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Abstract—In this paper, we investigate the movement of nanoplates using two approaches: extracting its dif-
ferential equation, and extracting an integral equation based on the energy conservation principle. To extract
the differential equation describing the free vibration of nanoplates in constant in-plane magnetic fields, we
first use the theories developed by Kirchhoff and Mendelian to investigate the deformation of the nanoplates.
Then, we use Lorentz force to calculate the electromagnetic force, and we use the Eringen’s non-local theory
to consider the non-local effects. The extracted equation has an exact solution for calculating the natural fre-
quency of rectangle nanoplates with simply support boundary conditions. To extract the differential equation
based on the energy conservation principle, we calculate the stresses based on local equilibrium equations.
These stresses are then used to discover the relationship between inner moments and mid-plane deformation.
After that, based on the energy conservation principle, an equation describing the vibration is obtained.
Finally, based on the extracted equation, the curvatures are calculated so that the Eringen’s non-local theory
is satisfied. These curvatures are used to calculate the elastic potential energy and rate of work done for the
applied magnetic field. For a rectangular plate with simply support, the results indicate that the two equations
are consistent with each other in predicting the frequency. However, as the power of the applied field
increases, the existence of magnetic viscosity is predicted, and the difference between the results of these
equations will become significant.
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INTRODUCTION

Nowadays, nanoplates are widely used in different
industries. They are also used in medical instruments,
measurement tools [1–5], aerospace equipment,
energy storage systems such as capacitators [6–10],
and detectors [11–13]. Therefore, it is important to
investigate the dynamic behavior of nanoplates in
magnetic fields. Subatomic effects or amber property
can apply externally magnetic fields to nanostructures.
If we put a conductive plate in a magnetic field, it
deforms and an electromagnetic force affects its whole
structure. Maxwell equations link between the electric
and electromagnetic fields and the magnetic currents.
Lorentz force also affects the structure of the plate. To
analyze the vibration of a conductive nanoplate in a
constant, one direction, in-plane magnetic field, con-
tinuum theories and thin plates theories as well as
Maxwell equations and Lorentz force are applied.

Using experimental tests are not applicable to
investigating the dynamic behavior of nanoplates since
they are expensive and the control of their processes

are difficult. Therefore, an analytical approach and
the use of closed form solutions are of great impor-
tance and used by many researchers when investigat-
ing nanostructures.

Some theoretical studies have analyzed the behav-
ior of nanoplates in magnetic fields. Wang et al. [14]
investigated the effect of a longitudinal magnetic field
on the diffusion of waves through a carbon nanotubes.
To extract the related differential equation, they used a
model of a thin plates and Lorentz force. Wang et al.
[15] extracted differential equations for the vibration of
nanoplates in a transverse magnetic field. Narendar
et al. [16] experimentally studied the diffusion of
waves through a single-layer carbon nanotube. Their
results indicated that the velocity of bent frequencies
increases when the power of the magnetic field grows.
Therefore, non-local effects are significant in decreas-
ing the velocity of waves, especially in low frequencies.
Murmu et al. [17] investigated the vibration of a dou-
ble-walled carbon nanotube in a longitudinal mag-
netic field. They used the non-local Euler–Bernoulli
theory for beams when extracting their equations.
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Kiani [18] investigated the vibration of a double-
walled carbon nanotube in a longitudinal magnetic
field. He used the railly theory for beams, and used
non-lattice methods for calculating displacement.
Liang et al. [19] proposed a model for the frequency of
the vibration of a beam in a magnetic field. They also
conduct an experiment to investigate the vibration of a
one side fixed support plate in a magnetic field. Moon
and Pao [20] investigated buckling of plates in mag-
netic fields. They used the model developed for thin
plates. Young and Pan [21] used an approach based on
energy to investigate buckling and bending of thin
plates in magnetic fields. They compared their analyt-
ical results with some experimental results.

Some studies tried to extract stress tensors for mag-
neto-elastic materials in the presence of a magnetic
fields [22, 23]. These studies also extract the strain-
stress relationship for elastic plates. Murmu et al. [24]
investigated the transverse vibration of graphene
sheets in an in-plane magnetic field. They used the
non-local Kirchhoff theory to conduct this investiga-
tion. They also discussed the frequency of simple sup-
port nanoplates in constant in-plane magnetic fields.
Finally, Kiani [25] investigated the vibration of a con-
ductive nanoplate in a constant in-plane magnetic
field. He used the theories of plates and the Eringen’s
non-local theory, and studied a rectangular plate with
some simple boundary conditions.

