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Abstract—Analytical expressions for the specific coefficients of electrical conductivity and electrodiffusion of
a bilayer ion exchange membrane have been obtained in terms of thermodynamics of irreversible processes
and the homogeneous model of a fine-pore membrane. The influence of the physicochemical parameters of
the modifying layer and the electrolyte concentration on the obtained values of the coefficients at fixed phys-
icochemical characteristics of the substrate has been explored using mathematical modeling. It has been
shown that the conductivity and electrodiffusion of the modified membrane increase with increasing the
space charge density of the modifying layer when the signs of the space charges of the membrane layers are
identical and decrease when they differ or the thickness of the modifying layer increases. With increasing
electrolyte concentration, these characteristics of the modified membrane increase regardless of the sign of
charges of the membrane layers. The obtained analytical expressions can be used in modeling electromem-
brane processes and predicting the characteristics of new surface-modified ion exchange membranes.
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INTRODUCTION

The knowledge of analytical relationships between
the kinetic coefficients of electrolyte transport
through an ion exchange membrane (IEM) and its
physicochemical characteristics (charge density, ion
diffusion coefficients, etc.) makes it possible to evalu-
ate and predict the performance of ion exchange
membranes used in electromembrane processes and
systems, such as electrodialysis [1–3], membrane
electrolysis [4], and fuel cells [5–7], without resorting
to complicated and time-consuming experiments. To
find the kinetic transport coefficients in IEMs, non-
equilibrium thermodynamics (NET) is commonly
used, in which transport f luxes across an IEM under
isothermal conditions are described by the linear
Onsager equations [8–10]

(1)

where Lij are the phenomenological kinetic Onsager
transport coefficients; ∆p, ∆ϕ, and ∆c are the pres-
sure, electrical potential, and concentration drops
across the IEM, respectively; Jw and Jd are respectively
the specific solvent and solute f luxes; I is the electric

current density through the IEM, and h is the mem-
brane thickness.

Note that it is impossible to directly obtain an
explicit analytical form of phenomenological trans-
port coefficients from system (1); for this purpose,
some model of an ion exchange membrane has to be
specified. Here we assume that the transport of ions of
the electrolyte in question is described by the known
homogeneous model of a fine-pore membrane
(Nernst–Planck equations without taking account of
convection with the corresponding boundary condi-
tions and the electrical neutrality condition [9, 10]).
To take into account the charge distribution in the
IEM, one of two approaches is used. Within the
framework of the phenomenological approach,
the porous structure of the IEM is not specified and
the charge of the membrane is formally characterized
by space charge density ρ. Another approach uses IEM
structural models, such as the charged pore model
[11, 12], cell model [13, 14], microheterogeneous
model [15, 16], and percolation theory-based models
[17–19] that are detailed and analyzed in [3, 9, 10]. It
should be noted that these models contain many
structural IEM parameters, whose values are not
always determinable without the use of additional
experimental data. Thus, analytical expressions for the
Onsager coefficients in terms of the microheteroge-
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Fig. 1. Scheme of electrodiffusion through a bilayer cation exchange membrane (MB) with adjacent diffuse layers (DL): (1) mod-
ifying layer with a thickness h1, and (2) ion exchange layer (ion exchange membrane–substrate) with a thickness h2; δ1 and δ2 are
the thicknesses of the diffuse layers.
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neous [15, 16, 20, 21] and cell [22–24] models contain
six physicochemical parameters and the values of the
Onsager coefficients in the case of the charged pore
model [11, 12] can only be obtained numerically
[25‒27]. Note also that almost all works on finding
analytical transport coefficients were carried out only
for a single-layer IEM.

Currently, in connection with intensive work on
the surface modification of ion exchange membranes
(SMIEM) [28–33], there is a demanding task that has
barely been tackled until now to look for analytical
expressions for kinetic transport coefficients across
bilayer membranes.

