti-symmetric
in the flavor part of the single particle spectrum of up and
down quarks. As a result the parameter δμ is replaced by
[εd(Q) − εu(Q)]/2, where Q is the total momentum of a
Cooper pair and εu/d are the spectra of the u and d quarks.

It is convenient to use below the generic parameteri-
zation of the suppression factor of the quark Urca process

given by [58]

εrg
β (ζ;T ≤ Tc) = 2f(ζ)εβ ,

f(ζ) =
1

exp[(ζ − 1) δμ
T − 1] + 1

. (3)

A time-independent constant ζ excludes the possibility
of the phase transition between the above mentioned
phases. Therefore, following ref. [3], we adopt temperature-
dependent (and, therefore, time-dependent) parameter
ζ(T ). We use the following parameterization:

ζ(T ) = ζi − Δζ g(T ), (4)

where ζi is the initial (pre-transient in the Cas A case) value,
Δζ the constant change in this function, and the function
g(T ) describes the transition from the initial value ζi to
the asymptotic final value ζf = ζi −Δζ. The transition is
conveniently modeled by the following function:

g(T ) =
1

exp
(

T−T∗

w

)
+ 1

, (5)

which allows us to control the temperature of transition,
controlled by T ∗, and the smoothness of the transition,
controlled by the width w.

For the blue quarks, which are not involved in the FF
pairing, we assume that these are paired as in the BCS
phase, as already discussed in the previous section. In
that case their emissivity in the superconducting phase
is very approximately related to the emissivity in the nor-
mal phase

εb
β(T ≤ Tc) � εb

β(T > Tc)Jb

(
Δb

T

)
exp

(
−nΔb

T

)
, (6)

where the function Jb is some power-law function and n
is an integer of order of unity. We assume Jb = 1 as it
is of order unity when T ∼ Δb and is dominated by the
exponential factor for T � Δb. The pairing gap Δb will
be treated as a fit parameter below.

3.3 Neutrino emissivities in hadronic phases

Our treatment of the hadronic phases follows the stan-
dard picture of slow cooling, which is supplemented by
the pairing-breaking processes in the superfluid phases.
Because of low proton fraction (xp ∼ 0.05) in our models
the dominant neutrino emission channel in the unpaired
phases of hadrons is the modified Urca process. Additional
smaller contribution from the modified bremsstrahlung
process is also included. We use emissivities derived for
the free pion-exchange model of strong interaction [59],
but reduce them by a constant factor 5 to account for
short-range repulsive component of the nuclear force [60,
61]. The effective mass corrections are included as well.

Below the critical temperatures (Tc) for neutrons and
protons the emissivities of these processes are suppressed,
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at asymptotically low temperatures exponentially. In gen-
eral the emissivity of the modified Urca process in the su-
perfluid phase can be expressed via its rate in the normal
matter as follows:

εβ mod(T ≤ Tc) = εβ mod(T > Tc)

× Jβ mod exp
(
−mΔn(T )+kΔp(T )

T

)
, (7)

where m and k are integers and Jβ mod is a power-law
function of Δp/T and Δn/T , where Δp,n are the pairing
gaps of protons and neutrons. The emissivities of the nu-
cleonic superconducting phases were derived in refs. [62,
63] for both modified and direct Urca as well as in refs. [64,
65] for the direct Urca process using different methods.
Below, for the sake of simplicity, we assume m = k = 1
as well as Jβ mod = 1. This approximation captures
approximately the low-temperature asymptotic reduction
of the emissivity, but is a rather crude approximation at
T ≤ Tc. More detailed expressions are not needed for the
description of cooling of hybrid stars, which is dominated
by the processes involving quarks. The neutrino emission
processes from Cooper PBF start to contribute below the
respective Tc [13,66]. The neutral vector current processes
are strongly suppressed by multiloop contribution to the
response function of the S-wave paired condensate [14–17].
The axial-vector emission can be taken at one-loop level
to a good accuracy. For P -wave paired neutrons the rates
are unaffected by the multiloop processes and we use the
results of refs. [18,19]. Given the zero-temperature values
of the nucleonic gaps Δ(0), their finite-temperature values
are well approximated by the asymptotic expressions
given in ref. [67] (as well as fits to tables in that work [68])

Δ(T )
Δ(0)

