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Abstract—Many transport properties of ion-exchange membranes can be described in terms of the microhet-
erogeneous model using a single set of parameters. However, the model is applicable in a limited concentra-
tion range of electrolyte solutions. In this paper a new modification of this model is proposed, taking into
account the contribution of the electrical double layer (EDL) at the internal boundaries of the gel phase and
the intergel solution of the membrane to describe the electrical conductivity of membranes in dilute electro-
lyte solutions. The model suggests that the EDL thickness in the internal solution phase increases with dilu-
tion of the external solution. Since EDL is more conductive than the electroneutral part of the solution, it is
possible to describe the concentration dependence of the electrical conductivity of membrane more precisely
as compared with the basic version of the microheterogeneous model. Comparison of the concentration
dependences of the electrical conductivity of membranes shows a good agreement between the experimental
and calculated data.
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INTRODUCTION

Establishing the structure–property relationships
is one of the main goals of basic research in the field of
membranes and membrane technologies [1]. Regard-
ing ion-exchange membranes (IEMs), two types of
models used as a theoretical basis for considering this
problem can be distinguished. Models of the first type
called “solution–diffusion” models [2–4] suggest that
the transported substances dissolve in the membrane
material and then are transferred through the mem-
brane by the action of concentration or potential gra-
dients, if any. Generally, the driving force causing the
transport of ions in the membrane material is the gra-
dient of electrochemical potential [5, 6].

The term “solution–diffusion” is used in contrast
to the “pore f low” term, which refers to models con-
sidering the membrane as a system of f low-through
pores. In such models, the transport of particles is
described inside a separate pore filled with a solution
[2, 7]. At the same time, the uneven distribution of
concentrations and potential in the cross section per-
pendicular to the pore walls is considered. The
unevenness is due to the fact that the pore walls have
an electric charge imparted to them by fixed ions. In
particular, such models take into account the presence

of the electrical double layer (EDL) adjacent to the
pore wall.

In the “solution–diffusion” models, the mem-
brane is most often considered a homogeneous
medium [8–10], namely, a uniform swollen sponge
consisting of a polymer matrix with fixed ions which
charge is compensated by the charge of the internal
solution containing counterions and coions [8]. Such
a homogeneous medium is often called charged gel
[8]. However, there is a class of models that consider
the presence in a membrane of at least two phases, the
phase that includes a polymer or a crystalline matrix,
which often carries a fixed electric charge balanced by
mobile ions present in this phase, and the phase of
solution between membrane pores [4, 11–18]. One of
such models is the microheterogeneous model [19–
25]. The model is based on a simplified representation
of the membrane structure, according to which the
IEM characteristics are determined by the properties
of two phases. The gel phase is a microporous swollen
medium, which includes both a polymer matrix with
fixed groups and a charged solution of mobile counte-
rions (and fewer coions) compensating the charge of
fixed groups. The second phase is an electrically neu-
tral solution (identical to the external solution), which
fills the intergel spaces: membrane structural defects,
190



MODIFIED MICROHETEROGENEOUS MODEL 191
macropores, and the central part of mesopores. This
model attracts interest because it can describe almost
all transport properties of homogeneous and heteroge-
neous membranes using a small set of parameters.
Therefore, the microheterogeneous model is widely
used to process and interpret the concentration depen-
dences of specific electrical conductivity [10, 13, 25–
27], diffusion permeability [20, 28, 29], electrolyte
sorption [21, 27, 30], swelling [27], and other IEM
characteristics.

Unfortunately, the basic microheterogeneous
model is applicable only in the concentration range of
0.1–1 mol/L. The applicability of the microheteroge-
neous model to dilute solutions is limited primarily
because of the assumption that the volume fractions of
membrane phases are independent on the concentra-
tion of the external electrolyte. However, in classical
electrochemistry, it is well known [31] that the length
of the diffuse part of the electrical double layer
depends on the concentration of the solution bordered
by the charged surface. In the case of IEMs, EDL is
formed in the pores of the swollen membrane and, as
shown recently by Porozhnyy and coworkers [32, 33],
it can have a noticeable effect on membrane transport
characteristics. In the aforementioned papers, a mod-
ification of the basic microheterogeneous model is
presented, which takes into account the presence of
nanoparticles in the membrane pores, the surface of
which may have an electric charge. Using this model,
it has been shown that the features of the concentra-
tion dependences of the electrical conductivity and
diffusion permeability of membranes with immobi-
lized nanoparticles, as well as the growth of membrane
selectivity, are due to the substitution of a part of the
internal electroneutral solution with a nonconducting
phase (body or core of the particle) and the electrical
double layer at the nanoparticle charged surface.

