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Abstract—We have composed a “scale of ontogenesis,” i.e., the sequence of ontogenetic stages, and the life
cycle graph (LCG) for Androsace albana, a monocarpic plant species that is considered a short-lived peren-
nial, according to annual observations on permanent sample plots in an alpine lichen heath during the 2009–
2016 period. There is only one reproduction event in the LCG, which eliminates any reproductive uncertainty
from the data of “identified individuals” type so typical for the former projects with polycarpic species, while
the monocarpic cycle excludes any returns from the generative stage to a non-flowering status. The LCG
describes the ontogeny through five successive stages: seedlings, juvenile, immature, adult virginal, and gen-
erative plants, the generative plants perishing after they have f lowered and produced seeds. We have con-
structed a matrix model of the stage-structured population that corresponds to the LCG; its calibration has
reduced to calculating the vital rates directly from the data of one time step, i.e., from the censuses at two suc-
cessive years of observation. Therefore, the nonautonomous model represents a set of 7 annual matrices, each
giving a quantitative measure of how the local population is adapted to its environment as the dominant eigen-
value of the model matrix. Its variations have turned out quite significant from year to year, signifying either
a growth or decline of the local population and, in general, its vulnerability to stress factors of the environ-
ment. Averaging the annual matrices geometrically over the whole observation period has revealed the ten-
dency to decline and enabled us to extract certain age-specific traits (in years) from the stage-structured
model using the technique of virtual absorbing Markov chains and their fundamental matrices. The mean life
expectancy at various stages of the A. albana ontogeny has turned out maximal in the adult virginal plants,
while the mean age at f lowering equal to 13 years has exceeded the horizon of the observation time series, thus
proving the technique to be efficient. The model indicates that A. albana plants spend most of their life spans
as virginal adults, which characterizes the space holder strategy by Körner (2003), or the delayed-development
strategy by Zhukova (1995). The model outcome gives another evidence that the A. albana population is
endangered.
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INTRODUCTION
The issue of biodiversity studies and conservation

is among the urgent ones (Sovremennye podkhody…,
2008). Applied to plant communities, the methods of
population analysis provide for reliable ways to the
monitoring, diagnosing, and examining efficiently the
local population status of economically valuable, fod-
der, melliferous, and medicinal plant species (includ-
ing rare ones) in natural and artificial communities
(Dinamika tsenopopulyatsii…, 1985; Zhukova, 1995;
Mirkin and Naumova, 1998; Populyatsionnaya
ekologiya…, 2003). To solve a number of theoretical
and practical issues we need at least an approximate

knowledge of how long the plants can live in the local
communities, as well as how long certain periods of
their life spans can last (Molisch, 1938; Rabotnov,
1946; Witte and Stöcklin, 2010). The long-lasting
monitoring of marked plants enables the most accu-
rate estimation of plant age (Rabotnov, 1946; Polevaya
geobotanika, 1960; Polivariantnost’ razvitiya…, 2006).
However, given that the life span of plants can be
extremely long, researchers often resort to mathemat-
ical modeling, which makes it possible to calculate the
life span duration from the data on short-term obser-
vations of the age and mortality in a large number of
individual plants (Onipchenko, 2013). Matrix models
of single-species, age-structured population dynamics
were first introduced by Bernardelli (1941), Lewis1 The article was translated by the authors.
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(1942), and Leslie (1945); in the current studies, their
stage-structured generalizations are used everywhere
(Salguero-Gomez et al., 2015), and to this day, they
are a source of new mathematical problems and moti-
vate developing new analytical methods (Crone et al.,
2011, 2013; Logofet, 2013c; Logofet et al., 2017a, 2017b).

Following Zhmylev et al. (2005), the “short-lived
plants,” or “short-lived perennials” are mono- or poly-
carpic plants whose life spans range from 1 to 15 years.
As noted by Zhukova (1995), the short-lived perennials
may serve as convenient model objects since they feature
the short complete ontogeny.

Androsace albana Stev. is presumably a short-lived
perennial typical of the Alpine plant communities in
the Caucasus. This species was studied by the gener-
ally accepted method of studying local populations in
a natural habitat on permanent plots (Rabotnov,
1950a, 1950b).

In the world and national literature, so-called
matrix models have long and fruitfully been used to
describe the dynamics of single-species, discrete-
structured populations, see the reviews in Caswell
(2001), Logofet and Belova (2008), and Logofet et al.
(2016). The dominant eigenvalue, λ1(L), of the model
matrix L serves as the adaptation measure of the local
population where and when the data have been mined
to calibrate (i.e., to estimate quantitatively the ele-
ments of) matrix L (Logofet et al., 2014). Thus, the
model is an effective tool for comparative plant
demography (Logofet et al., 2014).

Normally, the data taken at two consecutive cen-
suses are sufficient to calibrate matrix L (Caswell,
2001; Logofet, 2008, 2010), but we also have a longer
series of observations in this project. Accordingly, we
get several matrices, each depending on the time
moment observation (a nonautonomous model). In the
nonautonomous case, the range of tasks expands as
compared to those solved traditionally for the autono-
mous model. In particular (after solving the calibra-
tion problem), the problem arises to estimate the mea-
sure of adaptation over the whole period of observa-
tions, and this problem is solved by averaging the
annual matrices in a special way.

