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Abstract—Polyvariant ontogeny (PVO) gets a visual expression in the life cycle graphs (LCGs) for Calama-
grostis woodreeds as a variety of pathways for individual plants to develop through many of their states, which
are distinguishable by the ontogenetic stage and chronological age (in years). PVO is recognized as the basic
mechanism of adaptation in local populations of grasses to their environments, while a quantitative measure
of adaptation is found by constructing a matrix model for the double-structured population, calibrating its
matrix of vital rates from empirical data, and calculating the dominant eigenvalue λ1. This approach encoun-
ters an obstacle typical for grasses: while the rates of aging and ontogenetic transitions can be determined from
field data mainly by the morphology of aboveground parts of the plant, the rates of vegetative propagation can
be reliably determined only from digging up the belowground rhizome system, i.e., by destroying the sample
plot (“reproductive uncertainty”). Therefore, the former (nondestructive) calibrations of matrix models
were, to an extent, subjective, resulting in correspondingly subjective estimations. A novel method to over-
come the reproductive uncertainty makes use of the maximization hypothesis: the uncertain rates are such that
λ1 attains its maximal possible value under the given conditions. To test the hypothesis, we have conducted a
field study by a new technique with a model species, the woodreed Calamagrostis epigeios (L.) Roth, which
vegetatively reproduces in a meadow phytocenosis and a spruce forest clearance. Excavating the whole system
of ramets with their rhizomes and analyzing the parent–offspring links in laboratory, we have gained (in addi-
tion to the former data on the local population structures and ontogenetic transitions) a new kind of data to
calculate the status-specific rates of reproduction. The novel calibration method has enabled us to find an
exact range of λ1 values, i.e., the true quantitative bounds of adaptation for a given local population. Obtained
under the reproductive uncertainty and maximality hypothesis, the values of λ1 have turned out to be close to
the upper bounds of the ranges, thus verifying the hypothesis. The study has discovered some generative sub-
sidiary plants that sprout from the rhizomes of maternal ramets without entering the virginal stage. As a result,
the LCG is enriched with new reproductive pathways, and there are new (not yet published) situations, in
which λ1 fails in its accuracy as a measuring tool of comparative plant demography. We propose a general
method to adjust the adaptation measure in this kind of situation.
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The concept of polyvariant development as the
variety of ontogenetic pathways appeared in plant
physiology (Sabinin, 1963) to be later adopted in geo-
botany. The polyvariant ontogeny is a manifestation of
the variation retained by individuals of a local popula-
tion over ontogeny or during its individual stages. Our
research is concentrated on the study of dynamic (tem-
poral) polyvariance, which, according to the classifi-
cation by Zhukova (1986, 1995), comprises the diver-
sity of individual developmental rates and the duration
of individual ontogenetic stages. A few studies of this
polyvariance commenced after the 1990s (Zhukova
and Komarov, 1990); however, this type of polyvari-
ance remains the least studied according to Akshent-
sev (Akshentsev et al., 2006). The main attention is
focused on the sequence and duration of ontogenetic
stages in long-term monitoring of the labeled individ-

uals on permanent plots in natural cenopopulations
and plantings of a species (Onipchenko and Komarov,
1997; Ermakova et al., 2001; Ulanova et al., 2002).
However, most studies are reduced to the mere con-
struction of developmental schemes according to the
ontogenetic stages for some species.