This study deals with improving the basic micro-
heterogeneous model.

The aim of the study is to take into account possible
changes in the volume of the diffuse region of the elec-
trical double layer in pores of an ion-exchange mem-
brane and analyze the effect of this factor on both the
electrical conductivity of the membranes, depending
on the concentration of an external NaCl solution,
and the membrane pore geometry and size. From the
viewpoint of the above-mentioned classification, the
proposed model can be called hybrid; on one hand, it
takes into account the presence of mobile ions in the
solution and gel phases (as the “solution–diffusion”
model) and, on the other hand, it takes into account
the presence of EDL in the membrane pore space as it
is used in the “pore f low” models.
MEMBRANES AND MEMBRANE TECHNOLOGIES  V
THEORETICAL

Basic Microheterogeneous Model

According to the basic microheterogeneous model
[20], the ion-exchange membrane consists of two
phases: the gel phase and that of an electroneutral
solution with volume fractions fg and fs, respectively
(fg + fs = 1). The model assumes that the intrapore
electroneutral solution is identical to the external solu-
tion. The basic idea of simulating ion transport in a
membrane represented in the form of several phases is
to ascribe certain physicochemical properties to each
region (phase) and describe properties of the mem-
brane as a whole as a function of the properties of indi-
vidual regions (the effective medium theory). 

The f lux of ions of the ith type in a two-phase sys-
tem is proportional to the electrochemical potential

gradient 

(1)

where  is the effective conductivity coefficient
characterizing the multiphase system. The value of dx
in Eq. (1) can be interpreted as the distance between
two parallel planes perpendicular to the transport
axis x, which correspond to the electrochemical
potentials  and , respectively [34].
The dx value should be significantly smaller than the
membrane thickness d (to justify the application of
differential equations), but noticeably larger than the
characteristic size of an element of a separate phase to
provide the layer between the x and x + dx planes to be
“representative” and include all membrane phases
and all structure features.

According to the microheterogeneous model [20],

(2)

where  and  are the conductance coefficients of the
gel and solution phases, respectively;  is the structural
parameter characterizing the mutual arrangement of
the membrane phases (Fig. 2): , with α =
−1 corresponding to the sequential arrangement of the
phases and  corresponding to the parallel one.

The parameters  and  are determined from the
diffusion coefficients  and  (it is assumed that the
diffusion coefficients are independent on the concen-
tration) in the corresponding phases:

(3)
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Fig. 1. Schematic representation of the structure of the ion-exchange membrane at the nanometer scale in accordance with the
microheterogeneous model (adapted from [34]).
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where  and  are the concentration of ions in the gel
phase and in the intergel solution, respectively; R is the
universal gas constant; T is the temperature; and 
and  relate to electrically neutral interpore solution,
which is considered identical to the external solution.

The gel and intergel solution phases are in local
equilibrium. Then the concentration of ions in the gel
phase  is related to the concentration in the intergel
solution  through the Donnan relation:

(5)

where KD is the Donnan constant, z+ and z– are
charges of ions in the electrolyte solution, the sub-
script “+” means counterions (in the case of cation-
exchange membranes), and “−” means coions.
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In the case when the ion-exchange capacity of the
gel phase of the membrane is much higher than the
concentration of electrolyte sorbed by this phase, the
Donnan ratio (5) can be simplified and rewritten (for
a binary electrolyte) as [20]:

(6)

(7)

where  is the concentration of electri-
cally neutral solution; Qg is the ion-exchange capacity
of the gel phase (concentration of charged fixed
groups per unit volume of the gel), which is defined as
the ratio of the ion-exchange capacity of the mem-
brane Qmb to the volume fraction of the gel phase:

