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Abstract—The current level of development of artificial intelligence (AI) technologies makes it possible to
solve many complex problems just as well as a human does. Importance advances in AI are especially notice-
able in machine learning, the methods and algorithms of which are successfully adapted and actively used to
solve a wide range of problems, including those in the field of nanotechnology. In modern fields of nanotech-
nology, it is important to speed up the process of searching for the optimal synthesis parameters when creating
new unique nanomaterials. The variety of approaches and techniques in both machine learning and nano-
technology makes it necessary to systematically review current data on the use of AI for solving problems in
nanomaterials science at both the stage of computer design and of the chemical synthesis and diagnostics of
the resulting nanomaterials. Particular attention is paid to the use of machine-learning technologies for
studying the thermal and dynamic properties of nanofluids, the processes of sorption of nanocomposites, the
catalytic activity of nanoparticles, and the toxicity of nanoparticles and for solving the problems of nanosen-
sorics, as well as for processing the experimental data obtained during the diagnostics of various characteris-
tics of nanomaterials.
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INTRODUCTION
Nanotechnologies have provided new opportuni-

ties for the development of industry, production,
transportation, and telecommunications, leading to
the emergence of a separate research area [1]. Studies
in this area have made it possible to create entire
classes of new materials with unique and practically
important characteristics [2]. However, it should be
noted that not all kinds of research and development
activities in nanotechnology have positive aspects. For
example, the production and widespread use of nano-
materials lead to problems associated, among other
things, with environmental safety and make it neces-

sary to develop and impose special normative regula-
tions for their use [2]. Nevertheless, the benefits of
introducing nanomaterials outweigh the possible risks
of their use. At the same time, the development of
innovative sectors of the economy reveals the con-
stantly increasing need for the development of new
nanomaterials that can solve the problems of develop-
ing environmentally friendly energy sources, for
example, those based on solar energy [3]. New classes
of photoactive nanocatalysts are increasingly being
used [4]. Intensive research is being conducted in the
development and use of two-dimensional nanomate-
rials, such as graphene-like structures [5]. In turn,
they have a substantial effect on the development of
sensors, nanoelectronics, and catalysis [6, 7]. The use
of new nanomaterials in energy storage and conversion
devices, including rechargeable electric batteries
based on metal ions, is of no less importance [8]. The
use of unique and often multistep novel technologies
based on nanoporous materials from the family of
metal-organic frameworks (MOFs) [9] makes it possi-
ble to synthesize nanomaterials for new generation
supercapacitors [10, 11].

Increasing attention is being paid to green technol-
ogies for the synthesis of nanomaterials. For example,
new nanomaterials for water purification are being
synthesized with the aim of reducing the environmen-
tal impact. The production and use of such materials
1



2 GADZHIMAGOMEDOVA et al.
are coordinated with the problems of environmental
safety [12]. The use of new nanostructured materials
for creating highly sensitive sensors for biomedical and
food technologies is a matter of extreme urgency [13].
The synthesis of materials for nature-like technologies
is a very promising new research area [14], which
makes it possible to move closer, for example, to the
creation of synthetic enzymes [15].

Turning to research in the field of artificial intelli-
gence (AI), it should be noted that systematic studies
in this field have been conducted for more than sixty
years [16–23]. There are a significant number of AI
methods that allow one to successfully solve various
problems [24–35] that require substantial intellectual
effort from humans. The use of AI approaches and
methods in nanotechnologies gives rise to quite mean-
ingful scientific and practical results and opens up new
prospects for further progress in the area of speeding
up the search for new nanomaterials. This paper pres-
ents a review of the most important examples of using
AI to solve modern nanotechnology problems.

1. ANALYSIS OF THE THERMAL
AND DYNAMIC BEHAVIOR OF NANOFLUIDS

In many studies, AI methods have been used to
analyze the thermal behavior of nanofluids. For exam-
ple, an artificial neural network (ANN) was used in
[36] to study the thermal behavior of the Al2O3–H2O
nanofluid. The study of heat transfer in such channels
is of crucial importance for the transport of f luids in
the oil and gas industry. The Koo–Kleinstreuer–Li
model was used to predict the behavior of a nanofluid,
in which the influence of the Brownian motion of par-
ticles is taken into account. The heat-transfer rate was
estimated using an ANN. The results of experiments
with use of an ANN showed that heat transfer
increases with an increase in the concentration of
nanoparticles (NPs). At the same time, heat transfer
decreases with an increase in the thermal-expansion
coefficient of the liquid. Moreover, an increase in the
rate of heat transfer in the f low upon the addition of
NPs to the liquid was predicted.

