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Abstract—In this paper, we consider the issues of modeling an analog self-learning pulsed neural network
based on memristive elements. One of the important properties of a memristor is the stochastic switching
dynamics, which is mainly due to the stochastic processes of generation/recombination and the movement of
ions (or oxygen vacancies) in a dielectric film under the effect of an electric field. The stochastic features are
taken into account by adding a term responsible for the additive (Gaussian) noise to the memristor-state
equation. The effect of noise on the functioning of an element is demonstrated using the dynamic model of
a memristor as an example. The switching of a memristor from the high-resistance state to low-resistance
state and vice versa is shown to occur from cycle to cycle in different ways, which is consistent with experi-
mental data. We formulate a stochastic model that describes the hardware analog implementation of a pulsed
neural network with memristive elements as synaptic weights and a learning mechanism based on the spike
timing dependent plasticity (STDP) method. The operation of two neural networks consisting of one neuron
with 64 synapses and two neurons with 128 synapses, respectively, is modeled. The recognition of 8 × 8
images is performed. The stochastic component in the memristor model is shown to have an effect on the fact
that the templates from implementation to implementation are distributed among the neurons in different
ways and the adaptation of weights (network training) occurs at different rates. In both cases, the network
successfully learns to recognize the specified images.
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INTRODUCTION
The issue of accelerating computations is relevant

at any time. At first, manufacturers increased the pro-
cessor frequency, then increased the number of cores
in one processor, next adapted graphics processors for
general computing, and now the transition from digital
to analog computing seems promising since they per-
form computations orders of magnitude faster [1]. In
the development of analog computing devices, a rela-
tively new electrical element, a memristor [2, 3],
which is a resistor whose conductivity depends on the
total electric charge f lowing through it, is often used.
One of the ways to use these elements to speed up
computations is to combine them into a matrix (cross-
bar), which allows effective implementation of the
analog product of a matrix by a vector [4, 5]. Besides
this, due to a certain similarity of the properties of
these elements with the properties of biological syn-
apses, it is possible to use memristors to create analog
self-learning pulsed neural networks (PNNs) [6].

Pulsed neural networks are the third generation of
neural networks. In this type of network, information

is exchanged in the form of impulses, which is most
consistent with the physiology of the biological brain.
PNN training is based on local rules for changing
weights. There are hardware implementations of a
PNN based on semiconductor elements, in particular,
the TrueNorth project [7]. Memristive elements are
used both in PNNs and in deep neural networks [8].
However, error backpropagation algorithms, which
are nonlocal in nature and have great computational
complexity, are often used in this case.

There are a number of studies devoted to the imple-
mentation of a PNN based on memristors. In particu-
lar, the study [9] is aimed at developing experimental
and theoretical approaches to finding effective learn-
ing rules. An approach to modeling neural networks
based on the implementation of metal-oxide hetero-
structures with nonvolatile memory and multilevel
resistive switching is presented in [10]. A learning pro-
tocol that is insensitive to the initial state of memris-
tors, as well as to their differences within the same net-
work, is experimentally demonstrated in [11].
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PNN learning at the hardware level is usually based
on the Hebb rule and synaptic plasticity. The spike
timing dependent plasticity (STDP) method is used,
according to which the change in the weights of neu-
ron synapses depends on the time difference between
the input and output pulses [12–14]. Those synaptic
connections that cause neuron activation are strength-
ened while others are weakened. From the schematic
viewpoint, the STDP method is implemented due to
the 1T1-R crossbar architecture, in which each mem-
ristor corresponds to one transistor responsible for
changing the conductivity, and the presence of feed-
back for each neuron with all synapses. A mathemati-
cal model of the PNN was proposed in [15]. The pres-
ence of such a model allows the selection of PNN
parameters and the simulation of network operation in
various modes.

According to experimental data on memristive ele-
ments, the nature of their functioning is partially sto-
chastic [16]. As a rule, the process of switching a mem-
ristor from the low-resistance state to the high-resis-
tance state and vice versa occurs from cycle to cycle in
different ways [17]. In particular, this is associated with
random processes occurring in the crystal lattice [18–
20]. Mathematical models of memristors are usually
formulated in the form of dynamic systems with
respect to the memristor-state parameter, which char-
acterizes the conductivity level of the element. In
practice, the probabilistic behavior of elements can be
taken into account using the stochastic-state equation
instead of the deterministic one. One of the options for
obtaining such an equation is to introduce an additive
in the form of additive white (Gaussian) noise [21].