(8)
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It follows from Eqs. (1)–(4) that  depends on
the concentration of the external solution, the remain-
ing parameters in the first approximation being
assumed to be independent of the concentration. For
a particular membrane system, some of these parame-
ters can be found as table values (the value of  is
assumed to be equal to the value in the free solution).
The remaining parameters of the microheterogeneous
model can be determined from experimental data. The
algorithm for finding these parameters is described in
[20]. According to it, the diffusion coefficient of coun-
terions in the gel phase  and the volume fraction of
the intergel solution in the membrane fs can be found
from the electrical conductivity of the membranes as a
function of concentration in log–log coordinates (in
the first approximation, fs is the slope of this depen-
dence); the diffusion coefficient of co-ions in the gel
phase  and the structural parameter  can be found
from the concentration dependence of the diffusion
permeability; the ion-exchange capacity of the gel Qg

can be found from the total ion-exchange capacity
Qmb; the Donnan constant is found from the data on
the sorption of electrolytes.

Using the set of parameters described above, vari-
ous membrane properties can be described, such as
transport numbers of ions (Eq. (9)), diffusion permeabil-
ity (Eq. (10)), and electrical conductivity (Eq. (11)):

(9)

(10)

(11)

where  and  are the
electrical conductivity of the gel region and that of
electroneutral solution, respectively.

The electrical conductivity attracts the greatest
interest in this work, because it is one of the main
properties of membranes determining their practical
application.

Effect of Electrical Double Layer

Figure 3 schematically shows the distribution of the
concentration of ions at the pore wall of the membrane
in equilibrium solution. The central part of the pore is
filled with an electroneutral solution. The electrical
double layer is formed near the pore walls, inside
which the distribution of cations and anions concen-
trations is uneven. The EDL consists of a dense part
(Helmholtz layer) with the thickness  being approx-
imately equal to the diameter of the hydrated counte-
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rion and the diffuse part with a thickness on the order
of the Debye length LD [31].

The thickness of the dense part of the EDL does
not depend on the concentration of the external solu-
tion and is determined by the concentration of fixed
groups. Bjerrum [35] showed that the dependence of
the probability of finding an ion in a layer with thick-
ness da at distance a from the central (fixed) ion has a

distinct minimum at  where  is the

electric constant,  is the relative dielectric constant of
the solvent, e is the electron charge, and k is the Boltz-
mann constant. At a shorter distance from the central
ion, mobile ions oppositely charged relative to it have
a kinetic energy insufficient to move away from the
central ion and form ion pairs with it according to
Bjerrum. Ions that are at a greater distance from the cen-
tral ion quite easily diffuse into the solution and are con-
sidered free. As applied to ion-exchange materials, we
consider the fixed ion to be the central Bjerrum ion.

Thus, counterions that occur at a distance shorter
than λB are considered to be associated and have low
mobility, while counterions at a greater distance are
considered free, having the same mobility as ions in
the external solution. The distinguishing of two states
of counterions determined by their distance from a
fixed ion, where the Bjerrum length is a critical
parameter, is the central point of the Manning con-
densation theory [36] developed for polyelectrolyte
solutions. Counterions that are located at a distance
shorter than λB are “condensed” near the ions fixed on
the polymer chain and are “associated” in contrast to
the more distant “free” counterions. Kamcev and
coworkers [6, 37–39] recently proposed a model that
is based on the Manning theory [36] and makes it pos-
sible to calculate adequately the concentration of elec-
trolyte sorbed in gel ion-exchange materials.

The Debye length increases with dilution of the
solution and can be calculated by the following
approximate equation:

(12)

where F is the Faraday constant.
The size of membrane pores can be different.

Micropores, mesopores, and macropores are distin-
guished in the literature. As a parameter characterizing
each type of pores, we will use the ratio of the pore
radius rp to the theoretical value of LD on the inner wall
of the pore calculated by Eq. (12). In the case of
micropores, rp < LD (usually rp < 1 nm); for meso-
pores, it is characteristic that rp > LD but rp and LD
must have values of the same order; for macropores,
rp >>  LD (rp > 50 nm).