In [37], an attempt was made to predict the heat-
transfer coefficient during the boiling of a nanofluid
based on Al2O3 by means of an ANN. As a result, it was
found that the diameter of NPs, their mass concentra-
tion in the base liquid, the excess temperature (wall
overheating), and the operating pressure are the best
independent variables for assessing the parameter
under consideration. The study results published in
[37] show that a feedforward multilayer perceptron
comprised of twelve hidden neurons (structure 4-12-1) is
the best model for assessing the heat-transfer coeffi-
cient during the boiling of a nanofluid based on Al2O3.
In this case, the coefficient of determination equals
R2 = 0.9929.
NANOB
In [38], the viscosity of the TiO2–H2O nanofluid
was simulated using an ANN and established that
ANNs make it possible to determine with high accu-
racy the changes in the behavior of the dynamic vis-
cosity with changes in the temperature and the mass
fraction of NPs. An ANN with one hidden layer and
four neurons was used. As a result of simulation, a
regression coefficient of 0.9998 was obtained, which
indicates a very high prediction accuracy with a fairly
simple ANN structure. Moreover, the nanofluid vis-
cosity is predicted from data on the mass fraction and
temperature. This correlation allows one to estimate
the viscosity of the TiO2–H2O nanofluid in a wide
range of mass fractions of NPs with a maximum error
of 0.5%.

The study of the thermal conductivity of Fe3O4
magnetic nanofluids is of considerable interest [39].
Nanofluid samples were prepared using a two-stage
method by dispersing Fe3O4 NPs in water with frac-
tions of 0.1, 0.2, 0.4, 1, 2, and 3 vol % of solids. Ther-
mal-conductivity measurements were carried out
using a KD2 Pro thermal analyzer over a temperature
range of 20 to 55°C. Taking into account the experi-
mental data, a correlation was proposed to predict the
thermal conductivity of a magnetic nanofluid. In the
final stage, an optimal ANN was developed to predict
the thermal conductivity of a magnetic nanofluid. The
experiments showed that the maximum increase in the
thermal conductivity of the nanofluid was about 90%
with a fraction of 3 vol % of solids at a temperature of
55°C. Comparative results show that there are devia-
tions of 5% from the experimental data in the case of
using the proposed correlation and the deviation for an
ANN is 1.5%.

In [40], the thermal conductivity of Al2O3 NPs in a
water (40%)/ethylene glycol (60%) solution was deter-
mined. Using the results of temperature measure-
ments and volume-fraction data, an empirical rela-
tionship has proposed. Further data analysis was con-
ducted on a model that uses an ANN in the form of a
feedforward multilayer perceptron. A structure with
two hidden layers and five neurons in the first and sec-
ond layers was chosen for data analysis. The results
showed that ANNs can accurately assess the experi-
mental thermal-conductivity data for Al2O3/water
(40%)/ethylene glycol (60%) nanofluids.

The results of several experiments were used to
determine the thermal conductivity of an aqueous
nanofluid on multiwalled carbon nanotubes
(MWNTs) containing the COOH functional group
[41]. For this purpose, COOH MWCNT nanoparti-
cles were dispersed in water by different methods. The
thermal conductivity was measured for various con-
centrations of MWCNTs (up to 1%) at temperatures of
25–55°C. A multilayer ANN was used to simulate the
thermal conductivity of this nanofluid. The tempera-
ture and volume fraction of solids were input network
variables, and the thermal conductivity was an output
IOTECHNOLOGY REPORTS  Vol. 17  No. 1  2022



ARTIFICIAL INTELLIGENCE FOR NANOSTRUCTURED MATERIALS 3
network variable. The root-mean-square (rms) error
was 4.04 × 10–6, which indicates a high degree of
applicability of the ANN for predicting the thermal
conductivity of the COOH MWCNT nanofluid.

The thermal conductivity of the ZnO–EG (ethylene
glycol) nanofluid was also studied experimentally and
with use of an AI [42]. For this purpose, zinc-oxide
NPs with a nominal diameter of 18 nm were dispersed
in EG in various volume fractions at different tem-
peratures (24–50°C). Using the analysis of experi-
mental data, an experimental model based on the tem-
perature dependence of the solid concentration was
proposed. Next, a feedforward multilayer ANN was
used to simulate the thermal conductivity of the
ZnO–EG nanofluid. Twenty eight of the forty mea-
surements in total obtained during the experiments
were selected for network training, and the remaining
twelve measurements were used for network testing
and validation. The results showed that the prediction
made by an ANN is in good agreement with the exper-
imental data.