In this study, which continues a series of articles on
the modeling of local single-species populations with
a stage structure (Logofet et al., 2017a, 2017b, 2017c),
we also consider the task to extract certain “age-spe-
cific traits [in years] from state-specific models” (Cas-
well, 2001, p. 116), in particular, we estimate the life
expectancy for individuals in the local population and
the age at first flowering, after averaging the model over
the entire observation period. Thus, the characteriza-
tion of the species in terms of short- vs. long-lived
perennial becomes quantitatively certain.
BIOLOGY BULLETIN REVIEWS  Vol. 8  No. 5  2018
MATERIALS AND METHODS
Object

Androsace albana Stev. is a herbaceous biennial
tap-root monocarpic species (Shishkin and Bobrov,
1952; Shkhagapsoev, 1999). According to our data,
A. albana manifests itself in the alpine lichen heaths as
a herbaceous chamaephyte, summer-green, tap-root,
monocarpic perennial. The species is included into
The Red Data Book of the Krasnodar Krai (Krasnaya
kniga Krasnodarskogo..., 2007) and The Red Data Book
of the Adygea Republic (Krasnaya kniga Respubliki Ady-
geya..., 2012). This heliophilous species grows in
alpine meadows, screes and stony places, cracks in
limestone rocks and boulders in the subalpine, alpine,
and subnival belts at the altitudes of 1800–3600 m
(Shishkin and Bobrov, 1952; Grossheim, 1967;
Shetekauri, 1998; Zernov, 2006, 2015).

In Teberda State Biosphere Reserve, A. albana is
occasionally found on stony places and screes in the
Alpine belt at the altitude of 2400–3040 m (Onip-
chenko et al., 2011); it has a narrow ecological ampli-
tude in the altitude niche (with a range less than
400 meters, 2501–2900 m asl), tends to open commu-
nities with poor plant cover (the cover of the field layer
is 31–50%), with the lichen cover more than 30%; the
species was not recorded in communities with lichen
covers more than 70% and less than 10%. It prefers
well-illuminated habitats, slopes of the southern expo-
sition less than 15° steep (Egorov et al., 2012; Egorov,
2015). Anthecology parameters of the species under
the conditions of studied alpine community: actino-
morphic f lowers with wheel-shaped red corolla
directed upward; located at the height of 100 ± 24 mm
(mean ± standard deviation); the f lowering duration
per f lower is 5.3 ± 1.7 (mean ± S.D.) days, per gener-
ative shoot 14 ± 3.4 days, per plant 15.2 ± 2.6 days.
The species is part of the communities in alpine lichen
heaths, Festuca varia grasslands of the alpine and sub-
alpine belts, dwarf shrub heaths (Onipchenko, 2002).

Ontogeny of Androsace albana Stev.
(Kazantseva, 2016)

Seeds are trihedral, irregular in shape, 2–3 mm
long, 1 mm wide. Seed coat is papillose; color varies
from red to fulvous-brown. After 5–6-month stratifi-
cation, seeds sprout on the 12–22nd day after the ger-
mination has started.

Plantules. Germination is epigeal. The plantule is
of rosette type with two cotyledons and two leaves.
Cotyledons are green, oblong-ovate, drawn at the
base, with a rounded apex, 7 mm long and 2 mm wide.
The leaves are pointedly elliptical, 3 mm long and
2 mm wide, the leaf margin is ciliate. The hypocotyl is
red or reddish-brown in color, 7 mm long. The main
root is about 1.5 cm long (Fig. 1).

Juvenile plants. The cotyledons die off after 1–
1.5 month after germination. The plant is a rosette
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Fig. 1. Ontogenetic stages of Androsace albana: pl, plan-
tules; j, juvenile plants; im, immature plants; v, adult vege-
tative plants, and g, generative plants.

1 cm 

pl j im v g
with 1.5 cm in diameter, having 5–10 leaves. The
leaves are oblong- or lanceolate-spatulate, with
pointed apex, narrowed toward the base, sessile, the
leaf margin being ciliated. The leaf length is 0.6 cm on
average, the maximum width is above the leaf middle
and averages 0.2 cm, the hypocotyl length is 8 mm.
The main root, 1.5–2 cm long, begins to divaricate.

Immature plants. For the 2–3rd year of life, a
shortened growth with 12–15 leaves develops from the
apical bud of the main shoot. Leaves are oblong or lan-
ceolate-spatulate with a pointed apex, narrowed
toward the base, sessile, ciliated along the edge,
assembled into a 2 cm diameter rosette. The leaf length
is on average 1 cm, the maximum width is in the mid-
dle and averages 0.4 cm. The hypocotyl length is 8 mm.
The main root with several second-order roots pene-
trates to a depth of 3 cm.

Adult virginal plants. For the 3–5th year of life, 16–
30 leaves are formed from the apical bud of the main
shoot. The leaves are sessile, drawn to the base, oblong
or lanceolate-spatulate, with 4–7 obtuse denticles in
the upper part. The leaves compose the rosette of 2–
4.5 cm in diameter. The leaf length is 1.5–2 cm on
average, the maximum width is in the middle and
averages 0.5–0.7 cm. The upper surface and edge of
the leaves are covered with cilia and dichotomously
branching hairs, the lower surface being glabrate. The
hypocotyl length is 0.9–2 cm, the width 1–2 mm. The
length of the perennial shoot is 0.5–1 cm. Dead leaves
of the last years remain on the perennial shoot for a
long time. According to Popova’s data (2010), the root
system consists of a main root 5–6 cm long, of 3–
5 second-order lateral roots, and a moderate number
of fine roots of subsequent orders.

Generative plants. The first A. albana individuals
flower on the 6th year. Generative shoots are leafless,
B

4 to 15 cm in height, 10 cm on average. The number of
generative shoots varies from 1 to 8 on various individ-
uals. Some of the leaves develop from the apical bud,
the others from the axillary buds in the last year’s
growth of the main shoot. The leaves are morphologi-
cally similar to those of adult virgin plants. Generative
shoots in the upper part are densely pubescent with sim-
ple and stellate hairs. The inflorescence of 2–15 almost
sessile flowers are gathered into an almost capitate
dense umbrella. The flowering period lasts from the end
of June to the beginning of July. Seeds ripen by the end
of August, pour out of the capsule in early September.

Senile plants. The senile period is not observed, the
plants die off in the year of f lowering.

Methods of Study
The research is carried out in the Karachay-Cher-

kess Republic, the territory of Teberda State Biosphere
Reserve, on the Malaya Khatipara mountain, at the
altitude of 2800 m asl.