With increasing electrolyte concentration, the
value of LD decreases in accordance with Eq. (12). In
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Fig. 3. Distribution of ion concentrations at the pore wall in the membrane: x = 0 is the plane passing through the centers of fixed
ions; x = λH is the plane passing through the centers of the hydrated counterions closest to the fixed groups (λH = 0.6–0.8 nm)
(Helmholtz plane); x = λB is the plane representing the boundary between the regions with high and low mobility of ions and
molecules: the outer boundary of the gel phase.
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concentrated electrolyte solutions (>1 mol/L), the
calculated value of LD is small compared to λB. There-
fore, all ions that compensate for the charge of fixed
ions are associated. The value of λB in experimental
homogeneous gel membranes [40] in the case of 1 : 1
electrolyte is 1.2 nm according to Kamcev et al. [39].
In the framework of the proposed model, this length
determines the boundary separating the gel phase (in
which the ions are “associated” and their mobility is
significantly reduced) and the solution phase (in
which the ion mobility is considered the same as in a
free solution).

Therefore, it follows that the selectivity of meso-
pores should decrease with an increase in concentra-
tion of the external solution. On the other hand, LD
increases to reach 10–20 nm with dilution, thereby
makes even relatively large mesopores highly selective.

In the basic microheterogeneous model, the entire
EDL refers to the gel phase, the volume fraction of
which is considered constant and independent on the
concentration of the external electrolyte solution.
Here, we propose to separate a part of the diffuse
domain of the EDL (located at a distance of >λB from
the fixed ion) from the gel phase and assign it to the
solution phase. Hereinafter, all parameters character-
izing the charged region of the solution, in which the
ions have the same mobility as in the free solution, will
be denoted by subscript “D”. Thus, compared to the
basic version of the microheterogeneous model [20],
the solution phase is divided into two areas: the region
of the electroneutral solution filling the central part of
the inter-gel spaces, and the charged region interme-
MEMBRANES AND M
diate between the electroneutral solution and the gel
phase. As indicated above, the gel phase (together with
polymer chains, fixed groups, and associated counte-
rions) will also include a slow-moving part of EDL
with thickness λB. Since in the first approximation λB
is independent on the concentration of the solution,
the volume fraction of the gel fg is considered constant.

In contrast to the basic microheterogeneous
model, we will assume that the average concentration
of counterions in the gel phase (for definiteness, the
cation-exchange membrane) is equal to the concen-
tration of fixed groups only at high solution concen-
trations (approximately >1 mol/L), when the thick-
ness of the diffuse part of EDL can be neglected:

(13)

In this case, all counterions are in the immediate
vicinity of fixed groups, at a distance not exceeding 
where their mobility is substantially lower than the
mobility in the free solution [41]. The number of
moles of counterions in the gel phase under these con-
ditions is equal to QgfgVtot, where  is the total vol-
ume of the membrane.

When the solution is diluted, a part of the counte-
rions move away from the fixed ions by a distance
exceeding λB [41] and pass into the “mobile” part of
EDL, where their mobility does not differ from the
mobility in the free solution. The number of moles of
counterions in this region is  where  is the
average concentration of counterions in the “mobile”
part of EDL and  is its volume. The concentration
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of counterions (cations) in the gel phase becomes
lower than in the case of the concentrated solution:

(14)

where  is the volume fraction of the “mobile” part
of EDL.

Let us consider the boundary between the pore wall
and the solution (Fig. 3). The pore wall carries fixed
anions, the charge of which is compensated by the
charge of mobile cations and anions present in the
solution. Let the coordinate of cations passing through
the centers of the pores nearest to the wall to be x = 0.
According to the Gouy–Chapman theory, the distri-
bution of ions in a solution is described by the Pois-
son–Boltzmann equation. The potential difference
between x = 0 and x = ∞ is:

(15)

where  and ϕg refer to x = 0; x = ∞ refers to the elec-
troneutral (real or virtual [12, 42]) solution balanced
with the membrane fragment under consideration.
Assuming that the potential and concentration change
continuously, these values are approximately equal to
the respective values in the gel phase, i.e.  ≈ Qg.