In [43], the thermal conductivity of a hybrid nano-
fluid was studied experimentally. The nanofluid under
study was obtained using a two-stage method by dis-
persing Cu and TiO2 NPs with an average diameter of
70 and 40 nm in a water/EG (60 : 40) binary mixture.
The properties of this nanofluid were measured for
various concentrations of solids (0.1, 0.2, 0.4, 0.8, 1,
1.5, and 2 vol %) at temperatures in the range from 30
to 60°C. Two new correlations were then proposed to
predict the thermal conductivity of the investigated
hybrid nanofluid as a function of the concentration of
solids and temperature. They use an ANN and are
based on experimental data. The results showed that
these two new models are capable of predicting the
thermal conductivity and agree well with the experi-
mental results.

Using AI methods, the entropy of nanofluids was
also investigated. As was established in [44], entropy
generation can be simulated by an ANN in terms of
the particle fraction and heat f lux. First of all, the
characteristics of the first and second laws of thermo-
dynamics, including the coefficient of convective heat
transfer, the entropy-generation rate, and the Bejan
number, were studied for a hybrid nanofluid contain-
ing graphene–platinum NPs. It was found that the
heat-transfer coefficient and friction-entropy genera-
tion increase with an increase in the concentration of
particles, while the thermal-entropy generation
decreases. In addition, the rate of entropy generation
due to heat transfer increases with an increase in the
thermal load, while entropy generation due to friction
decreases.

In [45], the thermal-conductivity coefficient and
the dynamic-viscosity ratio of the Al2O3–H2O nano-
fluid were accurately predicted using the methods of
regression analysis of a Gaussian process. The tem-
perature, volume fraction, and size of the NPs were
NANOBIOTECHNOLOGY REPORTS  Vol. 17  No. 1 
used as input predictor variables. Two hundred and
twenty two sets of experimental data were taken to pre-
dict the thermal-conductivity coefficient, dynamic-
viscosity coefficient, and the effectiveness of predictor
variables for predicting response variables. It was
found that temperature is a decisive factor for improv-
ing the accuracy in determining the thermal-conduc-
tivity coefficient. It was also found that optimization
of the regression predictor for a Gaussian process with
the covariance function of the Matérn kernel shows
very good agreement with experimental data on the
thermal-conductivity coefficient with a rms error of
0.000126, and the square of the exponential kernel
function shows good agreement with experimental
data on the dynamic-viscosity coefficient with a rms
error of 0.000045. The regression-coefficient value is
0.99 (closer to one) and, consequently, the predicted
results are reliable. Thus, machine-learning methods
enable highly accurate prediction of the thermody-
namic characteristics of the behavior of nanofluids
(which are very complex systems), such as thermal
conductivity, viscosity, and entropy dynamics. The
variety of types of nanofluids and the need to use them
under various conditions make it difficult to use tradi-
tional and purely empirical methods for their study.

2. ANALYSIS OF THE ADSORPTION
OF CHEMICAL SUBSTANCES

The study of the process of adsorption of certain
NPs is another interesting application of machine
learning in the field of nanotechnology. For example,
in an experimental study [46], zinc-sulfide NPs
deposited onto activated carbon (ZnS–NP–AC) were
synthesized and used as a sorbent for the selective
ultrasonic removal of brilliant green dye (BG) from
aqueous solutions. Two machine-learning approaches
were applied: an ANN with a radial basis function and
the random forest method. These two approaches
were evaluated on the basis of a quadratic model of the
surface response to predict the maximum efficiency of
BG removal from the ZnS–NP–AC aqueous
medium. The good results achieved showed that this
approach can be used in the future as a method for
predicting the effectiveness of purification of contam-
inated water sources from other toxins as well.

In [47], the Box–Wilson method in combination
with the desirability-function approach provided use-
ful information on the simultaneous ultrasonic
removal of BG and eosin B with ZnS–NP–AC
nanoparticles. A multilayer ANN model optimized
with the Levenberg–Marquardt algorithm was used to
predict the effectiveness of the removal of BG and
eosin B. The ANN could effectively predict the simul-
taneous removal of BZ and eosin B. The studies
showed good agreement between the experimental
data and the results obtained by the ANN. Being the
best model for fitting experimental data, the Langmuir
model reveals a fairly effective adsorption capacity
 2022
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(258.7 and 222.2 mg/g) of the nanosystems under
consideration, which confirms the applicability of the
Langmuir model for selecting the best sorbents for
wastewater treatment.