Polyvariant ontogeny (PVO) is considered the
major mechanism underlying the adaptation to vary-
ing environmental conditions in a local plant popula-
tion. However, the question of a quantitative measure
for this adaptation remains open. To solve this prob-
lem, an original technique for the construction of
matrix models for the single-species population
dynamics of perennial plants with complex (polyvari-
ant) life cycles has been elaborated in earlier projects
on the population dynamics of local Calamagrostis
woodreeds (Ulanova et al., 2002, 2008; Logofet,
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2002). The technique is based on the idea of popula-
tion structure (developed in the national school of
geobotany) as a set of age-stage groups of plants; note
that the developmental stage of an individual plant by
the moment of observation is determined according to
the so-called “scales of age states” in the species under
study (Uranov, 1967, 1975; Rabotnov, 1978; Zau-
gol’naya et al., 1988; Ulanova, 2000, 2006; etc.), while
the chronological age (years) is assessed by an original
technique (Ulanova, 2006). Correspondingly, the
state of a model population at time t is described by the
vector of population structure, x(t), the components of
which are the (absolute) numbers of the correspond-
ing age-stage groups recorded at that moment on per-
manent sample plots in nature. Tracking the labeled
individuals (partial ramets) over two or more years
enables us to determine the ages at which the ontoge-
netic stages are realized in a species under study and
the transitions which are possible between stages in
one year. This gives rise to a formal description of the
plant life cycle as a life cycle graph (LCG), which is
defined on a finite two-dimensional integer-valued
“lattice” of statuses (Fig. 1) and reflects the variety of
ontogenetic and plant reproduction trajectories under
the given conditions. Multiple ontogeny variants
appear due to alternative transitions (arcs1 from states
v1, v2, g2, ss3, and ss4, where the superscript denotes

1 The directed links of the graph are referred to as arcs even if they
are shown as straight segments.

the plant age (years). This reflects the biotic potential
of the ruderal species (i.e., its population ability to
grow fast and propagate), and LCG provides a con-
ceptual basis for constructing a corresponding matrix
model that describes the observed double-structure
population dynamics at the phase of unlimited exten-
sive growth. While PVO is recognized as an adaptation
mechanism at the level of species cenopopulation, the
matrix model of this population gives a quantitative
measure for its adaptation as the dominant eigenvalue,
λ1, of the corresponding matrix.

In a matrix model, the population state (or struc-
ture) is projected one time step forward (1 year in our
case) according to the following equation:

x(t + 1) = Lx(t), (1)

where matrix L, referred to as projection matrix (Cas-
well, 1989, 2001), is (element-wise) nonnegative and
formally corresponds to the given LCG as the matrix
associated with a given directed graph (ibid.; Logofet
and Belova, 2008).

The projection matrix is traditionally represented
as the sum of two matrices, L = T + F, where matrix T
contains only the elements responsible for aging and
ontogenetic transitions (transition matrix) and matrix
F has only the reproduction rates for structural groups
(fertility matrix; Cushing and Yicang, 1994; Caswell,
2001; Li and Schneider, 2002); the remaining ele-
ments of T and F matrices are zero.

The results of the matrix model become quantita-
tively certain only after the projection matrix has been
calibrated from the experimental data. The earlier
projects on Calamagrostis local populations gained
data of the type referred to as “identified individuals
with uncertain parents” (Logofet, 2010, 2013b, 2013c;
Logofet et al., 2012). The individuals are “identified”
(Caswell, 2001) since the annual labeling and census
of all ramets on the permanent sample plot (Ulanova
and Demidova, 2001; Ulanova et al., 2002, 2008;
Logofet et al., 2006) made it possible to reliably deter-
mine the vectors x(t) for several successive time
moments t = 0, 1, 2, … . Moreover, the recorded
changes in the status of each plant from each status
group j (j = 1, 2, …, n) since the previous year, for
example, since the time t = 0, made it possible to
count the number of plants Nij with status j that
changed their status at the next time moment for i (i =
1, 2, …, n). According to model (1), this number is
τijxj(0), where τij is an element (i, j) of the transition
matrix T (the share of individuals with status j that
changes it for status i) 1 year later. Hence, each ele-
ment of the matrix was calculated uniquely as

(2)

quantifying matrix T into a pattern conforming to the
LCG (Fig. 1).

(0), if (0) 0,
0, if (0) 0,

ij j j
ij

j

N x x
x

≠⎧τ = ⎨ =⎩

Fig. 1. LCG for the C. canescens woodreed as a sample of
polyvariant ontogeny in an age-stage-structured popula-
tion. Stages: v, virginal; g, generative; ss, subsenile; and s,
senile; the f leeting stages of plantule, juvenile, and imma-
ture plant are included into the one-year virginal stage.
The empty small squares represent the imaginary (unob-
served) age-stage states; the patterned squares are the
states involved in reproduction; solid arrows correspond to
aging and ontogenetic transitions for 1 year; the dashed
arrows indicate vegetative reproduction; Latin letters
denote the status-specific rates of transitions or reproduc-
tion (adapted from Ulanova et al., 2002).
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The virginal ramets without labels represented the
population recruitment over the previous year, which
according to the first equation in system (1) is