=

{
1 −

√
2γτe−π/(γτ) 0 ≤ τ ≤ 0.5,

√
3.016(1 − τ) − 2.4(1 − τ)2 0.5 < τ ≤ 1,

(8)
where Δ(0) is the pairing gap in the zero-temperature
limit, τ = T/Tc is the temperature in units of the critical
temperature and γ = 1.781. The formulae (8) reproduce
the solution of the BCS gap equation with zero-range
interaction within a percent accuracy. Crustal neutrino
emission contributes to the cooling of the star in the final
stages of neutrino cooling era via the electron neutrino
bremsstrahlung emission on nuclei in the crusts [69]. Ions
in the crust may form a fluid or a solid. The abundances
of impurities, if high, could lead to additional neutrino
emission. In the fluid or impurity dominated crust
the emissivity scales as T 6 and we adopt this option
for temperatures relevant for that particular cooling
phase T ≤ 109 K. If crystalline lattice is formed at the
temperatures of interest, then the emissivities would
scale approximately as T 7 (classical crystal) or as T 8

(quantum crystal) and the bremsstrahlung emissivity is
parametrically suppressed [70].

3.4 Specific heat

The temperature dependence of the specific heat of nor-
mal Fermi liquids (both relativistic and non-relativistic)

is given by the linear law cV = aT , where the coefficient
depends on the abundance of given species (which is the
same as the Fermi momentum). We apply this formula to
the leptonic component of the star and unpaired hadrons
and quarks.

As is well known, in ordinary BCS superconductors
the specific heat as a function of temperature experiences
a jump at the corresponding critical temperature and then
decays, at low temperatures exponentially. For S-wave su-
perconductors one can apply the a asymptotic expressions
given in ref. [67] (as well as fits to tables in that work [68])
to model the ratio of the specific heats in the supercon-
ducting cS and normal cN phases

cS(T )
cN (Tc)

=

⎧
⎪⎨

⎪⎩

(12π/γ)(2γτ)−3/2e−π/(γτ) 0 ≤ τ ≤ 0.3,

−0.24422 + 0.255292τ

+2.43077τ2 0.3 < τ ≤ 1,

(9)
where Tc is the critical temperature of phase transition.
Equation (9) was applied uniformly to neutron, proton,
and blue-quark condensates. See ref. [71] for possible ef-
fects of P -wave superfluidity of neutrons in the core on
their specific heat.

To find the specific heat of the red-green condensate
we need an expression for the critical temperature as a
function of the mismatch δμ. We use the following formula:

Tc(ζ) � Tc0

√
1 − 4μ

3Δ0
δ(ζ), (10)

where μ = (μd + μu)/2, Δ0 = Δ(ζ = 0), Tc0 = Tc(ζ = 0),
and δ(ζ) = (nd − nu)/(nd + nu).

As in the case of emissivities, the availability of gapless
fermions in the case ζ ≤ 1 changes the BCS behaviour of
the specific heat as well. To model this regime we apply,
in analogy to emissivities, the following formula:

crg
S (ζ;T ≤ Tc)

crg
N

= f(ζ), (11)

where crg
N is the specific heat of red-green unpaired quarks,

taken as that for non-interacting quarks and crg
S is the

specific heat of pair-correlated quarks.

4 Results of numerical simulations

4.1 General considerations

The thermal evolution code employed in our study uses
the isothermal core approximation which is valid for
timescales that are larger that those which are required
to dissolve temperature gradients by thermal conduction.
In the hadronic core the thermal conductivity is dom-
inated by the electron transport if baryons are super-
fluid [72] and baryons if these are non-superfluid [73].
The characteristic timescales for thermal relaxation are
of the order of t ∼ 100 y. In the 2SC phase likewise the
transport is dominated by electrons and blue quarks [74].
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The early stage of thermal evolution of 2SC phase and the
timescale of its thermal relaxation remains to be studied;
here we assue that the entire (quark plus hadronic) core
is thermally relaxed at the start of simulation. Note that
for reasonable initial temperatures the cooling tracks exit
the non-isothermal phase and settle at a temperature pre-
dicted by the balance of the dominant neutrino emission
mechanism and the specific heat of the core independent
of the earlier evolution phase.

The isothermal core is defined by the transition den-
sity ρtr = 1010 g cm−3. At lower densities the envelope
maintains temperature gradients throughout the complete
evolution. The physics of thermal transport can be en-
coded in a relation between the interior T and surface Ts

temperatures. The models of envelopes predict the scal-
ing T 4

s = gsh(T ), where gs is the surface gravity, and h
is a function which depends on T , the opacity of crustal
material, and its EoS. This can be written as [75,76]

Ts6 = (αT9)βg1/4
s , (12)

where T9 the isothermal core temperature in units of
109 K, Ts6 is the surface temperature in units of 106 K,
α and β are constants that depend on the composition of
the star’s atmosphere, gs is the surface gravity in units
of 1014 cm s−2. We use β = 0.55, which lies between the
values for the purely-iron (β = 0.5) and fully accreted
(β = 0.61) envelope and α = 18.1, which is appropriate
for an accreted envelope [76]. Our fit results are sensitive
to the β parameter, but not to the α parameter. With
these ingredients at hand we have numerically integrated
the thermal evolution equation as described in ref. [4].