In the first phase of research, we needed to deter-
mine the habitus of various stages in the ontogeny
A. albana. With this purpose, in August 2009, we col-
lected and alcoholized 10 to 20 individuals in each
ontogenetic status (Tsenopopulyatsii rastenii…, 1976;
Sovremennye podhody…, 2008). We used Atlas on the
Descriptive Morphology of Higher Plants: Leaf (Fedorov
et al., 1956, 1962; Artyushenko, 1990) as a reference to
describe the stages of ontogeny based on the ontogeny
periodization proposed by Rabotnov (1950a, 1950b).

In 2009, we laid down two transects of the 1.25 ×
0.25 m size in the alpine lichen heaths, having five
plots 0.25 × 0.25 m each. After the habitus of ontoge-
netic stages has been determined, all individuals of
A. albana were put on the site plans with their own
sequential numbers and marks of their ontogenetic
stages. Next year, the individuals marked last year
retain their last year’s numbers, while the new ones
acquired the new numbers; all individuals were classi-
fied by their ontogenetic stages at the time of observa-
tion. Monitoring was conducted in late August, each
of the eight years from 2009 to 2016. This method
enabled us to monitor the development of individual
plants year by year over the total period of observation.

Life cycle graph (LCG), reflecting the biology of
the species and the method of annual monitoring of
the local population is shown in Fig. 2. Along with
successive transitions from stage to stage in 1 year,
there were also observed:

—delays \ in the im and v stages explainable by the
fact that the harsh conditions of high mountains force
plants to resort to the “space-holder strategy” strategy
(Körner, 2003), which means to stay or grow in one
place for as long as possible. Poor soils force some vir-
ginal plants to accumulate resources for fruiting for
more than one year, the short growing season being a
reason for some generative plants fail to realize their
IOLOGY BULLETIN REVIEWS  Vol. 8  No. 5  2018
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Fig. 2. Life cycle graph of A. albana: the same notations as
in Fig. 1; dashed arrows indicate the recruitment found in
the corresponding stages.

a b c

pl j im v g
d f k m

h le
accumulated fruit-bearing potential (Rabotnov, 1946,
1949, 1950a; Harper and White, 1974; Körner, 2003;
Bender et al., 2000; Keller and Vittoz, 2014);

—accelerated transitions pl ⤻ im as a manifestation of
the polyvariant ontogeny in A. albana under conditions
of the alpine zone in the North-Western Caucasus.

There is only one reproductive event in the life span
of each plant, but the population recruitment may be
found in each of the three stages pl, j and im at the time
of next census. Accordingly, parameters a, b and c
have the meaning of the average (per one generative
plant) number of recruiting individuals found in the
corresponding stage at the next census.

Matrix model. In the matrix model, the population
structure is described by the (column) vector x(t) =
[pl(t), j(t), im(t), v(t), g(t)]T, whose components are the
numbers of individuals found in the corresponding
stages of ontogeny in the year of observation t. How
vector x(t) changes with years is described by the basic
model equation of the vector-matrix form:

(1)

where L is the population projection matrix (Caswell,
1989, 2001) associated with the LCG (Logofet and
Belova, 2008) that is shown in Fig. 2, has the size 5 ×
5 and the following pattern:

(2)

The elements of matrix L, or vital rates, a, b, …, l,
m, are subject to quantification (calibration) based on
observational data.

The projection matrix is traditionally represented
as the sum of two matrices:

(3)

where matrix T contains the parameters responsible
for aging and ontogenetic transitions (transition
matrix), and matrix F (fertility matrix) contains only the
reproduction rates for the stage-classified groups (Cush-
ing and Yicang, 1994; Caswell, 2001; Li and Schneider,
2002); all the other elements are zero in matrices T and F.

Usually, the summands of sum (3) are calibrated
differently due to the different meanings of their
entries and to what is called “reproductive uncer-
tainty” in data (Logofet, 2013a; Logofet et al., 2016,
2017c). However, in this case, the sole reproductive
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stage in the LCG eliminates any uncertainty as shown
in the next section.

Calibration of matrices L. The type of data col-
lected from the plots is known as “identifiable individ-
uals” (Caswell, 2001, p. 134). The fate of each plant is
tracked in consecutive censuses, which reduces the
calibration of the matrix T in sum (3) to the direct cal-
culation of its seven nonzero elements d, e, …, m (Cas-
well, 2001; Logofet et al., 2017a, 2017b) in exact accor-
dance with the demographic meaning of each of them
as the fraction of those individuals of a certain stage
group who, during the year since the previous census,
have made the transition represented by the same-
name arrow in Fig. 2. These fractions are different for
the different years of observation, so that the calibrated
matrices T(t) do differ and depend on the census year
2009, …, 2015, or its ordinal number t = 0, 1, …, 6. For-
mally, the model is therefore nonautonomous. To fix
the ontogenetic transitions and population recruit-
ment, the data of two consecutive censuses are
needed, and therefore the number of calibrated matri-
ces is always one less than the number of years of
observations (8 years of observation provide for the
calibration of 7 matrices).

Since only one reproductive event occurs in the
A. albana life cycle, the elements of matrix F, the
reproduction rates a, b, c can also be calculated imme-
diately from the data of two consecutive censuses as
the average numbers (per one parent) of plantules,
juvenile and immature plants, respectively, recruited
to the population over the past year, i.e., from the
moment t to t + 1. As a result, the time series of data of
the “identified individuals” type over 8 years of obser-
vations provides for both the dynamics of the popula-
tion structure x(t) and the 7 annual matrices L(t),
which turn Eq. (1) into the 7 equalities that hold true
according to the calibration conditions for t = 0, 1, … .
After that, the need and the opportunity arise to pose
their averaging problem.

Averaging the annual projection matrices. In previ-
ous works (Logofet et al., 2107b, 2017с), it was shown
that the correct mode of averaging several projection
matrices is represented by the geometric mean. In our
case, to get the population structure vector x(2016)
observed in 2016 from the x(2009) vector observed in
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2009, the initial vector should be multiplied sequen-
tially by each of the calibrated annual matrices:

(4)
It means that a 7-time multiplication by the average
geometric matrix G must give exactly the same result, i.e.