In [48], the properties of γ-Fe2O3 NPs deposited
onto activated carbon were studied. The prepared
nanomaterial was examined by field-emission scan-
ning electron microscopy, energy dispersive X-ray
spectroscopy, Fourier transform IR (FTIR) spectros-
copy, and X-ray diffraction. Activated carbon with
γ-Fe2O3 nanoparticles (γ-Fe2O3–NP–AC) was used
as a novel adsorbent for the ultrasonic removal of
methylene blue (MB) and malachite green (MG). The
ANN and surface-response techniques were applied to
simulate and optimize the adsorption of MB and MG
in individual and binary solutions, and then to study
the adsorption isotherm and kinetics. The individual
effects of parameters, such as pH, the mass of the
adsorbent, the sonication time, and the concentra-
tions of MB and MG, were investigated in addition to
the effect of possible interactions on the adsorption
process. The pseudo-second order model proved to be
applicable in studying adsorption kinetics. No degra-
dation of the dyes was observed in the experiments
without any adsorbent, which were performed to
examine the possible decomposition of the dyes under
conditions of ultrasonic treatment.

In [49], similar approaches were used to study
MnO2 NPs (MnO2–NP–AC) deposited onto AC.
This structure is an efficient, environmentally
friendly, and cost-effective adsorbent. It has been syn-
thesized and characterized using techniques, such as
field-emission scanning electron microscopy, energy
dispersive X-ray spectroscopy, Brunauer–Emmett–
Teller (BET) surface analysis, single-crystal X-ray dif-
fraction, and FTIR spectroscopy. The fast and simul-
taneous ultrasonic-assisted adsorption of BG, crystal
violet (CV), and MB dyes with strong spectral overlap
on the MnO2–NP–AC system as a new and efficient
adsorbent was investigated. An ANN was used to
accurately predict the percentage of removal of dyes
from their ternary solution by MnO2–NP–AC adsor-
bent. Experimental equilibrium data were simulated
using various isotherm models. The Langmuir model
turned out to be most suitable for describing the exper-
imental equilibrium data obtained under optimal con-
ditions. A small amount of the MnO2–NP–AC adsor-
bent (0.005 g) with a high adsorption capacity in a
single-component system (206.20, 234.20, and
263.16 mg g–1 for BG, CV, and MB, respectively) was
successfully used to remove dyes in a very short time
(4 min). The study of the kinetics of the adsorption
process showed the applicability of the second-order
kinetic model.

Various AI methods such as those based on a mul-
tilayer perceptron, an adaptive network based on a
fuzzy inference system optimized by a genetic algo-
rithm, genetic programming, and a committee
NANOB
machine with intelligent inference, have been used to
predict the sorption of gases, such as C3H8, H2, CH4,
and CO2, in nanocomposite membranes selective to
hydrogen H2 [50]. These matrices consisted of NPs of
porous zeolite 4A as a dispersed phase and a polymeric
(polydimethylsiloxane) matrix as a continuous phase.
In this case, the sorption was evaluated considering
the influence of the NP load, the critical temperature
(gas characteristics), and the inlet pressure. The data
obtained during the study were randomly divided into
two parts: data sets for training (75% of experimental
data) and for testing (25% of experimental data). As a
result, it was established that the committee-machine
method with intelligent inference gives more accurate
results compared to other models.

A systematic analysis of the adsorption of CO on Pt
nanoclusters with a size in the range of 0.2–1.5 nm was
carried out in [51]. Such studies are necessary to iden-
tify trends in the effects of the size and morphology of
clusters on an adsorbate binding and to develop mod-
els for predicting the adsorption of a substance at a cer-
tain site in the crystal lattice. It was shown that use of
the genetic algorithm based on the empirical potential
and simulation by the density-functional-theory
method is associated with the existence of a size win-
dow of 40 to 70 atoms, in which Pt nanoclusters
weakly bind CO and the binding energies are compa-
rable to the binding energies at the (111) or (100) faces.
In [51], machine-learning algorithms with several
descriptors—in particular, the gradient-descent algo-
rithm—were used. To train the algorithm and to
ensure the accuracy of its predictions, the energies of
adsorption of CO on different parts of the surface of Pt
clusters were used as target data.