In order to find the charge and concentration in
EDL, we use the exact solution of the Poisson and
Boltzmann equations [28]:

(16)

where  is the dimensionless potential in an

arbitrary point of EDL at a distance x from the plane
passing through the centers of counterions closest to

the pore wall and  is the potential in this

plane of x = 0. Finding (numerically) the value of 
for point x from Eq. (16), the concentration of cations
and anions for this point can be easily calculated using
the Boltzmann equation:

(17)

Substituting x = xB into Eq. (16), we find the
potential corresponding to the Bjerrum plane. Next,
we can find the average integral values of the concen-
trations of “associated” ith ions in the Bjerrum layer

 and “free” ions  in the “moving” part of the
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the center of the pore x = rp on the other side, where rp
is the pore radius:

(18)

Integration in accordance with Eqs. (18) was per-
formed numerically. The resulting average concentra-
tions were used to calculate the electrical conductivity
of the gel phase κg and the “mobile” EDL region of
the solution that fills the pore 

(19)

where the concentration of counter-ions in the gel
phase is calculated using Eq. (14), assuming fD to be
fs = 1 − fg. Thus, since the ion concentration distribu-
tion functions are smooth (Boltzmann distribution) in
terms of this modified model, the electroneutral part
of the solution is not distinguished specifically.

The concentration of coions (anions) in the gel phase
 is calculated by the Donnan equation (Eq. (6)) as it is

done in the basic model.
The specific electrical conductivity of the mem-

brane, taking into account the presence of the gel
phase and the “mobile” region of EDL in the mem-
brane (it is obligatory to include the region of the elec-
troneutral solution), is calculated in accordance with
the theory of effective medium [11] and a formula sim-
ilar to Eq. (11) as follows:

(20)
The total surface area of EDL and, accordingly, the

volume fraction of the “mobile” region of EDL
depends on the membrane pore geometry. In this
paper, we consider three main pore shapes that are
most common in the literature: f lat (Fig. 4a), cylindri-
cal (Fig. 4b), and spherical (Fig. 4c).

For each of the pore geometries, we calculated the
specific conductivities of the solution in the pore ( )
and gel phase of the membrane (κg), as described
above, as well as the specific conductivity of the mem-
brane (Eq. (20)) as functions of the concentration of
the external solution. The following quantities were used
as parameters for the calculation: the volume fractions of
the gel phase fg and the “intergel” solution fs, the diffu-
sion coefficients of ions in both phases (it is believed
that the diffusion coefficients  in the mobile part of
EDL are the same as in the free solution, and the dif-
fusion coefficients  characterize the ion mobility
both in microporous medium and in the Bjerrum layer
near the walls of mesopores and macropores), pore
radius rp (in the case of a f lat pore it is equal to half the
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Fig. 4. Geometry of electrical double layers in (a) f lat, (b) cylindrical, and (c) spherical pores.

Charged pore wall

λB
λB

λB

(c)(a) (b)
distance between opposite walls), structural parame-
ter α, the Donnan constant KD (characterizing equi-
librium sorption of coions by the gel phase), and
membrane ion-exchange capacity Q. Thus, compared
with the basic microheterogeneous model, only one
parameter is added, namely the effective pore radius.

EXPERIMENTAL
The studies were performed using a specially pre-

pared homogeneous cation-exchange membrane,
similar in structure and composition to commercial
IEM NafionTM (DuPont). The method for obtaining
such membranes is described in [43, 44]. An 8% solu-
tion of perfluorosulfonated polymer MF-4SK in
dimethylformamide (Plastpolimer, Russia) was dis-
persed by ultrasound (frequency 35 kHz) using a Ban-
delin Sonorex device for 2 h. Characteristics of the poly-
mer MF-4SK: lithium form, equivalent weight 1100,
ion-exchange capacity 0.9 meq/g. The resulting
homogeneous suspension was poured into a glass Petri
dish. The solvent was removed during multistage dry-
ing: at 80, 90, 100, and 120°C (for 1 h at each step) fol-
lowed by 80°C for 4 h. The formed film was carefully
separated from the glass bottom of the Petri dish and
hot-pressed for 3 min under a pressure of 5 MPa and
at a temperature of 110°C to improve the mechanical
properties. The resulting membrane was placed for
90 min in a 5% HCl solution, washed in a large volume
of deionized water to get free of the acid, and conditioned
at room temperature. Before the tests, the membrane was
equilibrated with a 0.005 mol/L NaCl solution.