(5)
The left- and right-hand sides of Eq. (5) represent

matrices of 5 × 5 size. The pattern (i.e., the allocation
of 15 zero and 10 nonzero elements) of the average
matrix G ought to correspond the LCG (Fig. 2), i.e.,
this matrix of pattern (2) is defined by 10 positive ele-
ments a, b, …, l, m, then raised to the 7th power. The
expression on the right is the product of numerical
matrices obtained as a result of model calibration, i.e.,
a matrix composed of 25 positive numbers. Written
element-wise, the matrix Eq. (5) is essentially a system
of 25 algebraic equations (one for each positive ele-
ment of the product on the right-hand side) with
respect to the 10 unknowns. Such systems are called
overdetermined, and they have a solution only when
the 15 redundant equations are some consequences of
the 10 independent ones, i.e., they are automatically
satisfied for the same values of unknowns as the 10
independent equations.

The formulation of the matrix model does not
give any grounds for assuming a similar property in
system (5), so that it does not have an exact solution in
general. Therefore, the question whether of the geomet-
ric mean exists for several given non-negative (inde-
composable) matrices is still open in matrix theory
(Logofet, 2013b), and we only have to seek an approxi-
mate solution, i.e., a set of feasible values a, b, …, l, m,
which minimizes the approximation error, i.e., the devi-
ation from zero in the left-hand side of the equation

(6)
The constraints that determine the feasibility of a

solution follow from the demographic meaning of the
corresponding model parameters, and in addition, the
idea of averaging implies that the elements of the aver-
age matrix should not leave the boundaries specified by
the values of the corresponding elements in the matrices
to be averaged. (Algebraic and technical details of the
averaging problem are given in Appendix A.)

The location of the dominant eigenvalue λ1(G) of
the average matrix G relative to 1 allows us to predict the
population fate in the long-term perspective based on
the eight years of observations: the growth, if λ1(G) >1,
decline if λ1(G) < 1, and stabilization if λ1(G) = 1.

Age-specific traits from the stage-structured model.
Having the time step of 1 year, we can obtain certain
age traits from the staged-structured model, guided by
the following ideology (Cochran and Ellner, 1992;
Bender et al., 2000; Caswell, 2011, Ch. 5). Note that
matrix T in expression (3) is substochastic in columns,
i.e., the sum of the elements in each of its columns

( ) ( )=x L L L L L L L x6 5 4 3 2 1 02016 · · · · · · · 2009 .

=G L L L L L L L
7

6 5 4 3 2 1 0· · · · · · .

− =G L L L L L L L
7

6 5 4 3 2 1 0· · · · · · .0
B

does not exceed 1. This follows from the demographic
meaning of each summand as the fraction of the
groups of those individuals at the corresponding stage
that have remained at this stage or moved to another
one for the previous year; if the sum is less than one
then the difference shows the proportion of dead
individuals in this stage-specific group; if the sum is
1 then there have not been any perished ones. In the
LCG (Fig. 2), matrix T is associated with the sub-
graph lacking arrows a, b, c.

Introduce an additional, the 6th in this case, state (d),
which means the death of individuals. As a result,
matrix T is supplemented with one more (the sixth in
this case) row whose elements are the complements of
the column sums to 1, and one more column with a
single nonzero element corresponding to the eternal
status of the state, d \ d:

(7)

Matrix P (4) is substochastic by constructon (all the
column are 1), and this gives us grounds to consider it
as the transition probability matrix of a discrete Markov
chain: the states and probable transitions in this virtual
chain are represented by the graph in Fig. 3a. Its sub-
graph without arrows ingoing to d coincides with the
above-mentioned subgraph of the LCG (Fig. 2).

In Markov chain theory, the state d of the virtual
chain is classified as absorbing (Kemeny and Snell,
1976, Ch. 3): once having reached it, the chain
remains here forever. All other states are called nonab-
sorbing: the transitions between them are described by
the principal submatrix Q of the transition matrix P
constructed on the same columns and rows. The
mathematical expectation of such a random variable
as the number of steps that the chain sojourns in a
given state before the moment of absorption is closely
related to the fundamental matrix of the absorbing
chain (Kemeny and Snell, 1976, Ch. 3),

(8)

Each of its elements, nij, is the average number of
steps the transition process sojourns in the non-
absorbing state i before the moment of absorption if
the initial state is j. Accordingly, the column sums of
matrix N show the mean times spent in each of the
nonabsorbing states, and these quantities are identi-
fied with the life expectancy (Caswell, 2001, p. 120) at
the stage corresponding to the given column.

To calculate the mean age at the first (and the sole
in A. albana) f lowering, the “Markov superstructure”
of the model must be different. Essentially, we are
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Fig. 3. Digraphs of the virtual Markov chain for calculat-
ing: (a) the life expectancy; (b) the mean age of f lowering.

(a)

(b)
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pl j im v g
d

d

f k m

dc f c kc mc

h le

hc lc
ec
talking about the age of reaching stage g, and there is
no need to introduce an additional absorbing state
“survive to reproduction” as in polycarpic species
(Logofet et al., 2017c). Clearly, this trait is relevant to
only those plants that have reached the generative
stage one way or another in their development, and
therefore the digraph of the virtual chain looks as
shown in Fig. 3b. The conditional transition probabil-
ities d с, eс, …, l с, mс are the elements of the transition
matrix

(9)

to be recalculated from the elements d, e, …, l, m of the
average matrix G under the condition of no death
(Appendix B). In this case, submatrix Q is the princi-
pal 4 × 4 submatrix of matrix Pс (9), and still the col-
umn sums of the fundamental matrix (8) give the sta-
tus-specific age traits, and the unknown age of f lower-
ing is the expected number of years that plantules
spend in all stages until the final one is reached, i.e., it
equals the sum of the first column in matrix (8).

RESULTS

Local Population Structure and Dynamics

Changes in the sizes of stage groups by year are pre-
sented in Table 1. The local population of A. albana is
a normal complete population, i.e., it contains individ-
uals of all stage statuses, with the left-side type of “age
spectrum” in the Uranov’s (1975) terminology.