The numerical simulations were carried out for all
models listed in table 1, but we concentrate below mostly
on the representative model with M/M� = 1.93. Three
parameters were varied: a) the transition temperature
T ∗ from the 2SC to the crystalline phase; b) the blue-
quark gap Δb; and c) the width of the transition w.
The remaining parameters which model the temperature
(time) dependent part of the ζ function were held fixed
at values ζi = 1.1 and Δζ = 0.2. The constant zero-
temperature value of the red-green gap is fixed at the value
Δrg = 60MeV.

Figure 3 shows the dependence of the (redshifted) sur-
face temperature on time for M/M� = 1.93 stellar model
and for different values of the T ∗ (as indicated in the fig-
ure) with w and Δb fixed. In the limit T ∗ → 0 the quark
core does not influence the cooling because the neutrino
emission from the red-green and blue condensates is sup-
pressed for T � Δrg and T � Δb. For high values of T ∗

(0.2MeV in the figure) the transition to the FF phase
occurs early in the evolution of the star, therefore en-
hanced neutrino emission cools the star rapidly below the
value observed for the CS in Cas A. It is further seen
that by tuning the phase-transition temperature to the
value T ∗ = 0.009385MeV the “drop” in the temperature
of the model can be adjust to the observed temperature
and age of the CS in Cas A. Thus, if the current interpre-
tation is correct, then the CS is a massive compact star
(so it features a quark core) and it undergoes currently a
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Fig. 3. Dependence of the surface temperature of a CSs given
in K on time in yr. The lines correspond to different phase
transition temperature T ∗ for fixed values of the width w = 0.2
and the blue-quark pairing gap Δb = 0.15 (both in MeV). The
labels correspond to values of T ∗ in MeV. The Cas A data is
shown by squares.

phase transition from the 2SC to the FF phase (or some
other gapless phase). Note that the deduced phase transi-
tion temperature is of the order of 0.01MeV and is small
compared to the scale set by the Δrg. This could be the
feature of the equilibrium phase diagram of the super-
conducting quark matter or alternatively may reflect the
non-equilibrium aspect of the phase transition, i.e., long-
lived metastable 2SC phase (in parallel to super-heating
or super-cooling of superconducting states, know from the
physics of ordinary superconductors). We conclude that
with a proper choice of the value of the transition tem-
perature we can account for the observed “drop” in the
temperature.

Next we fix the parameters T ∗ and Δb and vary the
width of the transition w, which controls the “smooth-
ness” of the transition (fig. 4). For small values of w (0.1
in the figure) the transient is steeper, as expected, but is
also delayed (i.e. the drop is shifted away from the Cas
A location to later times). Inversely, large w make the
transient much smoother and also the start of the phase
transition is shifted to the left, i.e., to the earlier times.
Thus, small (by a factor of 2) variation of the parameters
w and T ∗ can cause substantial shifts in the cooling curves,
i.e., the overall fits to the Cas A data are sensitive to the
values of these parameters. Finally we fix the parameters
T ∗ and w and vary the value of the gap of blue quarks Δb

(fig. 5). Increasing the magnitude of Δb shits the transient
to later times, but also the pre-transient temperatures in-
crease because of the exponential suppression factor in
eq. (6) is less effective. Inversely, decreasing the value of
Δb shifts the transient to earlier times and decreases the
transient temperature. This behaviour is consistent with
the fact that the cooling for heavy models is dominated
by the red-green and blue-quark components. In the 2SC
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Fig. 4. Same as in fig. 3 but for different values of the width
w for fixed T ∗ = 0.009385 and Δb = 0.15 MeV. The labels
correspond to values of w in MeV.

phase the cooling is controlled by the Urca process on
blue quarks, which is suppressed for late times and low
temperatures, see eq. (6). Unless the value of Δb is too
small the blue quarks dominate throughout the neutrino
cooling era. At later stages t ∼ 105 y the photon emission
becomes the main cooling mechanism (this is indicated
by the change of the slope of the cooling curve). During
and after the transient, the gapless phase emits neutrinos
on red-green quarks; their luminosity is larger by a factor
two —the number of involved flavors— compared to blue-
quark luminosity. In this case again the transition is to
the photon cooling at t ∼ 105 y. An important conclusion
is that for massive CS the neutrino cooling is completely
dominated by quarks and the details of the modeling of
hadronic neutrino cooling are irrelevant. This implies, ob-
viously, that the quality of the fits to the entire population
of thermally emitting pulsars is not correlated to our fits
to the Cas A data, as this population needs to include
purely hadronic neutron stars with M ≤ 1.8M�, which
will cool much slowly.