(3)

where p and r are the numbers of the first (sequentially
in vector x) and the last reproductive status groups and
fp, fp + 1, …, fr are nonzero elements in the first row of
matrix F (fj is the average number of offspring per one
parent plant of status j to be found next year in status v1;
Logofet, 2013b, 2013c, 2013d). The data prevented
determination of the parental ramets for the recruiting
ones i.e., the contributions of individual reproductive
groups to summation (3) remain principally uncertain
(“reproductive uncertainty,” ibid.); thus, calibration
of the matrix L = T + F required additional condi-
tions/assumptions.

Different ways to cope with reproductive uncer-
tainty can be found in the literature (Logofet, 2008);
however, they contradict the biology of the species and
do not respond the idea of PVO as an adaptation
mechanism. Svirezhev’s substitution principle (Logo-
fet, 2010) implies that uncertainty in data can be
replaced with an “empirical generalization,” which is
a statement that is free of the shortcomings mentioned
above and imposes an additional condition sufficient
to solve the problem. In our case, such generalization
is the maximization hypothesis: the distribution of con-
tributions to overall recruitment is such that the value
of potential population growth, or the adaptation
measure λ1(L), is maximal under the given population
structure (ibid.) Thus, the calibration problem reduces
to a (nonlinear) problem to maximize the λ1 under
(linear) constraints ensuing from the field data. It was
shown (Logofet, 2013a, 2013b) that a solution of the
problem does exist and is unique in practical situa-
tions, i.e., the maximization hypothesis actually
removed the reproductive uncertainty and made it
possible to obtain a more objective estimate for adap-
tation measure as a tool for comparative studies.

However, the maximization hypothesis did not fit
theoretical views of some researchers on the absence of
optimality in the course of biological evolution (Metz
et al., 2008a, 2008b; Gyllenberg and Service, 2011)
and required empirical verification.

Here, we propose a new technique for a field exper-
iment targeted at verification of the maximization
hypothesis in the framework of a matrix population
model for the age-stage-structured population of C.
epigeios (L.) Roth. woodreed. For this purpose, the
experiment is designed so that not only the transition
matrix T but also the fertility part F of the projection
matrix L = T + F is directly computable from the field
data through restoration of the complete picture of
mother–offspring links in a colony of ramets on the
sample plots laid in different habitats. This, along with
the quantitative assessment and comparison of differ-
ent local populations according to their adaptation

1 11 1(1) (0) (0) (0),p p r rx x f x f x− τ = + +…

measure λ1(L), makes it possible to compare the com-
puted λ1(L) to the measure λ1(Lrun), which is derived
from the part of the experimental data that meets the
terms of reproductive uncertainty under the maximi-
zation hypothesis for each of the local populations.
Such a comparison has been performed for cenopop-
ulations in a meadow habitat and on a spruce forest
felling; the conclusion is that the maximization
hypothesis is true in its refined formulation.

The new field-experiment technique has also
revealed a new, previously undescribed phenomenon
in the woodreed PVO: besides forming the 1-year vir-
ginal offspring, the maternal rhizomes of generative
ramets also produce offspring at a generative stage.
The two-stage recruitment leads to a specific feature
in the LCG structure that has never been noticed in
the literature on matrix models. This specific feature
results in an inaccuracy in λ1 as a measuring tool of
comparative demography, and we propose a way to
remove the inaccuracy in such cases.

MATERIALS AND METHODS

Objects. C. epigeios is a herbaceous perennial poly-
carpic long-rhizome grass. An adult plant consists of
many uneven-aged, rosette, polycyclic intravaginal,
and extravaginal shoots forming a system of partial
tufts, a colony (Ulanova, 1995; Ulanova et al., 2008).
The C. epigeios woodreed has di- and polycyclic shoots
with a well-defined multinodal rosette shoot and a
few-nodal culm with pronounced akrotony. There are
no elongated vegetative shoots (Serebryakova, 1971).

The vegetative mobility is caused by an increase in
the plagiotropic shoots (rhizomes) acting as vegetative
renewal organs. Senile particulation of the colony does
not occur as the rhizomes do not rot with age, retain-
ing the connection of all ramets in the colony. Dried
tufts remain at rhizomes, but the rhizome continues to
function as a conducting system (Bel’kov, 1960).