In this work, we study the effect of the stochastic
properties of memristors on the operation of a neuro-
morphic network. Of practical interest is the issue of
using the values of the network parameters determined
using the deterministic model under the conditions of
the stochastic dynamics of memristive elements. In
other words, is it possible to perform network config-
uration only using a deterministic model? Besides, it is
important to understand how the noise level will affect
the learning rate and at what level of additive noise the
neural network will not be able to function normally.

STOCHASTIC MEMRISTOR MODEL

Several groups of mathematical models of memris-
tors can be distinguished: models of linear [22] and
nonlinear drift [23], a model based on the Simmons
barrier [24], models using special window functions to
limit the state variable [25–27], and models taking
into account the levels of voltages, at which the switch-
ing process begins in the form of threshold conditions
[28–31].

An important feature of memristors is their sto-
chastic behavior. From cycle to cycle, the switching of
a memristor from the low-resistive state to the high-
NANOB
resistive state can occur in different ways [16, 17]. The
nature of this behavior is associated with random pro-
cesses occurring at the level of movement of oxygen
vacancies in the dielectric film of a memristive ele-
ment [18–20]. In [32, 33], the effect of noise on the
switching process is considered from the general view-
point of nonlinear relaxation phenomena in metasta-
ble systems under the influence of noise [32, 33].

In this work, stochastic features are taken into
account by introducing a stochastic addition in the
form of additive white (Gaussian) noise into the dif-
ferential equation of the memristor state. This
approach was successfully tested in [21].

We consider a model with a nonlinear voltage
dependence. In general terms, the equation describing
the memristor state with additive white noise can be
represented as follows:

where  is the state variable,  is a constant
determined by the material properties,  is the current
voltage value,  is an odd integer,  is the window
function used to approximate the nonlinear effects of
ion drift and limit the boundaries, η is the coefficient
characterizing the noise intensity, and  is the Wie-
ner process. The Biolek window function is often
used [26]:

Here, we used the model of a memristor of this class
[34] taking into account noise:

(1)

where , , and  are the current values of current,
voltage, and resistance;  is the threshold value of
the activation voltage; , β, αM, χ, and γ are the adjust-
able parameters in the expression for the current,
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Fig. 1. (a) Voltage versus time, and (b–d) I—V characteristics at a noise value of η = (b) 0.05, (c) 0.10, and (d) 0.15.
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shown in Fig. 1a. Some of the values ( , , , , , ,
and ) correspond to the values given in the previous
study [34] while the part ( , ) is selected to best fit the
experimental data [34] on hafnium oxide (HfO2) within
the framework of the deterministic model (η = 0).

Figures 1b–1d show a comparison of the model
current–voltage characteristic (I–V) at various noise
values with the experimental curve from [34].

There are several random trajectories on the I—V
characteristic plots, each of which corresponds to a
certain switching cycle of the memristor. We note that
the resulting spread in the I—V characteristics for var-
ious cycles is in agreement with the experimental data
[16] for hafnium oxide.

The presence of noise in the memristor model
leads to the fact that all parameters acquire stochastic
properties. In particular, at η = 0.05, the estimate of
the mathematical expectation of the minimal memris-
tor resistance is  kΩ and of the disper-
sion is  kΩ2. Other parameters such as the
maximal resistance and switching voltage are less
affected by additive noise. It is clear that at an increase
in the noise value, the spread of the parameters will
also increase.

= 15b = 2c =thr 1v =(0) 0x ( )V t
Mα γ a s b c

vthr

β χ

≈on[ ] 6.77M R
≈on[ ] 1D R
NANOBIOTECHNOLOGY REPORTS  Vol. 16  No. 6 
Without loss of generality, we assume that the
memristor model can be represented as two equations:

The first equation determines the dependence of
the change rate of the memristor state on the applied
voltage ( ) and state ( ) while the second one deter-
mines the value of the memristor resistance.

STOCHASTIC MATHEMATICAL MODEL
OF THE NEUROMORPHIC NETWORK

The issues of modeling circuitry solutions of neu-
romorphic networks, including the use of the STDP
learning method, are considered in [15, 35–39]. In
this study, the STDP method is implemented using
the 1T1R crossbar architecture and the presence of
feedback in accordance with [15]. At the activation
moment of neuron, two pulses of opposite sign arrive
via the feedback channel with delays. If there is activity
at the synapse and a positive feedback pulse arrives,
then the resistance value of the corresponding mem-
ristor decreases, and if a negative feedback pulse
arrives, the memristor resistance increases.