The average thickness of the sample made was
199 ± 1 μm.

The specific conductivity of membranes (κmb) was
calculated from data on the resistance of membranes
measured by the mercury-contact method in the ac
frequency range of 50–500 kHz. This method is con-
venient to study thin polymer films, as it provides an
ideal contact between the electrode and the mem-
MEMBRANES AND M
brane sample. In addition, this method has no restric-
tions on the concentration of the equilibrium solution
or water content in the sample under study [45]. The
current frequency that ensures the zero value of the
imaginary component of the measuring cell imped-
ance was chosen individually for each concentration of
the equilibrium solution [23].

The value of the specific conductivity was calcu-
lated by the formula:

(21)

where l is the membrane thickness, Rmb is the mea-
sured resistance, and S is the membrane area.

The measurements were carried out using a
TESLA BM 507 impedance meter with NaCl solution
concentrations varied from 0.005 to 0.2 mol/L.

RESULTS AND DISCUSSION
Figure 5 shows the experimental and calculated

concentration dependences of the specific electrical
conductivity of the membrane under study in NaCl
solutions. The calculations were carried out using the
base and modified models for f lat, cylindrical, and
spherical pores. The structural-kinetic parameters of
the membrane used for the calculations are listed in
Table 1. These parameters were chosen on the basis of
the following considerations. As in the case of Nafion
membrane [46], the f luorocarbon and ether chains are
the basis of the polymer obtained (hydrophobic part)
and, in the swollen state, form pores which have func-
tional sulfo groups on their walls. These pores linked
by a system of narrower channels contain hydrated
cations and thus represent the hydrophilic part of the
membrane. Thus, the membrane under discussion (as
well as the Nafion membrane) has a cluster–channel
morphology and is homogenous on the micrometer
scale. According to DSC data [47], pores dominating
in MF-4SK membranes have the radius of about

κ =mb
mb
1 ,l

S R
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Fig. 5. Experimental (squares) and calculated (lines) con-
centration dependences of the specific electrical conduc-
tivity of the membrane under study in a NaCl solution.
The calculations were performed using the base (dashed
line) and modified (solid curves) models for (1) f lat,
(2) cylindrical, and (3) spherical pores. The calculation
parameters are given in Table 1.
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6 nm, but there are also pores with a larger diameter.
The results of standard contact porosimetry reported
in [47] give the following characteristic values of the
effective pore radii in MF-4SK: 2, 11, and even 16 nm.
The size of these pores can vary depending on the
membrane prefabrication conditions. This is evi-
denced by the results of determining the volume frac-
tion of the intergel solution fs from the concentration
dependences of the electrical conductivity in terms of
the basic microheterogeneous model: the fs values of
this membrane fall in the range from 0.05 [20, 48, 49]
to 0.15 [48, 50]. The value of this structural parameter
for the studied sample MF-4SK adopted in this work
is 0.13. The parameter fs was determined in this study
(with an error of ±0.02) graphically as the slope of the
experimental concentration dependence of the spe-
cific conductivity plotted in log–log coordinates in
the concentration range of >0.1 mol/L, where the
basic microheterogeneous model is approximately
valid. The relatively high value of this parameter is
indirect evidence for the presence of sufficiently large
MEMBRANES AND MEMBRANE TECHNOLOGIES  V

Table 1. Structural-kinetic parameters of the membrane use
microheterogeneous models

r, nm α T, K fg KD Qg, mmol

6 0.01 298.15 0.87 0.01 1.25
pores in the sample under study, which is natural in
the case of membrane fabrication by casting (see
Experimental). The values of the structural parameter α,
the Donnan constant KD, and the diffusion coeffi-

cients of chloride (coion)  and sodium (counterion)
 ions in the membrane are characteristic of homo-

geneous membranes [28]. The values of the diffusion
coefficients of these ions in solution  and  were
taken from the handbook [51].

Comparison of experimental results and calcula-
tions using the basic microheterogeneous model
shows that this model describes the electrical conduc-
tivity of membranes in the region of high NaCl con-
centrations (Fig. 5). However, in the region of dilute
solutions, the values of electrical conductivity calcu-
lated using this model are underestimated compared
with experimental data, and the difference between
them increases with decreasing concentration of the
equilibrium solution.