The number of plantules on the plots under study
varies from 4 to 49 plants, of juvenile plants from 29 to
110, immature ones from 13 to 99 from, adult virgins
from 16 to 73 from, and generative plants from 1 to 13
from (Table 1). On average, for 8 years of observation:
49% of the populations are shared by plantules and
juveniles, the same share by immature and adult vir-
ginal plants, and only 2% by generative ones.

Calibrated Matrices L(t)

Table 2 helps calculating the elements of projection
matrices as there are all the recruitment individuals
and all the transitions between the stages counted. The
elements of the annual matrices L(t) (Table 3) are
obtained from the corresponding cells of Table 2 via
dividing by the size of the group. Variation in matrices
with years are quite significant, with the 4 out of 7
matrices giving a measure of adaptation λ1(L) much
less than 1, which indicates a depressed status of the
local population.
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Geometric Mean of the Annual Matrices

As noted above, there is no exact solution of the
averaging problem in this case, and the approximate
solution for the seven matrices in Table 3, with a rather
high accuracy of approximation (Appendix A), is given
by the matrix shown in Table 4. Its pattern obviously
corresponds to the LCG (Fig. 2), and the values of the
transition and reproduction rates do not leave the
boundaries specified by the corresponding elements of
the matrices to be averaged (Table 3). In the transi-
tional part T of the matrix G, a tendency has clearly
manifested that occurred only for some annual matri-
ces T(t): the positive elements decrease with the row
number in each column. In a unidirectional (i.e., with-
out returns) process (Fig. 2), this means that plants are
more often delayed in development than they transit to
the next stage, and the accelerated transitions (skip-
ping a stage) are less likely than successive ones.

Despite the values of λ1(t) > 1 for t = 2010–2012,
the trend towards decrease does predominate in the
local population over the 8-year observation period,
which is expressed by the value of λ1(G) < 1 (Table 4).
The shape of the equilibrium structure (of the normal-
ized dominant eigenvector x*) is rather two-humped
than left-sided, with the maxima at the juvenile and
virgin stages (Table 4). So, it is essentially different
from the structure of the local population obtained by
arithmetic averaging (Table 1), adding one more argu-
ment against the arithmetic mean in matrix models.

Life Expectancy

The age traits calculated by formula (6) for the
averaged model are presented in Table 5 (with an
accuracy up to the 4th decimal place for the original
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Table 1. Structure of the local A. albana by years according to observation data

Stage
Stage group size at the year of observation

Average, %
2009 2010 2011 2012 2013 2014 2015 2016

pl 37 30 19 49 19 16 4 10 12
j 110 48 45 86 137 98 19 29 37
im 99 55 43 87 95 34 10 13 28
v 35 26 57 58 73 50 20 16 21
g 13 1 1 4 6 3 4 2 2

Table 2. Towards calculating the model parameters: the number of the recruiting plants and the transitions along the arcs
of LCG (Fig. 2) in accordance with census data

Transition
Census year (time t + 1)

2010 2011 2012 2013 2014 2015 2016

a: pl [ g 30 19 49 19 16 4 10

b: j [ g 40 31 85 136 98 19 29

c: im [ g 3 0 25 1 2 0 7

d: pl → j 8 14 1 1 0 0 0

e: pl ⤻ im 2 4 6 10 2 2 0

f: j \ j 22 22 35 45 16 2 3

h: im \ im 28 17 21 39 14 6 3

k: im → v 7 34 10 28 6 4 2

l: v \ v 19 23 48 45 44 16 14

m: v → g 1 1 4 6 3 4 2
submatrix Q and up to the third decimal place for the
fundamental matrix N = [nij]).

The decrease of the positive elements nij with
increasing row numbers in each column reflects the
above-mentioned tendency in the development of
A. albana and, according to the meaning of the ele-
ments, shows that the life expectancy at each stage is
distributed among subsequent stages in favor of a lon-
ger stay in the earlier stages. Life expectancy is logi-
cally equal to 1 in generative plants as their ages end in
the same season (Fig. 3a, matrix (7)). The greatest
(4 years) value of stage v (in adult virgin plants) is due
to the highest value of the delay probability at this
stage (element (4, 4) of matrix G, Table 4). Long stay
in the vegetative phase is an adaptive feature of plants
growing in cold biomes (Nakhutsrishvili and
Gamtsemlidze, 1984; Pavlov and Onipchenko, 1987)
and a sign of the space holder strategy by Körner (2003)
or the delayed-development strategy by Zhukova (1995).
A. albana shows commitment to this strategy during
the total 8-year observation period.

Mean age at first flowering is one of the four stage-
specific traits, As, meaning the average number of steps
B

needed for the individual at stage s (s = pl, j, im, v) to
reach the f lowering stage g, namely, Apl = 13.5 years
(Table 5). Paradoxically, at first glance, it exceeds the
life expectancy of individuals at every stage. The para-
dox is resolved by the fact the life expectancy does
account for the death probability at each of the stages
(which is maximal in juveniles, see the 2nd column of
matrix G, Table 4), whereas the age of f lowering is
determined only among the plants that survived f low-
ering. It may also seem alarming that 13.5 years is
beyond the time horizon of observations (8 years).
However, there is no contradiction with the field data,
where the plants were found not younger than 8 years
old, but not yet reached the generative stage.