The mechanical rules governing small-size prob-
lems are different from other mechanical rules govern-
ing problems in other sizes. Therefore, the results
obtained from the field and consistivity equations will
be reliable only after we modify our attitudes toward
them. This is because the obtained results may depend
strongly on the size of the problem. In contrast, com-
patibility equations are independent on the mechani-
cal rules, the assumptions inherent in the kinematics
deformation of structures, and the sizes of the prob-
lems. However, using these compatibility equations
require the appropriate selection of boundary condi-
tions. A wrong selection of boundary conditions leads
to a wrong prediction of the behavior of the system.
This is especially important in nano-size problems
since it is hard to find the appropriate boundary con-
ditions in these sizes. In response to this need, the
quantum mechanics theory studies how mechanical
theories are modified in small-size problems. In other
words, these theories are used to revise field equations
in small sizes. The non-local theory of elasticity and
coupled stresses and strains can also contribute to
revise the consistivity equations. Therefore, consider-
ing non-local effects are of great importance in small-
size problems.

In this paper, the equations governing the move-
ment of a nanoplate are obtained by using two
approaches: an approach based on the energy conver-
sion principle, and an approach that applies plates
deformation theories and the equation describing
NANOB
Lorentz force. The purpose of using these equations is
to investigate the vibration of the system. The results of
these two approaches are obtained and compared with
each other for a rectangular plate with simply support.
In the first approach, the local equilibrium equations
are used to calculate the distribution of stresses. Then,
the energy conversion principle is applied to extract
the integral equation describing the vibration of the
system. Finally, we use the non-local Eringen’s theory
to improve the equation by taking into account the
non-local effects in calculating mid-plane curvatures.
In the second approach, we extract a differential equa-
tion by using the Kirshoff’s theory for deformation of
plates. Then, we use the equation presented in the ref-
erences [14, 16] to calculate the volumetric force
applied on the conductive nanoplate in a mid-plane
magnetic field. The Eringen’s theory is also used to
consider the non-local effects.

THE METHOD FOR EXTRACTING
THE DIFFERENTIAL EQUATION

FROM THE KIRSHOFF’S THEORY

In this section, based on the references [14, 16], we
extract the equation calculating the electromagnetic
force. According to these references, a constant mag-
netic field induces a volumetric force to all elements.
The power of this force depends on the location vector
of the element, the power of the applied magnetic
field, and magnetic susceptibility of the nanoplate.
This power is calculated as follows:

(1)

where  is magnetic susceptibility of the nanoplate, 
is the displacement vector of the elements,  is the
power of the applied constant field, and  is the gra-
dient operator. For the in-plane magnetic field, the
loading can be considered as . Also, we
consider the displacement vector as .
Therefore, the transverse component of the volumet-
ric force is calculated as follows:

(2)

Equation (2) should be simplified based on the
theories of plates. Therefore, the displacement of the
elements is considered as follows:
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where  is the mid-plane displacement.
The mentioned idea for the deformation of plates is
called the classic theory of plates or the Kirchhoff the-
ory, which is applicable for thin plates. The following
relation is applied for simplifying Eq. (2):

(6)

Therefore, the volumetric force is obtained as follows:

(7)

Hence, the volumetric force applied to the Cartesian
element of the volume of the plate is equal to

, where  is the thickness of the nano-
plate. By dividing this expression the area of the ele-
ment that is adapted to the mid of the plane, the elec-
tromagnetic force applied to per unit of area is calcu-
lated as follows:

(8)

This force is used to investigating the transverse
vibration of the plate. The frequencies related this
vibration is called transverse or out-plane frequencies.
Finally, based on the first order theory of plates, the
Eringen’s non-local theory, and the D’Alembert’s
effect, the transverse vibration of the conductive
nanoplate within the elastic environment is described
as follows:

(9)

where  is the stiffness constant of the plate, and  is
the constant of the small size effect.

THE SOLUTION METHOD
By applying the Laplace operator in the non-local

section of Eq. (9), the following equation is obtained:
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A rectangular plate with the geometric structure of
,  is considered. Also, we use the

simply support boundary condition. The following
equation is obtained:

(12)

By replacing Eq. (12) in Eq. (11), the following
equation is obtained:

(13)

All naturally out-plane frequencies are obtained
from Eq. (13).