A similar problem was attempted to be solved in
[52] by studying the morphology of clusters with high
symmetry. However, real NPs form low-symmetry
structures rather than high-symmetry ones. This fact
was taken into consideration in the study described
above.

In [53], the best conditions were studied for the
removal of benzene, toluene, ethylbenzene, and
xylene (BTEX) compounds from aqueous solutions
with use of magnetic nanosorbents, and relationships
were established between the removal efficiency of
these compounds and variations in the contact time,
the initial concentration of the BTEX mixture, the
adsorbent dose, stirring rate, pH, and temperature.
Moreover, the ANN comprised of three layers (input,
hidden, and output layers) was optimized to find a
correlation between the studied parameters and the
efficiency of BTEX removal. The network structure
used for prediction was composed of six experimental
parameters (temperature, stirring rate, initial BTEX
concentration, contact time, pH, and adsorbent dose)
at the input, ten neurons in the hidden layer, and one
parameter at the output. The simulation results
showed that the ANN with a mean absolute error of
IOTECHNOLOGY REPORTS  Vol. 17  No. 1  2022
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0.6272% reliably describes the adsorption of BTEX at
iron nanoparticles.

In [54], a three-layer ANN with the backpropaga-
tion algorithm, genetic algorithm, and the particle
swarm optimization (PSO) method were used to opti-
mize and predict optimal conditions and to obtain the
maximum efficiency of removal of the CV dye from
aqueous solutions with the use of bimetallic Fe/Ni
nanoparticles. Moreover, it was shown that the ANN
architecture with three neurons in the hidden layer
turned out to be the optimal topology for machine
learning and the value R2 = 0.9998 obtained for the
ANN model with the backpropagation algorithm
points to a high accuracy of the prediction. The abso-
lute errors between the predicted and experimental
results were 5.6% for the genetic algorithm and 3.5%
for the PSO method.

3. ANALYSIS OF VARIOUS SPECTRA
AND IMAGES OF NANOPARTICLES

The identification and enumeration of individual
NPs is an important part of nanotechnology research.
In [55], deep-machine-learning methods showed a
high efficiency in the automatic recognition of plati-
num NPs deposited onto highly oriented pyrolytic
graphite from images obtained by scanning tunneling
microscopy (STM). A neural network called Cascad-
eRCNN was used. Training was conducted using a
data set comprised of ten STM images of NPs. Five
images containing 2052 nanoparticles were used for
verification. As a result, the trained ANN recognized
the nanoparticles in the control set with an accuracy of
50.8%, which is not very high. The nanoparticles had
clear contours, which is necessary for further determi-
nation of their size parameters (width, height, etc.).

The development of powerful light microscopes
capable of generating terabytes of high-resolution 2D
and 3D video images in a single day has created a
strong demand for automated image-analysis tech-
niques. Tracking the movement of nanoscale particles
(such as viruses, proteins, and synthetic-drug parti-
cles) is critical to understand how pathogens disrupt
mucosal barriers, as well as to develop new drugs. Cur-
rent methods for tracking such particles are based on a
limited set of input parameters for identifying bright
objects and are ill-suited to process the spectrum of
spatial-temporal f luctuations due to a poor signal-to-
noise ratio typically associated with submicrometer
entities in complex biological environments. The opti-
mization and implementation of tracking methods
often requires the extensive involvement of users,
which is not only inefficient, but also leads to subjec-
tive assessments. To create a fully automated tracking
method, a convolutional neural network for the local-
ization of particles from image data, which contained
more than 6000 parameters, was developed in [56].
A neural-network tracker provides automation and a
high accuracy with exceptionally low levels of false
NANOBIOTECHNOLOGY REPORTS  Vol. 17  No. 1 
positive and false negative results for both 2D and 3D
video simulations, and for experimental 2D videos
with views that are difficult to track.

The properties of monometallic and bimetallic
NPs can strongly depend on the compositional and
structural (or geometric) characteristics and their
dynamics. These parameters can be effectively
described using the partial radial-distribution function
(PRDF) of atoms in the material. For NPs with a size
of several nanometers, finite size effects can play a
substantial role in determining the crystal order, inter-
atomic distances, and particle shape. Bimetallic NPs
can also have a different distribution of the elemental
composition compared to bulk materials. All the above
factors make it difficult to determine the PRDF.
Extended X-ray absorption fine structure (EXAFS)
spectroscopy, molecular-dynamics simulation, and
supervised machine learning were combined in [57] to
extract the PRDF directly from experimental data.
The application of this approach to several systems of
Pt and PdAu nanoparticles demonstrated the effects
of the finite size of NPs on the distribution of nearest
neighbors, the dynamics of bonds, and distribution
patterns of doping atoms in monometallic and bime-
tallic particles. In addition, the general applicability of
ANNs for solving this class of problems was also
shown.