The biology of this species is well studied, making
it a good model species for solving several experimen-
tal problems. The population structure of the model
woodreed species has been studied during extensive
population growth with vegetative spreading in open
plant communities without any competition with
other species. The age-stage structure of a typical
growing population with a complete ontogenetic cycle
in the selected plots reflected their adaptation state in
the examined felling and meadow phytocenoses.

The studies were conducted in a meadow in the
Moscow River f loodplain and a felling of spruce forest
in quadrant 1 and the eastern part of quadrant 7 of the
Zvenigorod Biological Station of the Moscow State
University (Odintsovo district, Moscow oblast),
respectively. Studied were plots dominated completely
by the woodreed, where patches of 3- and 4-year-old
plants prevailed.
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The meadow 1 and meadow 2 plots reside in a
C. epigeios woodreed meadow formed on abandoned
arable land in a high f loodplain area 4 years ago. The
soils are alluvial, humus–gley (meadow), rich in min-
eral nutrients. Meadow grasses (Dactylis glomerata and
Bromopsis inermis), Taraxacum officinale, and Lysima-
chia nummularia grew up in the herbage at low abun-
dances. The felling 3 and felling 4 plots were laid on a
clear-cut overgrowth in a spruce forest. The soils are
soddy-podzolic with a dense sod horizon formed by
woodreed shoots and rhizomes. Shrubs of Frangula
alnus Mill., Sorbus aucuparia L., and Salix caprea L.
have grown up in the woodreed biocenosis. Under the
canopy of woodreed, Fragaria vesca L., Convallaria
majalis L., Rubus saxatilis L., Asarum europaeum L.,
Vaccinium myrtillus L., and Luzula pilosa (L.) Scop.
are growing. The two selected phytocenoses differ not
only in their origin, but also in the set of ecological
conditions. The meadow habitat conditions are better
for the woodreed; its generative shoots are stronger
and their height there reaches 1.2–1.5 m versus 0.9–
1.2 m in the felling habitat.

Methods. Plots with an area of 1 × 1 m2 were laid in
mid-August (when the woodreed tuft development
was completed) in sites with complete woodreed prev-
alence. The plots were dug to a depth of 20–30 cm,
starting from the boundaries of the southwestern cor-
ner, to release gradually soil layers and the overall
woodreed rhizome system. Gradually dusting the soil
from rhizomes, all of the systems of partial tufts
(ramets) were piled into bags. The tufts were disassem-
bled and analyzed in the laboratory.

The morphology and ramet structure of C. epigeios
woodreed were well studied earlier (Ulanova, 1995);
thus, the chronological age of individual grass can be
determined from the structure of annual growth in its
tillering zone and the developmental stage of each
ramet from the known “scale of ontogeny” (Ulanova
et al., 2007). All the alive woodreed tufts and those
that died in 2014 in each plot were dug out, preserving
the rhizome system connecting them with alive
daughter tufts of all generations. This enabled us to
determine the maternal-offspring hierarchy of the
ramets, date the year at which the offspring ramets
were formed, and assess the developmental stage of
the parent ramet in the previous year according to the
ratio of dry vegetative and generative shoots of the
ramet (Fig. 22). Each ramet was given its age-stage
characteristics at the moment of excavation (August
2014), and its status in the previous year was restored.
Also the alive daughter rhizomes were counted (see
Table 1 for a fragment of the primary data), which
served for direct calculation of the actual contribution
of each age-stage group to the population recruitment
due to vegetative propagation in each of the four plots.
Hereinafter, the superscript in the designation of a sta-

2 Figure by O.V. Cherednichenko.

tus group denotes the plant age (years), and the sub-
script shows the category within the ontogenetic stage.
The characteristic of category v2 is a larger ramet size
as compared with v1, as well as the development of two
or more living vegetative shoots (Ulanova, 2006);
however, they were united into one stage, v, in further
calculations, because this is more frequently used in
plant population biology (Zaugol’nova et al., 1988).
The ramets with generative shoots were divided into
three categories according to the common practice (as
in the earlier projects), namely, g1, young generative;
g2, middle-aged; and g3, old generative (Ulanova et al.,
2007, 2008; Logofet et al., 2011).