The purpose of this work is to find analytical
expressions for two kinetic transport coefficients of
SMIEM (L22 and L32) depending on the electrolyte
concentration, geometry, and physicochemical char-
acteristics of the modifying layer (ML) of a bilayer
SMIEM in terms of the nonequilibrium thermody-
namics on the basis of the homogeneous model with-
out taking into account the IEM structure.

GENERAL FORMULATION 
OF THE PROBLEM

Let us consider the steady-state process of electro-
diffusion of 1 : 1 electrolyte ions under an applied
external electric field (voltage drop U is specified, and
pressure and concentration drops are zero) through a
surface-modified membrane (SMIEM) consisting of
two layers, the initial ion exchange membrane itself
(hereinafter called ion exchange layer 2 or substrate)
(h1 < x < h1 + h2) with a constant space charge density
(−ρ2) and modifying layer 1 (0 < x < h1) applied onto
one of the IEM surfaces and having a space density of
fixed charges (−ρ1) constant over the thickness. For
definiteness, we will assume that the initial ion
exchange membrane (layer 2) is a cation exchange
membrane (Fig. 1). We neglect both the electroos-
motic transport of the solvent through the ion
exchange membrane and convective ion f lows due to
their smallness.
MEMBRANES AND M
In both areas of intense mixing of the solution, the
ion concentrations are constant and equal to each
other:  at , where ±
refer to cations and anions and c0 is the electrolyte
concentration in the regions of intense mixing of the
solution.

We will assume that the characteristic pore size is
much smaller than the membrane thickness, but much
larger than the Debye parameter (thickness of the
electrical double layer). In addition, for simplicity of
calculations, the diffusion coefficients of anions and
cations in each layer are assumed to be the same

 
(where D, Dm1, and Dm2 are the diffusion coefficients
of the electrolyte molecule in the bulk solution and
membrane layers, respectively).

In [35], it is shown that within the framework of the
assumptions made, ion transport in the given mem-
brane system is described in dimensionless variables
by a closed system of equations (2)–(8), with the ion
fluxes in diffusion layers and in the membrane layers
being described by the Nernst–Planck equations:

(2)

(3)

(4)

In this case, the conditions of electrical neutrality
hold in the diffuse layers:
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and in the membrane layers:

(6)

The conditions for equality of electrochemical
potentials of ions at the interfaces of the membrane
layers and the solution/membrane interfaces (x = 0,
x = h1, x = h1 + h2) are written as follows:

(7)

The continuity conditions for concentrations and
electric potential at the boundary of diffusion layers
have the form:

(8)

where   

   

    are the coefficients

of the equilibrium distribution of ions in the mem-
brane layers,   ϕ is the
dimensionless electric potential in RT/F units (F is the
Faraday number, R is the universal gas constant, T is

the absolute temperature),  x is the coordi-

nate normal to the membrane surface and directed
along the outer electric field; ∆ϕ0, ∆ϕ1, and ∆ϕ2 are
the dimensionless electric potential drops across the
membrane surface x = 0, x = h1, and x = h1 + h2;

 is the dimensionless electric voltage in the

system; and σ = σ1 at  and σ = σ2 at

 are the dimensionless densities of fixed

charges in the ML and IEM (substrate), respectively.
For the convenience of solving the boundary prob-

lem (2)–(8), instead of unknown constant ion flux den-
sities j±, we will use the dimensionless electric current
density i = j+ − j− and the salt flux density j = j+ + j−.
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In [35], we obtained a general solution to the above
boundary problem with allowance for the finiteness of
the diffuse layers at ∆c = 0 and ∆p = 0. In this study
we will consider the case when the resistances of the
diffuse layers can be neglected ∆1 = ∆2 = 0. Then, as
shown in [36], the solution to system (2)–(8) takes
the form

(9)

(10)

(11)

(12)

(13)

(14)

where  

  , , where

  

 , , and ϕ1 and ϕ2 are
respectively the dimensionless electric potentials in
the first and second layers.