Machine-learning methods were also used to ana-
lyze surface-enhanced Raman scattering (SERS)
spectroscopy data [58]. In [58], a database was col-
lected and analyzed for silicon-coated silver nanopar-
ticles by the SERS method with the subsequent train-
ing of a deep neural network. As a proof of the con-
cept, three types of representative tumor suppressor
genes—namely, fragments p16, p21, and p53 that are
easily distinguished without markers—were identified.
The distinguishable and reproducible SERS spectra of
these DNA molecules were collected and used as
input data for learning and training a deep ANN,
which made it possible to selectively recognize DNA
targets. It was shown that the level of recognition
accuracy of a particular DNA target in this approach
reaches 90.28%.

Dynamic SERS spectroscopy, which was used to
quickly detect acephate in rice in the range of 100.2–
0.5 mg/L by means of simple height-adjustable gold
nanorods, was also studied. Multivariate machine
learning and deep-learning methods were used to
develop regression models for automatic analysis of
the quantitative level of acephate residues. Partial least
squares regression made it possible to achieve optimal
performance with a standard deviation of 5.4776 and a
coefficient of determination of 0.9560.

It should be noted that many methods have been
developed to estimate the size and shape of NPs from
transmission-electron-microscopy images. However,
some of them have limiting characteristics, such as
being difficult to use, expensive, or having steps that
 2022
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make the results less reliable. For example, manual
and automatic methods of analysis were compared in
[59]. Gold nanoparticles were synthesized by the tra-
ditional Turkevich method using sodium citrate.
Twenty-three images of Au NPs were used. The study
results indicated that conglomerated particles could be
excluded provided that a sufficient number of particles
were included in the analysis. It has been shown that
the CellProfiler software package can be very effective
in studying the size and shape of NPs. These results
demonstrate the benefits of using an open-source soft-
ware package that can be applied to analyze data by
machine learning and, consequently, make it possible
to automate data processing when studying NPs.

In [60], the methods of principal component anal-
ysis and independent component analysis were used to
analyze the energy-dispersive X-ray spectrum of
core–shell NP clusters with the aim of determining
the chemical composition of the samples. As a result
of the study, the number of phases in the analyzed vol-
ume (core, shell, and substrate) was accurately deter-
mined and their spectral components were also identi-
fied. Moreover, the proposed approach divides the
spectrum into three components, which precisely rep-
resent the isolated and unmixed X-ray signals coming
from the carbon film, the iron-oxide shell, and the
platinum–iron core. The results were also confirmed
by comparing the calculated spectra from the bimetal-
lic core and shell with the spectra obtained experimen-
tally from these structures independently.

In [61], a set of electron-microscopy images con-
taining individual NPs that were ordered on the sur-
face in the direction of the formation of geometric pat-
terns is described. This dataset covers the following
three levels of nanoscale organization: individual NPs
(1–5 nm) and NP arrays (5–20 nm); ordering effects
(20–200 nm); complex patterns ranging in size from a
few nanometers to a few micrometers. The described
dataset provided, for the first time, an opportunity to
develop machine-learning algorithms for studying the
unique phenomena of the ordering of NPs and their
hierarchical organization.

As was shown in [62], the evolution of proteins on
the surface of NPs predicts the further biological fate
of NPs in vivo. A library of the mass spectra of proteins
served as input data and the clearance of blood and its
accumulation in organs as output data were used to
train a supervised deep neural network that predicted
the biological fate of NPs. In a double-blind study, a
network that predicted the accumulation of NPs in the
spleen and liver with an accuracy of 94% was tested.