DISCUSSION
In the national studies, the history of using the

technique of virtual absorbing Markov chains to esti-
mate the age traits (in years) in local populations is
reduced to a small number of examples focused on
alpine herbaceous perennial (or shirt-lived perennial)
species. Without any explicit slogan of “age-specific
IOLOGY BULLETIN REVIEWS  Vol. 8  No. 5  2018
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Table 3. The outcome of matrix (2) calibration for A. albana according to the data of Tables 1, 2

Census year Matrix L(t) λ1(L(t)) Vector x*, %

2009 
t = 0 0.5661 39.68

2010
t = 1 1.2283 18.97

2011 
t = 2 1.5779 22.15

2012 
t = 3 1.2641 13.06

2013 
t = 4 0.6345 14.45

2014 
t = 5 0.3988 12.64

2015 
t = 6 0.8382 8.17

( )
( )( )Δ −

1
*x t

x
x t

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0 0 0 0 30/13
8/37 0 0 0 40/13
2/37 22/110 28/99 0 3/13

0 0 7/99 19/37 0
0 0 0 1/35 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

10.61
18.20
16.99
51.59
2.60

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0 0 0 0 19/1
14/30 0 0 0 31/1
4/30 22/48 17/55 0 0/1

0 0 34/55 23/26 0
0 0 0 1/26 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

15.90
31.99
18.25
32.83
1.03

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0 0 0 0 49/1
1/19 0 0 0 85/1
6/19 35/45 21/43 0 25/1

0 0 10/43 48/57 0
0 0 0 4/57 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

17.20
30.40
39.39
12.45
0.55

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0 0 0 0 19/4
1/49 0 0 0 136/4

10/49 46/86 39/87 0 1/4
0 0 28/87 45/58 0
0 0 0 6/58 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

6.01
43.15
29.67
19.56
1.60

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0 0 0 0 16/6
0 0 0 0 98/6

2/19 16/137 14/95 0 2/6
0 0 6/95 44/73 0
0 0 0 3/73 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

7.76
47.54
14.34
28.51
1.85

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0 0 0 0 4/3
0 0 0 0 19/3

2/16 2/98 6/34 0 0/3
0 0 4/34 16/50 0
0 0 0 4/50 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1.71
56.64
11.69
17.46
3.50

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0 0 0 0 10/4
0 0 0 0 29/4
0 3/19 3/10 0 7/4
0 0 2/10 14/20 0
0 0 0 2/20 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

11.13
32.27
21.60
31.27
3.73
traits from state-structured models” (Caswell, 2001,
p. 116), yet by means of the fundamental matrix of the
virtual chain, the first attempt in Russia to estimate
the average duration of ontogenetic stages was under-
taken by Sizov et al. (1999) in the framework of matrix
population models for the dynamics of perennial her-
BIOLOGY BULLETIN REVIEWS  Vol. 8  No. 5  2018
baceous species with polyvariant ontogeny, but those
works have not been further developed. The technique
is applied to the transition part T of the projection
matrix L = T + F, hence it gives unambiguous results
even in the case of data with reproductive uncertainty
(Logofet et al., 2017b, 2017с). In combination with the
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Table 5. Age-specific traits of A. albana as a result of averaging the annual matrices T(t)

Es is the life expectancy at stage; s (s = pl, j, im, v, g); As is the average number of steps before reaching the generative stage from stage;
s (s = pl, j, im, v); Apl is the mean age at f lowering.

Trait Submatrix Q Fundamental matrix, N = (I – Q)–1

Stage-specific values (years) ± standard 
deviation

pl j im v g

Es

1.90 1.43 2.21 4.01 1.00

1.41 1.32 2.24 3.20 0

As

13.47 12.66 11.66 8.06

8.15 8.14 8.14 7.54

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0 0 0 0 0
0.4667 0 0 0 0
0.1053 0.1946 0.3197 0 0

0 0 0.1230 0.7299 0
0 0 0 0.1034 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1 0 0 0 0
0.467 1 0 0 0
0.288 0.286 1.470 0 0
0.131 0.130 0.669 3.703 0
0.014 0.013 0.069 0.383 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

0 0 0 0
0.8160 0 0 0
0.1840 1 0.7222 0

0 0 0.2778 0.8759

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

1 0 0 0
0.816 1 0 0
3.600 3.600 3.600 0
8.056 8.056 8.056 8.056

Table 4. Geometric mean, G, of the annual matrices L(t)

Matrix G λl(G) Equilibrium structure, % Stage

0.832183

13.8 pl
40.4 j
19.5 im
23.4 v

2.9 g

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0 0 0 0 3.9457
0.4667 0 0 0 9.3226
0.1053 0.1946 0.3197 0 0.2308

0 0 0.1230 0.7299 0
0 0 0 0.1034 0
geometric averaging of a set of annual projection
matrices (Logofet et al., 2017b, 2017с), it enables us to
derive the indices characterizing the local population
over the whole period of observations, and for the age
at first f lowering it gives the values that go beyond the
horizon of the time series (Table 5; Logofet et al.,
2017c, Table 2). Direct records of the number of years
between germination and the first f lowering required
much longer observations (Kipkeev et al., 2015).

When calibrated from the observation data, the
annual matrices L(t) (Table 3) represent an objective,
yet indirect, picture variations in those environmental
conditions to which the local population is sensitive,
and this picture convinces that the conditions were
very crucial: the measure of fitness λ1(L(t)) falls to
extremely low values for some years, e.g., below 0.4 in
the interval between the 2014–2015 censuses, and the
recruitment in 2015 was the smallest in all three stages
for the entire observation period (Table 1). Within that
interval, the conditions for young A. albana plants
(plantules, juvenile, immature) surviving, for adults
(vegetative and generative) overwintering and growth
were likely to be the most severe of the entire observa-
tion period. Were they repeated for at least 2 successive
years, the local population would be reduced to less
than 0.42 × 100% = 16% of its size, for 3 successive
B

years, then to 0.43 × 100% ≈ 6%. The extinction dan-
ger is also confirmed by the less-than-1 dominant
eigenvalue λ1(G) of the matrix G averaged over the
whole period of observations (Table 4). An even
smaller value (0.7792) is yielded by the 7th power root
of the dominant eigenvalue that the product of seven
matrices L(t) from Table 3 does yield. This value shows
the asymptotic (long-term) growth rate of the local
population at a strictly periodic, with a period of
7 years, sequence of matrices L(t), i.e., with repeating
periodically the conditions of the observation period.