To find analytical expressions for the transport
coefficients, consider the case of low currents (i.e.,
i 1). Taking into account the given expressions (9)–
(14) in this approximation, the following relations
were obtained in [36]:

(15)

(16)

σ + − σ
νξ + = σ + + σ
+ ξ − σ

2
1 1

21
1 1

1

4
4 ln ,

1
m

i
jij

iH j
j

σ + − σ
νξ − = σ + + σ

+ ξ − σ

2
2 2

22
2 2

2

4
4 ln ,

1
m

i
H jij

iH j
j

ξ + σ σ + − σ= +
ξ + σ σ + − σ

σ + − σ σ + − σ
− σ + σ

ξ − σ ξ − σ

2
2 2 2

2
1 1 1

2 2
2 2 1 1

2 1

2 1

4ln ln
4

4 4
ln ln ,

u

i i
j ji i

i ij j
j j

ξ σ ξ − σ− =2 2 2 2
1 2,

+

σ + − ξ − ν γϕ = +
σ

 σ + σ +− γ  γ 

2 2
1 1 1 1 1

1
1

2 2
1 1 1

1
1 1

ln
2

ln ,

mk jy ki
j

k
k

( )

+

σ + − ξ + ν − γϕ = +
σ

 σ + σ +− γ −  γ 

2 2
2 2 2 2 2

2
2

2 2
2 2 2

2
2 2

1
ln

2

ln ,

mk j y ki
j

k u
k

( )ξ = γ ξ −
+1
1 0 ,

1 H ( )ξ = γ ξ +
+2
1 0 ,

1 H
σ = γ σ1 1 1, σ = γ σ2 2 2. = γν ν1 1 1m m = γν ν2 2 2m m

( )ξ = γ ξ −
+1
1 0 ,

1 H ( )ξ = γ ξ +
+2
1 0 ,

1 H
σ = γ σ1 1 1,

σ = γ σ2 2 2. = γν ν1 1 1m m = γν ν2 2 2m m

�

( )σ + σΔ =
 σ + + σ +
 

2 2 1 1
2 2

2 2 1 1

,
2 4 4

R R
t

R R

( )= α + α1 1 2 2 ,U I R R
ol. 5  No. 6  2023



426 UGROZOV, FILIPPOV
where  ,  α1 =

, 

U and I are respectively the dimensional voltage and
current density, Rmc = (α1R1 + α2R2) is the resistance

of the bilayer membrane, , and J is the dimen-

sional salt f lux.
We will assume that linear expressions for Onsager

fluxes (1) also hold in the case of bilayer SMIEM.
Since ∆c = 0 and ∆p = 0 within the framework of this
consideration, then the current density through the
SMIEM is given by

(17)

as follows from the second relation of system (1). Sub-
stituting Eq. (16) into (17), we get

(18)

Similarly, from the third equation of system (1) fol-
lows the relation

(19)

Taking into account Eqs. (17) and (19), we obtain
from Eq. (15) that

(20)

Substituting Eqs. (17) and (18) into (20), we obtain
an expression for the electrodiffusive-transport coeffi-
cient of the SMIEM

(21)

RESULTS AND DISCUSSION
From Eq. (18) it follows that the coefficient 1/L22

represents the resistivity of the SMIEM:

(22)

Let us analyze the influence of some physicochem-
ical characteristics of the modifying layer on the coef-
ficients of electrical conductivity and electrodiffusion
of SMIEM, comparing them with the corresponding
coefficients of the substrate of this membrane.

For this purpose, we introduce the coefficients

 and , where L220 and L320 are the

conductivity and the electrodiffusion coefficient of
the substrate, respectively, which will be found taking
into account Eqs. (15), (18), and (21) and assuming
that h1 = 0,
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Then, taking into account Eqs. (15), (18), and (21)
together with Eqs. (23) and (24), we obtain
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where .