We show in fig. 6 the variation of cooling curves with
the mass of the CS holding the “best” values of the pa-
rameters fitting Cas A fixed. It is seen that there is a
substantial variation in the cooling speed of CSs with the
mass; the heavy stars are cooling much faster than the
light stars, for the neutrino emissivity of the hadronic
phases is less effective that those of the quark phases.
Note also the inversion of the temperatures in the pho-
ton cooling era: here the heavier M/M� = 2.05 star is
hotter than the lighter M/M� = 1.93 star. The band ly-
ing between the cooling curves of extrem mass object, i.e.,
1.1 ≤ M/M� ≤ 2.05 in the T -t plane can be covered by
changing the central density (and therefore the mass) of
the model and the experimental data can naturally be
accommodated. (The few outliers, which are hot at late
stages of evolution t ∼ 106 y, may reflect different surface
composition, than assumed in our simulations, e.g., com-
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Fig. 5. Same as in fig. 3 but for different values of the blue-
quark gap Δb for fixed T ∗ = 0.009385 and w = 0.2 MeV. The
labels correspond to values of Δb in MeV.
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Fig. 6. Same as in fig. 3 for fixed T ∗ = 0.009385 but for
different masses of CS. The labels correspond to masses of the
stars in units M/M�. The references in the data are given in
fig. 3 of ref. [4].

position containing hydrogen). Thus, we conclude that the
spread in the temperatures of thermally emitting neutron
stars can be attributed to the different masses of these
objects: the lighter ones not containing quark matter cool
more slowly than the heavier stars having quark cores. Of
course, variations in other factors, such as the strength of
the magnetic field, the surface composition, etc can also
contribute to the dispersion.
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Fig. 7. Dependence of the surface in units of 106 K tempera-
ture on time for several temperatures of the phase transition
T ∗ at fixed w = 0.2 and Δb = 0.15 (both in MeV). The dots
with error bars show the Cas A data taken from [5].

4.2 Fits to the Cas A data

The Cas A data spanning the decade 2003–13 have been
used for the fits. It is assumed that the star is already in
the transient stage, as there is no evidence of the entry into
this phase from a slower cooling stage, as well as no sign
of the exit from the fast cooling mode. The parameters
were adjusted to obtain the location of the Cas A data
in the T -t diagram as well as the slope of the transient.
The best fit is obtained with the parameter values T ∗ =
0.009385, w = 0.2 and Δb = 0.15 (all quantities in MeV).
The sensitivity of fits was tested against variations of one
of them at fixed values of the other two. Figure 7 shows
the effect of variation of T ∗ on the transient behaviour. We
quantify the sensitivity of the fits by defining the relative
deviation as δT ∗/T ∗, where δT ∗ is the range of values of
T ∗ compatible with the data; we find that δT ∗/T ∗ � 10−3.
Figure 8 shows the effect of variation of the width w at
fixed values of other two parameters. In this case we find
that δw/w = 1.5 × 10−3, i.e., the relative deviation is
in the same range as for the transition temperature T ∗.
Figure 9 shows the variation in the value of the blue-quark
gap Δb; in this case we find that δΔb/Δb � 3.3 × 10−3.

Thus we conclude that the fitted values are quite sen-
sitive to the precise values of parameters and small devi-
ations at the level of 10−3 can spoil the fit to the Cas A
data. Extrapolating from the present fits one would pre-
dict that the CS in Cas A would continue the fast cooling
up to temperatures somewhat below 106 K. Clearly, an
observation of an exit from the transient would provide
further strong constraints on any model of the behaviour
of the CS in Cas A and current fits should by updated to
account for that effect.
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Fig. 8. Same as in fig. 7, but for a range of values of w indicated
in the plot and for fixed values of T ∗ = 0.009385 and Δb = 0.15.
All parameter values are in MeV.
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Fig. 9. Same as in fig. 7, but for a range of values of Δb

indicated in the plot and for fixed values of T ∗ = 0.009385 and
w = 0.2. All parameter values are in MeV.