There are several reasons for reducing the adapta-
tion of A. albana in this habitat. For example, the role
of seed is extremely high in the lifespan of f lowering
plants, and the seed is an indispensable link in the
train of generations (Markov, 2012). Therefore, the
authors, in addition to observing the marked individu-
als, conducted a research on the parameters of seed
renewal in A. albana. As a result, it was found that the
seed production is low in this species and amounts to
47 ± 6 seeds per generative shoot, the seed mass being
moderate (0.7 mg), the germination being moderate
too (19–48%); the first plantules appear late, on the
12th and 22nd day of the experiment (Kazantseva
et al., 2016). The small number of plantules in the
A. albana population may be due to both weather con-
IOLOGY BULLETIN REVIEWS  Vol. 8  No. 5  2018
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ditions (Onipchenko and Komarov, 1997), and a small
size of the seedbank in this species (Semenova and
Onipchenko, 1996). However, even after a year of
small recruitment, the number of vegetative plants did
practically not decrease for the subsequent year. Sim-
ilar effects were observed in other studies of alpine
plant communities (Diemer, 1992; Körner, 2003),
where a significant changes from year to year in the
share of plantules did not significantly correlate with
those in the composition of the adult population. The
latter means that the viabilities of plantules and adults
are determined by different factors, and this helps the
population to survive in extreme conditions of high
mountains.

The low seed production in A. albana might also be
a reason for the low number of plantules, while severe
weather and habitat conditions be a reason for their
deaths. These have led to the inclusion of this species into
the The Red Data Book of the Krasnodar Krai (Krasnaya
kniga Krasnodarskogo..., 2007) and The Red Data Book
of the Adygea Republic (Krasnaya kniga Respubliki Ady-
geya..., 2012).

Parameters of the leaf apparatus in A. albana (Shi-
dakov and Onipchenko, 2007) indicate the adherence
of this species to SR-strategies (Kazantseva, 2016;
Pierce et al., 2017), i.e., the plants exist due to their
endurance, can grow in extremely harsh habitats, are
well adapted to the temporal pulsation of the resource
availability (Grime, 1979, 2001; Onipchenko, 2013).
The local population of A. albana does survive due to
the persistence of adult virgin individuals and the high
growth potential in favorable years (2010–2012, Table 3).
For this reason, A. albana, though rare, can be found
in the Teberdinsky Reserve, in the lichen heaths on
rocky places and screes in the alpine belt, at the alti-
tude of 2400–2850 m (Vorob’yova and Onipchenko,
2001), and it tends toward communities with low
closeness in the grass and dwarf shrub layers (Egorov
et al., 2012).

Noted in the Results, the “left-handed age spec-
trum” effect in the local population of A. albana was
not observed in all the years excepting 2010–2012
(Table 1), and it was these years for which the fitness
measure λ1(L(t)), the growth potential of the popula-
tion, has been noticeably more than 1 (Table 3). But
the left-side spectrum feature is traditionally associ-
ated with growing populations, which contradicts the
situation we observe. The contradiction is explained
by the fact that the above comparison with the “left-
sided age spectrum” is only a tribute to the persistent
tradition of the national school of plant ecology, but it
is hardly appropriate to the stage-structured model
where individuals of different chronological ages can
occur at all stages beginning with the immature one.

In some alpine species with longer life cycles, for
example, in Anemona speciosa (Onipchenko and
Komarov, 1997), the maximum of the “age spectrum”
shifted to the adult virginal stage, but the number of
generative A. speciosa plants was also relatively high in
contrast to our observations. However, A. speciosa is
BIOLOGY BULLETIN REVIEWS  Vol. 8  No. 5  2018
not included into the Red Books of the Caucasus, so the
“two-humped” equilibrium population structure in
the averaged model (Table 4) may serve as another
indicator of a declining population.

It is methodologically interesting to compare the
solution of the averaging problem for projection matri-
ces L(t) found here by the direct method, and that by
the “heuristic” method proposed by Logofet et al.
(2017c) for the case of data with “reproductive uncer-
tainty.” In this case, only the transition part T(t) =
L(t) – F(t) of annual matrices is uniquely calculated in
the calibration, while the status-specific reproduction
rates, the elements of matrix F(t), get only certain
ranges for the variations that are compatible with the
census data (Logofet еt al., 2017c). Then the averaging
problem is solved in a combined way: we find the best
approximation for the geometric mean of the annual
matrices T(t), and we average the matrices F(t) by the
methods of interval arithmetic (F(t) reduces simply to
the arithmetic mean (Appendix B). In this case, the
approximation error of the geometric mean decreases
by more than 2 orders of magnitude (due to the sub-
stochasticity of T), but the dominant eigenvalue of the
combined average Lcmb is essentially overestimated:

(10)

where is the value λ1(G) locates to the left of 1 (Table 4),
indicating the population decline in the long-term
perspective. The inflated results of arithmetic averag-
ing as compared to geometric averaging have deep
roots in the elementary algebraic inequality (a + b)/2 ≥

, which is true for any positive numbers a, b, and
example (10) shows that the forecasts based on com-
bined averaging should be treated with caution.

CONCLUSIONS
The “scale of ontogenesis” and the LCG of

A. albana plants are constructed by the results of 8-
year observations on permanent plots in the alpine
lichen heath. The LCG reflects the unidirectional
development of individuals in a monocarpic species
and serves as a basis for constructing a matrix model of
stage-structured population dynamics. The type of
data and the sole reproductive event in the lifespan
enable calibration of the model in a unique way by the
data of two consecutive censuses (i.e., on one time
step), which results in the model becoming nonauton-
omous, with seven annual matrices L(t). Each of them
fixes the environmental conditions on its own time
step, and they demonstrate significant variations in
the value of λ1(L(t)), the measure of adaptation to the
environment in the time period [t, t + 1], i.e., a high
level of population vulnerability to environmental
stresses. Averaging the matrices over the entire time series
of observations gives the value of λ1 ≈ 0.83, i.e., it predicts
the extinction of the local population if the conditions
realized in the observation period remain the same for a
long time. This is also evidenced by the 13 years as the
mean (over the local population) age of flowering, which

( ) = … >
cmb

L1 1.05196 1,l

ab
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reduces the reproduction rates and increases the risk of
plants dying at early ages. Therefore, the life expectancy
of plantules is only 2 years in this short-lived perennial
species and only 4 years in the adult plants.