Analysis of Eqs. (25) and (26) shows that the influ-
ence of the modifying layer on the transport coeffi-
cients is determined by the ratio of its thickness to the

thickness of the substrate (i.e., ) and a number of the

following ratios: σ1/σ2, , and . Moreover, the

degree of this influence also depends on the value of
the dimensionless parameter of the substrate

, which is determined by the space charge

density, the coefficient of equilibrium distribution of
the electrolyte in the substrate, and the electrolyte
concentration.

Using formulas (25)–(26) and the Mathcad 14
package with the given values of c00 = 0.05 M; ρ2 =
0.98 M, h1 = 15 μm, h2 = 220 μm; γ1 = 1, γ2 = 0.453;
D = 3300 μm2/s; Dm1 = 91 μm2/s; and Dm2 = 31 μm2/s,
we quantitatively assessed the influence of a number of
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Fig. 2. Effect of the space charge density of the modifying
layer on dimensionless (1) electrical conductivity k22 and
(2) electrodiffusion coefficient k32 of the modified mem-
brane.
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Fig. 3. Effect of the thickness of the modifying layer on the
dimensionless conductivity (k22, red curves) and electro-
diffusion coefficient (k32, blue curves) of the modified
membrane at different values of space charge density of the

modifying layer:  (1);  (2);  (3);
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parameters of the modifying layer on the conductivity
and electrodiffusion coefficient of the modified mem-
brane. The physicochemical parameters chosen qual-
itatively correspond to a modified MF-4SK/Pan
membrane in a measuring cell filled with a 0.05 M
aqueous solution of HCl [37].

Numerical calculation of the influence of the space
charge density of the modifying layer (i.e., the 1st
layer) showed (Fig. 2) that in the case of uncharged
modifying layer (i.e., ρ1 = 0), the conductivity and the
electrodiffusion coefficient of the SMIEM are lower
than those of the substrate (k22 < 1 and k32 < 1), which
is due to the fact that the modifying layer increases the
resistance of the modified membrane (Fig. 2). With
identical signs of charges of both SMIEM layers

, the conductivity of the SMIEM increases

with increasing ρ1; this is due to an increase in the
concentration of counterions in the modifying layer,
which leads to an increase in the conductivity and the
electrodiffusion coefficient of the membrane (Fig. 2).

When the space charges of the SMIEM layers have

different signs , the concentration of counte-

rions in the modifying layer increases with an increase
in the absolute value of space charge ρ1, but they are
co-ions for the substrate and, as a consequence, the
conductivity of the modified membrane decreases and
the values of the SMIEM electrodiffusion coefficient
also decrease (Fig. 2).

Numerical simulation of the effect of the modify-
ing-layer thickness is illustrated in Fig. 3. As can be
seen from Fig. 3, in the case of uncharged modifying
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layer (i.e., ρ1 = 0), the electrical conductivity and the
electrodiffusion coefficient of SMIEM decrease
noticeably with increasing thickness of this layer,
which is due to an increase in the resistivity of the
modifying layer. However, if the modifying layer has a
space charge density ρ1 of the same sign as the sub-

strate , then the conductivity of SMIEM can

increase with increasing membrane thickness (Fig. 3)
because of an increase in the concentration of counte-
rions in the modifying layer, which weakens the effect
of the modifying-layer thickness. The electrodiffusion
coefficient behaves similarly.

When the space charges of the SMIEM membrane

layers are of different signs , the concentra-

tion of counterions in the membrane layers decreases
and the resistivity of the membrane increases with
increasing thickness of the modifying layer; as a con-
sequence, both of these factors lead to a decrease in
the electrical conductivity and electrodiffusion of the
modified membrane (Fig. 3).