4. PROBLEMS OF NANOSENSORICS

There are a large number of biosensors that are
used to detect various chemicals, including nano-
chemicals. For example, the air exhaled by a person
contains more than 3 thousand volatile organic com-
NANOB
pounds (VOCs), at least 15 of which are directly or
indirectly associated with internal biochemical pro-
cesses in the body. Electronic sensors, such as the so-
called “electronic nose” [63], already exist, which can
play an important role in screening various respiratory
and systemic diseases by analyzing exhaled compo-
nents. The electronic nose combines a sensor array
and an ANN that responds to specific VOCs and, con-
sequently, can operate as a noninvasive technology for
monitoring diseases. Lung cancer is one of the most
feared types of cancer with a very high mortality rate.
Standard methods, such as sputum cytology, chest
X-ray, or computed tomography cannot be used in
large-scale population screening. Breath products
contain markers for lung cancer, diabetes, and mark-
ers for several other diseases, which can instantly sig-
nal the presence of a particular disease upon reaching
the electronic nose. In the electronic-nose system, the
output data of the sensor array is converted into an
electrical signal. Each sensor provides a dynamic
response in the form of an electrical signal through
gravimetric measurements, standardization, and nor-
malization, which make it suitable for statistical anal-
ysis. In general, analysis of the data pattern falls into
the following three categories: graphical, multivariate,
and neural-network analyses. Graphical analysis is
among the simplest forms of data analysis, in which
the response of sensors is analyzed using histograms or
polar-diagram methods. These kinds of graphical
analyses are useful for the visual interpretation of a
chemical signature. However, the graphical analysis is
useless when using high dimensional data. Multivari-
ate data analysis is used to reduce the dimensionality
of data that relate to the reactions of complex chemical
compounds by eliminating redundant variables, such
as the temperature and humidity of the environment.
There are many methods for multivariate analysis,
such as principal-component analysis (PCA), linear-
discriminant analysis, discriminant-function analysis,
canonical discriminant analysis, and partial least-
squares regression, which are used in the electronic-
nose system. In this system, PCA is frequently used to
reduce the dimensionality. Principal-component
analysis is an unsupervised learning method that
allows one to identify chemicals without prior knowl-
edge of the full list of substances. However, the main
purpose of the electronic nose is the qualitative and
quantitative determination of chemicals. Therefore,
there is also a need for classification methods, such as
the support-vector machine, the k-nearest neighbors
algorithm, and the use of an ANN. If the results of
an ANN and multivariate analysis show good agree-
ment, then the precision of chemical identification
improves.

Studies of cell-penetrating peptides (CPPs) that
facilitate the transport of pharmacologically active
molecules, such as plasmid DNA, short interfering
RNAs, nanoparticles, and small peptides, are of no
less interest. The precise determination of new and
IOTECHNOLOGY REPORTS  Vol. 17  No. 1  2022
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unique CPPs is the first step to understanding their
activity. Experiments can give a detailed idea about the
ability of CPPs to penetrate cells. However, the syn-
thesis and identification of CPPs in wet chemistry
experiments require large investments of resources
and time. Therefore, the development of an effective
prediction tool is essential for identifying unique
CPPs. With this aim in mind, a CPP prediction model
was developed based on the KELM-CPPpred kernel
of an extreme learning machine [64]. The main data-
set used in [64] consisted of 408 CPPs and the same
number of substances that are not CPPs. The input
functions used to train the proposed predictive model
included the composition of amino acids, the amino-
acid composition of the dipeptide, the pseudo-amino-
acid composition, and hybrid features based on motifs.
Next, an independent data set was used to test the pro-
posed model. Empirical tests have shown that the
KELM-CPPpred kernel outperforms the existing
approach to prediction based on random forests.

5. DETERMINATION OF THE TOXICITY
OF NANOMATERIALS

It is well known that NPs can cause harmful effects
on various biological systems and their ecosystems.
Toxicological analysis is a very important step in eval-
uating the potential risks associated with NPs, but
experimental tests are often very expensive and usually
too slow to determine the amount of NPs that may
cause harmful effects. In-silico models based on
quantitative structure–activity/toxicity relationships
are alternative tools that have become valuable sup-
ports to risk assessment, which rationalize the search
for safer NPs. In [65], a unified model of the quantita-
tive structure–property relation (QSPR) was devel-
oped on the basis of an ANN. It aims to simultane-
ously predict the overall toxicity profiles of NPs under
different experimental conditions. The model uses
54371 pairs of NPs generated by applying perturbation
theory to a set of 260 unique NPs and has shown an
accuracy of over 97% for both training and validation
sets. Next, the QSPR perturbation model was used to
predict the toxic effects of several NPs not included in
the original data set. The theoretical results obtained
for this independent set fully agree with the experi-
mental data; therefore, one can assume that the pres-
ent QSPR perturbation model can be considered as a
promising and reliable computational tool for studying
the toxicity of NPs. It should be noted that the devel-
opment of such quantitative structure–property rela-
tionship models for nanomaterials (nano-QSPR)
requires meticulous data collection and processing.
For example, a list of open-source nano-QSPR mod-
els that were developed on the basis of an online chem-
ical modeling environment called OCHEM is given in
[66]. A variety of data on the toxicity of NPs to differ-
ent living organisms were collected from academic
papers and uploaded to the OCHEM database. The
NANOBIOTECHNOLOGY REPORTS  Vol. 17  No. 1 
main characteristics of NPs, such as the chemical
composition of NPs, the mean size, shape, and surface
charge of particles, and information about the tested
biological samples were used as descriptors for the
development of QSPR models. Random forests and
associative neural networks were used as models in the
QSPR.