THE METHOD FOR EXTRACTING
THE DIFFERENTIAL EQUATION

FROM THE FIRST ORDER THEORY
OF SHE DEFORMATION

From Eq. (2) and the Mendelian deformation con-
dition, the following equation is obtained:

(14)

where  and  are the required functions for consid-
ering the suitable shear deformation. Since the mag-
netic field is not applied to the two directions simulta-
neously, Eq. (14) is simplified as follows:

(15)

We consider the non-local effects obtained by the
Eringen’s theory. Therefore, the equation governing
the vibration of the Mendelian plate is obtained as fol-
lows:
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(17)

where  is the shear revision constant. The functions
, , and  are generally independent on each other.

Therefore, Eq. (17) can be analyzed so that the terms
in the two sides of the equation that are related to each
function from , , and  are equal to each other
independently. The following equation is obtained for
calculating the naturally in-plane frequencies:

(18)

This equation calculates the naturally out-plane
frequencies for the Mendelian plate.

EXTRACTING THE EQUATION BY LOCAL 
EQUILIBRIUM EQUATIONS

AND THE ENERGY
CONSERVATION PRINCIPLE

Due to their subatomic structure, materials are
affected by their internal magnetic fields. If the net
effects of these internal fields are not equal to zero, it
is called that the material has the magnetic property. If
a material has not a natural magnetic property, apply-
ing an external magnetic field can affect the move-
ment of its electrons around the core and create an
induced magnetic property, which is called magneti-
zation. The relationship between such magnetization
and the applied magnetic field is complex and depends
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strongly on the type of the material. However, a linear
relationship is acceptable in most cases. The wastes
related to this phenomenon through the movement
can also be neglected. Such wastes are categorized into
mechanical and magnetic wastes. Mechanical and vis-
cosity frictions are the main mechanical wastes that
can be neglected when investigating the problem.
Magnetization irreversibility are the main magnetic
wastes that can also be neglected. The supports are
simply and their displacements are zero. Therefore, no
energy can enter or exit the boundaries of the system.
In this case, the main energies that affect movement of
the nanoplate during its vibration are: the elastic
potential energy, the kinematic energy, and the work
conducted by the applied magnetic field. Hence, we
write the energy conversion for the time interval of 
as follows:

(19)

The following approach is applied to calculate the
energy rate. From Eq. (1) and the Kirshoff’s deforma-
tion assumption, the following equations are obtained:
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Therefore, the distribution of the stresses due to
magnetic loading is as follows:
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Its rate is equal to:

(29)

The other section of the elastic potential energy of
the nanoplate is directly due to its deformation. Since
we used the small-size deformation assumption, the
elastic potential energy is added to the energy induced
by magnetic loading. The small-size effects is consid-
ered when calculating the potential energy induced by
magnetic loading. Therefore, the potential energy
induced by the deformation is considered as follows:
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tion is obtained for calculating the naturally out-plane
frequencies:

(36)

It is important to note that the Eringen’s non-local
theory is not satisfied when extracting this equation.
In other words, small-size effects are considered by
using Eq. (1). If we want to satisfy the Eringen’s the-
ory, the curvatures should also be calculated from the
following equations:
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(38), the following equations are obtained:
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follows:
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Table 1. The estimated values of the frequencies from
Eqs. (10) and (44) when 

 Magnetic power
in the direction

of  

The estimated 

value of  from 
Eq. (13)

The estimated 

value of  from 
Eq. (45)

0.001

0.01

0.1

0.2

0.22

0.23

0.24

0.25

0.3

0.5

1

10

100

1000

= 100 nma

y  
 
 2

N
m

ω2
01 ω2

01

× 191.4289 10 × 191.4289 10

× 191.4289 10 × 191.4289 10

× 191.4289 10 × 191.3871 10

× 191.4289 10 × 187.5912 10

× 191.4289 10 × 184.4826 10

× 191.4289 10 × 182.5743 10

× 191.4289 10 × 174.0010 10

× 191.4289 10 − × 182.0635 10

× 191.4289 10 − × 191.9620 10

× 191.4288 10 − × 202.4736 10

× 191.4285 10 − × 214.1720 10

× 191.38619 10 − × 254.1863 10

− × 192.8579 10 − × 294.1863 10

− × 214.2725 10 − × 334.1863 10

Table 2. The estimated values of the frequencies from
Eqs. (10) and (44) when 

 Magnetic power
in the direction

of  

The estimated 

value of  from 
Eq. (13)

The estimated 

value of  from 
Eq. (45)