The effect of electrolyte concentration c0 on the
electrical conductivity and electrodiffusion of the
modified membrane was also simulated numerically
using the Mathcad 14 package and the resulting
expression (25). In this analysis, it was taken into
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Fig. 4. Effect of the electrolyte concentration on the dimensionless electrical conductivity (k22) and electrodiffusion coefficient

(k32) of the modified membrane at different values of space charge density of the modifying layer:  (1);  (2);

 (3);  (4). 
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account that the resistance of the substrate varies with
the electrolyte concentration, since its parameter σ2
depends on the concentration according to the expres-

sion  = , where

 and . In addition, taking

into account Eqs. (16) and (23), it is easy to find that
the substrate resistivity can be written as

 = . It follows that the

resistivity of the substrate decreases and its electrical con-
ductivity increases with increasing electrolyte concentra-
tion, which is consistent with experimental data [38–40].

The effect of electrolyte concentration c0 on the
electrical conductivity and electrodiffusion of the
modified membrane is shown in Fig. 4. As can be seen
from Fig. 4 (curve 3), the electrical conductivity and
electrodiffusion of SMIEM increases with increasing
c0 in the case of the uncharged modified layer, but due
to the resistivity of the modifying layer, the former is
slightly lower than the conductivity of the substrate.
However, at high electrolyte concentrations, the resis-
tance of the modifying layer weakens and their electri-
cal conductivities become equal (Fig. 4). If the modi-
fied layer is charged and has the same sign as the sub-

strate , then, as noted earlier, the charge of

this layer weakens the effect of the resistance of the
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modifying layer on the conductivity and the conduc-
tivity of the SMIEM may be slightly greater than that
of the substrate at small values of the c0/c00 ratio
(curve 1 in Fig. 4). As the electrolyte concentration
increases, the conductivities of the membrane and the
substrate come closer and practically coincide. The
electrodiffusion coefficient of SMIEM changes in a
similar way: it also increases with increasing electro-
lyte concentration.

In the case of opposite space charges of MIEM

membrane layers , as can be seen from Fig. 4

(curve 4), the values of the conductivity and electro-
diffusion coefficient of the SMIEM are noticeably
lower than those of the substrate (since k22 < 1), which
is due to the combined action of two factors: the dif-
ference in sign between charges of the membrane lay-
ers and the resistance of the modifying layer. However,
as can be seen from Fig. 4, their influence decreases
with increasing c0 so that the dimensionless electrical
conductivity and electrodiffusion coefficient of the
modifying layer become almost the same as those of
the substrate at high electrolyte concentrations.

CONCLUSIONS
In terms of the homogeneous model of a fine-pore

membrane, analytical expressions for the Onsager
transport coefficients—electrical conductivity and
electrodiffusion—of a bilayer ion exchange membrane
have been first obtained. The influence of a number of
physicochemical characteristics of the modifying layer
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on the electrical conductivity and electrodiffusion
coefficient of the membrane was studied using the
method of mathematical modeling. It has been shown
that an increase in the space charge density of the
modifying layer increases the electrical conductivity
and electrodiffusion coefficient of the membrane
when the signs of the space charge densities of the
modifying layer and the substrate are the same and
decreases them when the signs are different. It has
been established that increasing the thickness of the
modifying layer reduces the electrical conductivity
and electrodiffusion of the membrane if this layer is
not charged. When the charge density of the modify-
ing layer and the substrate are of the same sign, an
increase in the charge density of the modifying layer
weakens its resistance and can enhance the electrical
conductivity and electrodiffusion of the membrane.
But at different signs of space charge densities of the

SMIEM membrane layers , electrical con-

ductivity and electrodiffusion decrease with an
increase in the absolute value of the space charge, with
their values being noticeably lower than the respective
coefficients of the substrate.

It has been shown that an increase in the electrolyte
concentration enhances the electrical conductivity
and electrodiffusion of the modified membrane for
any charge sign of the modifying layer.

The obtained analytical expressions can be used in
modeling electromembrane processes and predicting
the parameters of new surface-modified ion exchange
membranes.
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