5 Summary and conclusions

The observation of two-solar mass pulsars in binary sys-
tems is a strong evidence that the EoS of dense matter
must be stiff and that the densities in the centers of com-
pact stars can be large enough (several times the satura-
tion density) so that the threshold density for transition
to quark matter can be reached. This motivates the stud-
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ies of the dense phases of quark matter under the condi-
tions expected in compact stars (charge and color neutral-
ity, near-equilibrium with respect to weak processes). We
have concentrated here on CSs that have sharp interface
between the hadronic and quark matter phases, in which
case the massive members of the sequences (M > 1.85M�)
contain progressively larger amount of quark matter
whereas the lighter members are purely hadronic. We have
evolved these models in time and followed the changes in
the core and surface temperatures under assumption that
the core is isothermal, which is a valid approximation, ex-
cept for the first 100 y following the birth of the star.

The generic phase diagram of imbalanced fermionic
systems, which also includes the flavor asymmetric pair-
ing among quarks, implies that at high temperatures the
pairing is in the BCS type phase, i.e., both Fermi surfaces
of quarks are gapped despite of the mismatch between
the Fermi surfaces of u and d flavors. At lower tempera-
tures a transition from the BCS to a generic gapless phase
must take place. This gapless phase will have some type of
spatial modulation and we considered the FF type simple
realization of such phase. The neutrino emissivity of such
phase must be much larger than the emissivity of the 2SC
phase because of the existence of gapless excitations. We
have modelled the emissivities of both phase in terms of
a simple parameterization, which however takes into ac-
count the fact that as the temperature is lowered there is
a phase transition from the 2SC to FF phase.

The rapid cooling of the CS in Cas A can be ac-
counted for via the phase transition described above; we
stress again that the phase transition takes place within
the phase diagram of QCD and is the consequence of the
ordering of various superconducting phases in the tem-
perature, density, and isospin spaces. Such ordering was
observed in numerous studies of other imbalanced systems
such as the hadronic superfluids or ultra-cold atomic con-
densates.

The Cas A data can be fitted by varying the phase
transition temperature T ∗ at fixed value of the remaining
physical parameters —the width of the phase transition
(or, equivalently, its duration) and the gap in the spec-
trum of BCS-paired blue quarks. It turns out that the
relative accuracy of order 10−3 is required to fit the data,
i.e., larger deviation will spoilt the fit. We also tested the
sensitivity of the other two parameters to the variations
when the remaining two parameters are fixed. The rela-
tive accuracy is again in the range 10−3. Assuming that
the present model of cooling of CS in Cas A is correct, we
immediately conclude that only the massive members of
CS sequences that contain (color-superconducting) quark
matter can undergo transients of this type. This is the
main difference of our model to the hadronic alternatives
which work also for low (or canonical 1.4M�) stars. It is
tempting to think that the various models of cooling of CS
in Cas A can be distinguished through the measurements
of the mass or other integral parameters of the CS in the
future.

In addition to the Cas A behaviour we also studied the
effect of variations of the mass of the CSs on their cooling

behaviour. First, we find that larger (close to the maxi-
mum) mass stars will not show the same transient as the
assumed model with 1.93M� mass; rather they will cool
to lower temperatures much faster. As our code does not
cover the very early evolution of CSs, we cannot resolve
the transient that takes place very early in the evolution
of a highly massive CS. Secondly, we find that low mass
stars M ∼ 1.1M� are much hotter than their heavy coun-
terparts, so that the band covered by the stars in the range
1.1 ≤ M/M� ≤ 2 can account for the measured surface
temperatures of thermally emitting CS.

There are a number of issues that need further at-
tention: a) The appearance of strangeness in form of hy-
perons in the hadronic phase and strange quarks in the
quark phases can substantially affect cooling. In particu-
lar strange quarks may even change the structure of the
phase diagram of color-superconducting matter at high
density by inducing new phases and new channels for neu-
trino emission see, for example, ref. [29]; b) heating in the
core and crust of the star can become important at later
stages of evolution; it does not affect the cooling at the
age of CS in Cas A (if the CS is not a magnetar); c)
the density dependence of pairing gaps of red-green and
blue condensates can be a factor. The density of states
at the Fermi surface increases as 1/3 power of density,
whereas the strong coupling constant decreases logarith-
mically. Therefore, one can envision a situation where the
red-green condensate has ζ < 1 only in part of the core.
This will reduce the effective volume of the quark phase
contributing to the fast cooling; d) the superconducting
quark phases may gradually appear as a result of decel-
eration of the star, i.e., the CS can experience a rota-
tion induced phase transition to a color-superconducting
phase [48]. This transition will occur in the densest re-
gion (center of the CS) in parallel with deconfinement of
hadrons into quarks.

This work ws supported by the Deutsche Forschungsgemein-
schaft (Grant No. SE 1836/3-1) and by the NewCompStar
COST Action MP1304.
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