The circuitry model of a neuron represents a paral-
lel RC circuit and an abstract pulse generator. When
the value of the potential on the capacitor exceeds a
certain threshold, its potential is reset, and the pulse
generator produces an output signal and a feedback

= + =( , ) η , ( , ).X Rdx F x V dt dW R F x V

V x
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Fig. 2. Recognizable template.
signal. Additionally, at the activation moment of a
neuron, other neurons are suppressed (the potential
accumulated by them is forcibly reduced in proportion
to a certain coefficient).

The network is trained in the following way: at the
initial moment, the synaptic weights are randomly ini-
tialized, and then, with equal probability, either arbi-
trary noise or predetermined templates are fed to the
network input multiple times. Over time, the network
adapts to template recognition. One learning epoch
refers to the time during which a sample or random
noise is displayed to the network. Template distribu-
tion among neurons occurs during the learning pro-
cess.

A previously developed mathematical model of a
neuromorphic network is presented in [15] without
taking into account the stochastic dynamics of mem-
ristor switching. Taking into account the correspond-
ing properties of memristive elements consists in
replacing equations (3) in [15] with:

where  is the number of inputs,  is the number of

neurons,  is the current value of the voltage at the ith

input of the neural network,  is the current value of

the voltage in the feedback of the jth neuron,  is the

voltage at the capacitor of the jth neuron,  is the

resistance value of the memristor of the ith synapse of

the jth neuron,  is the state of the memristor of the

ith synapse of the jth neuron, η is the coefficient char-

acterizing the noise intensity, and  is the Wiener

process, which corresponds to the ith memristor of the
jth neuron.
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As a result of using stochastic equations of state for
memristors, the entire model of the neuromorphic
network also becomes stochastic.

We note that all memristors and neural networks in
this study are modeled, and physical implementation
is the subject of future research.

MATHEMATICAL MODELING
OF A NEUROMORPHOUS NETWORK TAKING 

INTO ACCOUNT THE STOCHASTIC 
FEATURES OF MEMRISTIVE ELEMENTS

We consider a network consisting of one neuron

(  and so the j index is further omitted) with

64 synapses. Parameter values: , ,

, , , ,

, , , , and

. These values were obtained in [15] based

on a deterministic model of a neuromorphic network.

Parameters , , , , and  determine the
amplitudes, duration, and delay between pulses in the
feedback, due to which learning according to the
STDP method occurs.

In the simulation, at each epoch (equal to τr/2 s),

the vector of input signals  corresponds to the rec-

ognized template (Fig. 2) or is set randomly (the vec-

tor elements have a discrete distribution:  V with

a probability of  and  V with a probability of

). For clarity, we write the  vector correspond-

ing to the template as a matrix:

Figures 3 and 4 show the graphs of the behavior of
the characteristic voltages of the neural network as a
function of time. The upper graphs correspond to the
zero value of the coefficient characterizing the noise
intensity, i.e., to the actually deterministic memristor
model, while the lower plots correspond to two differ-
ent realizations at a value of η = 0.05. The dashed line
shows what signal was fed to the input of the neural
network at each specific epoch. A value of –1 rep-
resents noise, and a value of 0 represents a recogniz-
able template. The dotted line with a dot reflects the
voltage value on the capacitor of the neuron, and the
solid gray thin line reflects the voltage value in the
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Fig. 3. Comparison of the behavior of the parameters of the neural network at the beginning of training.
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Fig. 4. Comparison of the behavior of the main parameters of the neural network at the end of training at η = 0 (upper graph) and
0.05 (lower graphs).
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work-output voltage. As soon as the voltage at the

capacitor reaches a certain threshold, the neuron is

activated: a pulse at the output and a series of pulses in

feedback appear.
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In all cases, the initial conditions and the learning

process were fixed (the same sequence of values was

fed to the input of the network). The graphs show that

the network successfully learned while, due to the

presence of a stochastic term in the memristor model,
 2021
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Fig. 5. Comparison of changes in the weights in various implementations.
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time. Figure 5 shows the process of changing the state

variables of memristors for five different implementa-

tions. Here, we see that a stochastic addition to the

memristor model leads to a different adaptation rate of

the weights: in particular, the recognized pattern

begins to be seen already from the 1500th epoch in the

first implementation and only from the 2000th epoch

in other implementations.