6. CATALYTIC ACTIVITY OF NANOPARTICLES
A good example of studying the catalytic activity of

nanocomposites is published in [67], in which a
machine-learning model for comparing the catalytic
efficiency of Pt nanocrystals with structural features of
NPs, such as the diameter, surface area, sphericity,
face configuration, and type of surface defects, is
described. A theoretical dataset of more than three
hundred thousand NPs was used. In this case, the
most important combinations of only two or three
functions (molar catalytic activity, selectivity, and
thermodynamic stability) that have an effect on the
catalytic efficiency were investigated using a decision
tree and an ANN. It was established that extremely
accurate predictions are obtained when all functions
are simultaneously used to train ANN models, and the
models constructed for nonsymmetrical NPs predict
catalytic efficiency and stability with an accuracy of
better than 0.93. Moreover, the effect of temperature
on the catalytic efficiency is also predicted quite accu-
rately for more than 300 thousand samples by adding
an additional input neuron to the ANN architecture.

The development of active sites of the catalyst is the
key to creating high performance heterogeneous cata-
lysts. The rate of a catalytic reaction can be easily pre-
dicted by simulating the arrangement of surface atoms
with well-defined single-crystal surfaces [68]. How-
ever, this method has limitations in the case of highly
inhomogeneous atomic configurations, such as NPs
of alloys with defects at the atomic scale, at which the
structure cannot be decomposed into single crystals.
In [69], a universal machine-learning scheme based
on the local similarity kernel method is published. The
proposed scheme makes it possible to study catalytic
activity using local atomic configurations. The algo-
rithm consists of the following two steps: studying the
density functional theory (DFT) data from the single-
crystal surface and extrapolating them to the entire
NP. The DFT calculations were compiled into a train-
ing set. The data consisted of geometric information
about the unrelaxed regions of the single-crystal sur-
face. Next, this approach was applied to study the
direct decomposition of NO on Rh(1–x)Aux nanoparti-
cles. It made it possible to effectively predict the ther-
mochemistry of catalytic reactions using the DFT data
of single crystals, and the combination with kinetics
analysis was able to provide detailed information about
the structures of active sites and the catalytic activity,
which depends on the size and composition of nano-
catalysts.
 2022
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CONCLUSIONS

Artificial-intelligence technologies, especially
machine learning, allow us to analyze the hidden rela-
tionships between the structure and properties of
materials at the nanoscale. They represent a fast,
highly efficient, and resource-saving computational
tool for studying the parameters of nanoparticles, as
well as for predicting the possible characteristics of
nanomaterials prior to their synthesis. Machine learn-
ing opens up new opportunities for solving the prob-
lems of the thermal and dynamic behavior of nanoflu-
ids, the adsorption of chemicals, diagnostics of the
results of NP imaging, and nanosensorics. Artificial
neural networks are successfully used to classify large
data on the spectra and images of NPs. Evaluation of
the toxicity of nanomaterials, prediction of the behav-
ior of NPs in vivo, and determination of the NP-sur-
face chemical compositions optimal for their intro-
duction into the body are performed faster and more
precisely. Important characteristics, such as the heat-
transfer coefficient, thermal conductivity, and the
dynamic-viscosity ratio of the Al2O3–H2O nanofluid
are predicted quite successfully. Moreover, the
adsorption values of substances on ZnS–NP–AC,
γ-Fe2O3–NP–AC, and MnO2–NP–AC are accu-
rately predicted. The study results can be used to
develop methods for purifying polluted water sources
from various toxins. The use of ANNs in solving the
problems of determining the catalytic activity of NPs
gives substantial results in the research field of struc-
tures with defects and inhomogeneities.
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