APPENDIX A
The Problem to Average the Population

Projection Matrices

The geometric mean of the seven projection matri-
ces L(t) presented in Table 3 is the best approximate
solution to the matrix Eq. (6), i.e., such a set of 10 pos-
itive parameters a, b, …, l, m that delivers the mini-
mum to the quadratic sum of deviations from zero over
all the 10 nontrivial elements of the matrix difference
on the left-hand side of Eq. (6), or, in formal terms,

(A1)

Here || … || denotes the Euclidean norm, while the
exact form of the product L6·L5·L4·L3·L2·L1·L0
obtained with machine symbolic algebra is too cum-
bersome for publication.

In the constraint minimization problem (A1), the
above parameters a, …, m represent variables, whose
set of feasible values, , is a parallelepiped in 
obtained from the following considerations. Since
being elements of the average matrix, the parameters
[a, …, m] = g ∈  should not leave the ranges of their
values in the matrices Lt (t = 0, 1, …, 6) to be averaged.
Thus, we have

(A2)
where the vectors minL and maxL are composed of
the corresponding nonzero elements of matrices Lt:

(A3)

and the dot before the function name means its ele-
ment-wise execution. Function min+ chooses the
minimal number out of the given positive ones, i.e., it
eliminates 0 from the outcome:

(A4)

Otherwise, the optimization might have attained a
zero value of an entry to G, hence the corresponding
arc would have disappeared from the LCG.

Strictly speaking, we had to carve a polyhedron
from the parallelepiped  by the conditions of the
transition part T = G – F being substochastic along
those columns where there are more than one ele-
ments, i.e., by

(A5)

(the constraints on single elements follow automati-
cally from (A2)). However, it is technically simpler to
verify T being substochastic just in the optimal solution
obtained for .

We retrieve a solution to the problem (A1)–(A3)
using the library function fmincon(…) in the Matlab
environment (MathWorks, 2016), the norm of differ-
ence in expression (A1) using a special, user-defined
function normG7_prodL(g) of the vector argument g ∈

, while the upper and lower bounds of variables are
given by conditions (A2). The following Matlab string:

(A6)

launches the optimization procedure after the techni-
cal parameters of optimization have been properly
adjusted (MathWorks, 2016); notation “[], [],” means
the lack of equality constraints and nontrivial inequal-
ities of (А5) type in the problem formulation, vector
g0 ∈  is the starting point for the algorithm search-
ing for a solution, the output argument (in the left-
hand side of  (A6)) g ∈ is the (local) solution found,
FVAL is the minimal value it delivers to function
normG7_prodT.

A diverse (randomly generated) choice of the initial
vector g0 yielded different local solutions g, the difference
in the approximation quality (in the FVAL values) reach-
ing two orders of magnitude. Close to the global mini-
mum, the value of FVAL = 2.2297455…× 10–2 is attained
for g0 = [1 … 1]/10, after which the repeated starts of the
SQR algorithm right from the found solution g improves
FVAL up to 2.2297455…× 10–2, the global minimum
achievable at

(A7)
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⎡ ⎤
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⎡ ⎤
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⎢ ⎥
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opt

0 0 0 0 3.945665
0.466667 0 0 0 9.322562
0.105263 0.194595 0.319716 0 0.230769
0 0 0.122988 0.729939 0
0 0 0 0.103448 0

G
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(with an accuracy of 10–6).
Substochasticity constraints are obviously met; to see

which of the given faces of  are attained in the optimal
solution with an accuracy, e.g., to 10–6, we perform the fol-
lowing Matlab-command of the logical comparison:

which returns

This means that the lower faces are attained by
parameters c and e. Similarly, the upper faces are
revealed by the Matlab command

which returns

meaning that the upper bounds are attained by d and m.

APPENDIX B
Transition Matrix of the Conditional Chain
for Calculating the Mean Age of Flowering

According to the digraph of the virtual absorbing
Markov chain (Fig. 3b), the transition matrix of the

chain has pattern (9) and, after recalculating its ele-
ments from the matrix T (3), takes on the form:

(B1)

The column stochastic property is obvious in (B1).
If we denote the outlined principal 4 × 4 submatrix as
Qaf, the following Matlab string:

returns the fundamental matrix Naf:

APPENDIX C

“Combined” Averaging Problem
for Projection Matrices

The combined averaging of annual projection
matrices L(t) = T(t) + F(t), t = 0, 1, …, 6 (Table 3)
reduces to finding the approximate geometric mean,
Tgm, of matrices T(t) and the arithmetic mean Fam, of
matrices F(t), thereby we calculate the combined aver-
age, Lcmb, of the annual matrices L(t) as

(C1)

Matrix Tgm is obtained from the solution of the con-
straint minimization problem, in which the variables
[d, …, m] = gT ∈  are bounded from below and
above similarly to condition (A2):

(C2)
where minT and maxT are vectors composed of the
corresponding nonzero elements of matrices Tt. The
Matlab string similar to (A6):

(C3)

launches the constraint minimization procedure after
the technical parameters of optimization have been
properly adjusted (MathWorks, 2016); a special, user-
defined function normT7_prodT(gT) recovers matrix T
of pattern (C1) from its vector argument gT ∈  and
calculates the norm of difference T 7 – prodT, where
prodT is the product of 7 matrices Tt in the chronolog-
ical order (matrices do no commute in the product);
vector gT0 ∈  is the starting poi t of the searching
algorithm, the output argument gT ∈  is the (local)
solution to the problem, FVAL is the corresponding
minimal value of function normT7_prodT.

The global minimum of the approximation error
equals 6.35487…× 10–5 and is attained when

B
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(C4)

(with an accuracy of 10–6).
The following Matlab commands of logical com-

parison:

return

so that the lower bound is achieved only by parameter d,
while the upper bound is not reached at all.
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