Next, we consider the problem of recognizing two

samples [15]. The parameters of the neuromorphic

network model remain the same, except for

. Since there is an interaction between

neurons, the suppression coefficient of α = 0.1 is addi-

tionally set (at the activation moment of one neuron,

=th 4 mVV
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Fig. 6. Recognizable templates.
the potential of the other neuron is reset in accordance
with the suppression coefficient).

As earlier, the vector of input signals  in each

epoch corresponds to the recognized patterns or is set
randomly (the vector elements have a discrete distri-

bution:  V with a probability of  and  V

with a probability of ).

Figures 7 and 8 show graphs of the voltage versus
time at the beginning and at the end of the learning
process for two different implementations. Figure 9
shows the change in the state variables of memristors
for five implementations.

The dotted line shows what was fed to the input of
the neural network at each particular epoch. A value of
–1 corresponds to noise, and a value of 0 corresponds
to the first recognizable template, and a value of 1 cor-
responds to the second recognized template.

Here, we see that the templates were distributed
among the neurons in different ways while the differ-
ences in the functioning of the network are insignifi-
cant: as in the previous example, there are small time
shifts in the output pulses.

In all cases, the network successfully learned to
recognize the specified images. However, the stochas-
tic component in the memristor model influenced the
fact that the templates from implementation to imple-
mentation are distributed among neurons in various
ways and the adaptation of weights occurs at various
rates.
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Fig. 7. Comparison of the behavior of the main parameters of the neural network at the beginning of training in two different
implementations.
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DISCUSSION

As a result of simulating the operation of a neuro-
morphic network, it was found that the network suc-
cessfully learned to recognize the specified templates
NANOBIOTECHNOLOGY REPORTS  Vol. 16  No. 6 
at the parameter values  selected within the framework

of the deterministic model. This suggests that it is pos-

sible to configure the network without taking into

account the stochastic nature of memristive elements.
 2021
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Fig. 9. Comparison of changes in the weights of two neurons in various implementations.
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Additive noise first affects how the templates are dis-

tributed among neurons and, to a lesser extent, the

delays in the output pulses.
NANOB
The main characteristic of any neural network is

accuracy. Usually, to evaluate it, a test dataset is fed

into the network as input and the percentage of correct
IOTECHNOLOGY REPORTS  Vol. 16  No. 6  2021
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Fig. 11. Dependence of recognition accuracy on the epoch number in the case of two samples.
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answers is determined. A distinctive feature of the net-

work considered here is the presence of an internal

state that changes during operation and, therefore, the

classical testing approach is not strictly correct. In this

regard, to estimate the accuracy, averaging over a cer-

tain time window was performed in the process of

training the network: it was calculated how many

times the network correctly responded to the input

data. The used window size is 100 epochs. In addition,

the question is whether the templates in the learning

process can be randomly redistributed among neu-

rons. Therefore, it is impossible to determine in

advance which neuron will be responsible for which

template before the learning process. To solve this

issue, at each epoch, it is checked which neuron is

most suitable for the template: the dot product

between the input vector and the current vector of  the

synaptic-weight values of each neuron is maximized.

Figures 10 and 11 show the dependences of the

accuracy on the epoch number for the two networks

considered earlier. The curves corresponding to zero

noise coefficient are actually obtained using the deter-

ministic model. For nonzero values of the noise coef-

ficient, the graphs show five different curves corre-

sponding to different implementations. As can be

seen, at a small value of η, the network in a number of

implementations is trained faster than that in the

absence of noise. However, at an increase in η, the

learning process loses its stability and stops converg-

ing, as is evidenced by the strong scatter in the graphs

at η = 0.25.
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CONCLUSIONS

In the paper, we present the mathematical model-

ing of a self-learning neuromorphic network based on

memristive elements, taking into account the stochas-

ticity of the ongoing processes. A dynamic memristor

model with additive noise was implemented. The I—V
characteristics of hafnium oxide obtained as a result of

simulation are in agreement with the experimental

data. A complex stochastic mathematical model of

pulsed neuromorphic network with a learning mecha-

nism according to the STDP rule was formulated.

Using the example of template recognition by neuro-

morphic networks with one and two neurons, the

adaptation rate of network weights to recognized tem-

plates, as well as the template distribution over neu-

rons, is shown to depend on the stochastic features of

memristive elements. In this case, the network param-

eters can be configured without taking into account

the stochastic dynamics of memristor switching. At a

relatively low noise level, neural networks with param-

eters selected using a deterministic mathematical

model are successfully trained to recognize specified

templates.
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