0.001

0.01

0.1

0.2

0.22

0.23

0.24

0.25

0.3

0.5

1

10

100

1000

= 30 nma

y  
 
 2

N
m

ω01
2 ω2

01

× 181.5877 10 × 181.5877 10

× 181.5877 10 × 181.5877 10

× 181.5877 10 × 181.5412 10

× 181.5877 10 × 178.4346 10

× 181.5877 10 × 174.9807 10

× 181.5877 10 × 172.7603 10

× 181.5877 10 × 164.4456 10

× 181.5877 10 − × 172.2928 10

× 181.5877 10 − × 182.1800 10

× 181.5876 10 − × 192.7484 10

× 181.5872 10 − × 204.6356 10

× 181.5401 10 − × 244.6515 10

− × 183.1754 10 × 281.6515 10

− × 184.7472 10 − × 324.6515 10
(43)

We consider the nonlocal theory of elasticity for the
work conducted by the D’Alembert’s forces. By using
Eq. (19), the following equation is obtained:

(44)

The following equation is obtained for calculating
the frequencies:
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Table 3. The estimated values of the frequencies from
Eqs. (10) and (44) when 

 Magnetic power
in the direction

of  

The estimated 

value of  from 
Eq. (13)

The estimated 

value of  from 
Eq. (45)

0.001

0.01

0.1

0.2

0.22

0.23

0.24

0.25

0.3

0.5

1

10

100

1000

= 100 nma

y  
 
 2

N
m

2
01ω ω2

01

× 171.4289 10 × 171.4289 10

× 171.4289 10 × 171.4289 10

× 171.4289 10 × 171.3871 10

× 171.4289 10 × 167.5912 10

× 171.4289 10 × 164.4826 10

× 171.4289 10 × 162.5743 10

× 171.4289 10 × 154.0010 10

× 171.4289 10 × 162.0635 10

× 171.4289 10 − × 171.9620 10

× 171.4288 10 − × 182.4736 10

× 171.4285 10 − × 194.1720 10

× 171.3861 10 − × 234.1863 10

− × 172.8579 10 − × 274.1863 10

− × 194.2725 10 − × 314.1863 10
RESULTS AND DISCUSSION

When we study small size problems, we face an
important issue. The field and consistivity equations
must be used so that it is acceptable as an engineering
analysis, and there is also an acceptable accuracy.
Based on this issue, different approaches are applied to
analyze the mechanical behavior of nanoplates in a
constant in-plane magnetic field. The energy conser-
vation principle and the first low of Thermodynamics
are fields equations and hold for all sizes. Therefore,
using these two rules is a suitable approach for analyz-
ing nano-size problems. We consider the following
values for the parameters:

(46)

For these values, the frequencies  are calculated
based on Eqs. (13) and (45), and are depicted in
Tables 1–3.

ρ = = η =

= = =
3

kg2300   , 0, 100, 
m

0.02  , 0.01N m,   1.5, 

x

y s

H

H T D k

= μ = =
= ϑ =

77 GPa,   0.3 m, ,
100 nm,   0.3.p

G a b
t

ω2
01
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CONCLUSIONS
Based on the outputs presented in Tables 1–3, it is

concluded that:
1. When the length of the nanoplate or the power of

the applied magnetic field increases, the estimated fre-
quency decreases. This decrease is observable from
both equations. However, Eq. (45) indicates higher
decrease.

2. For magnetic powers less than 0.1 , the
predictions obtained from Eqs. (13) and (45) are very
close to each other. Magnetic powers in the real world

are usually less than 0.1 . Therefore, the
results obtained from Eqs. (13) and (45) are very close
to each other for real-world magnetic fields.

Also, after investigating the results obtained from
Eqs. (13) and (45) in magnetic powers more than

0.1 , the following results are obtained.
3. When the power of the applied magnetic field

increases, a viscosity property is created in the system.
This property results in some wastes. Eq. (45) predicts

this wastes in the magnetic field of 0.25 . Also,
this waste is independent on the length of the plate.
Around this value, the nanoplate shows a complex
behavior. In addition, the frequency shows high varia-
tion with respect to the variation in the power of the
magnetic field. This behavior may be related to the
small-size effects phenomenon, and introduces a
quantum point of the system.

4. As the power of the field increases, the viscosity
also highly increases. Therefore, an increase in the
power of the magnetic field is not suitable from the
point of view of the energy; if higher frequencies are
needed, an increase in the length of the nanoplate is a
suitable choice for decreasing energy wastes and
increasing the frequency simultaneously.
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