The values closest to our experimental results
found for the specific conductivity give the results of
calculations using a modified model made for f lat
pores (Fig. 5, curve 1). This result agrees with the data
presented in [52]. In this work, it was shown that the
model considering the membrane as a system of
locally f lat tape-like pores describes the processes that
proceed during the swelling of perf luorinated mem-
branes.

Calculations performed on the assumption that
pores have a cylindrical or spherical shape give higher
membrane conductivity values compared to f lat pores
providing that the effective pore radius have the same
value of 6 nm (Fig. 5). This rise is due to a decrease in
the volume fraction of the electroneutral solution in
the order f lat pore > cylindrical pore > spherical pore
and an increase of the volume fraction of the charged
solution in the pore in the same order.

It should be noted that when the solution concen-
tration is about 0.01 mol/L, the rate of decrease in
electrical conductivity when diluting solution is sig-
nificantly reduced and in solutions whose concentra-
tion is less than millimolar, the value of κmb becomes
almost constant. This type of dependence agrees with
the experimental results obtained by Kamcev et al. [10]
using methods specially developed by them for appli-
cation in the region of dilute solutions.

Our calculation results on the effect of the radius
(in the case of f lat pores) on the concentration depen-
dence of the electrical conductivity of the membrane
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+
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Fig. 6. Experimental (squares) and calculated (lines) con-
centration dependences of the specific electrical conduc-
tivity of the membrane under study in NaCl solution. Cal-
culations are made for pores with a f lat geometry. The
dashed line corresponds to the calculation according to the
base microheterogeneous model; the solid lines represents
the calculation using the modified microheterogeneous
model. The arrow shows the direction of increasing rp= 1,
3, 6, 10, 20, and 30 nm.
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are shown in Fig. 6. The basic microheterogeneous
model is built without taking into account the pore
size; therefore, it gives the same dependence close to a
straight line for all the pore radius values (in the case
under consideration, α = 0.01) in the logκmb–logc
coordinates. The use of the modified microheteroge-
neous model results in that the lower the pore radius,
the higher is the membrane electric conductivity,
since the volume fraction of the highly conducting
charged solution localized in the “moving” part of
EDL increases with decreasing pore radius. At low
values of rp and sufficiently low concentrations of the
solution, the EDLs that are forming at the opposite
walls of the pore overlap and the concentration distri-
bution of ions in the pore becomes close to uniform.
Therefore, the membrane conductivity remains
almost constant with dilution starting from a certain
concentration of the external solution (Fig. 6). The
smaller the value of rp, the higher is the concentration
of counterions in the pore, approaching the concen-
tration of fixed ions.

CONCLUSIONS

The microheterogeneous model has been modified
by taking into account the contribution of the electri-
cal double layer on the internal pore walls of the ion-
MEMBRANES AND M
exchange membrane to the electrical conductivity of
the membrane. The resulting model describes the
experimental concentration dependence of the electri-
cal conductivity of the cation-exchange homogeneous
perfluorocarbon membrane MF-4SK in the region of
dilute NaCl solutions, at least in the range up to
0.01 mol/L, for which experimental data is available.
The lower limit of the adequacy of the basic microhet-
erogeneous model is the concentration of approxi-
mately 0.1 mol/L, at which the thickness of the diffuse
part of EDL is slightly larger than that of the Bjerrum
layer, in which the ion mobility is strongly limited due
to the electrostatic interaction with fixed ions. The
new version of the microheterogeneous model uses an
additional parameter, namely the effective pore
radius, which was absent in the basic version. It has
been shown theoretically that the value of the effective
pore radius has practically no effect on the specific
conductivity of membranes in relatively concentrated
(>0.1 mol/L) salt solutions. In dilute solutions, the
size of the average pore radius determines the rate of
decrease in the membrane conductivity with a
decrease in salt concentration, as well as the threshold
concentration of the solution, starting from which the
membrane conductivity ceases to decrease. The larger
the effective pore radius, the stronger is the decreases
in electrical conductivity and the lower is the thresh-
old concentration of the equilibrium salt solution.
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