Further ramet counting according to status groups
gave the quantitative cenopopulation structure at the
time of excavation, x (2014); to restore the structure of
x (2013), all ramets that died in the previous year were
taken into account. Considering the changes in status
over all of the ramets within the plot, we obtained a
complete picture of the transitions in the given plot
over 1 year, i.e., the transition part of LCG, to get Nij

values and transition rates according to Eq. (2).
Statistical characteristics (mean and variance for

the daughter rhizomes per one parental ramet) were
calculated for each phytocenosis.

To complete the construction of LCG with its
reproductive part, for each ramet of cenopopulation
recruitment (each row in Table 1 where the 2013 status
cell is blank), we determined its maternal plant by the
rhizome link and lined up a general survival scheme of
young rhizomes from the parents in different status
groups (Fig. 3).

Quantitatively analyzing the summary tables of
characteristics for the vegetative and generative
spheres, including the tillering node, and counting the
number of daughter rhizomes for all ramets, we
revealed a certain regular pattern: the daughter rhi-
zomes were always more abundant than the ramets that
formed in spring because some rhizomes died in winter.
We cannot always specify the mortality pattern of those
rhizomes in detail when digging them out. A high ramet
density in the examined plots (400–800 per 1 m2)
sometimes prevents the retention of the links between
maternal and daughter ramets. The parental ramet
gives rise to several daughter rhizomes, and the new
ramets developing from these rhizomes may be at both
the virginal (v1) and generative (  or ) stages.

The content of Fig. 3 allows the construction of
plot-specific LCGs to be completed in their reproduc-
tive part; however, the quantitative ratio of the daugh-
ter ramets at different stages cannot be determined if
part of the rhizomes is torn during excavation. In such
cases, the status of the parental plant remains uncer-
tain, and a mathematical task arises to find the exact
numbers a, b, c, …, g, and h; Figs. 3a–3d) of daughter
ramets from the rhizomes of the parents in each status,
i.e., the task to determine the contribution of each

1
1g 1

2g
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age-stage-specific group to the status-specific recruit-
ment of the population. The solution to this problem
is nontraditional (see below) and allows the precise
bounds for an adaptation measure of a given cenopop-
ulation to be determined based on the data gained.

The range of λ1 values for each plot. The equations
and inequalities relating parameters a, b, … , g, and h
with the outcome of analyzing the belowground part
of the colony ensue from the constructed survival
schemes for daughter rhizomes. In particular, the fol-

Fig. 2. Fragment of the C. epigeios woodreed colony (the system of partial ramets): (1) maternal rhizome; (2) final rhizomes;

(3) new growing rhizomes; (4) virginal 1-year-old ramet, v1; (5) virginal 2-year-old ramet, v2; (6) generative 3-year-old ramet, ;
and (7) dry 4-year-old ramet (Logofet et al, 2014, under permission).

1

2 2

3

3

3

4

4

47

5

6

3
1g

Fig. 3. Survival schemes for young rhizomes of various parental groups. The total number of young rhizomes developed from the
parents of the corresponding status is shown below the image of parental ramet; a, b, c, …, g, and h denote the number of living
daughter ramets for the parents of the corresponding status. Variants by the results of excavating the plots: (a) meadow 1; (b)
meadow 2; (c) felling 3; and (d) felling 4.
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lowing system of two equations and five inequalities
ensue from Fig. 3b for the meadow 2 plot:

(4)

where the unknowns can take on nonnegative integer
values only. The analogous system for the felling 3 plot
(Fig. 3c) is

(5)

312,
28,

296, 25, 20, 17, 5,

a b c d

e f g h

a e b c f d g h

+ + + =⎧
⎪ + + + =⎨
⎪ + ≤ ≥ + ≤ + ≤ ≤⎩

220,
20,

240, 69, 6, 9, 5.

a b c d

e f g h

a e b c f d g h

+ + + =⎧
⎪ + + + =⎨
⎪ + ≤ ≥ + ≤ + ≤ ≤⎩

Equations for the unknowns taking only integer
values are called Diophantine equations (Akedemik,
2000; Bashmakova, 2007). According to traditional
concepts (formed by the theory of systems of linear
algebraic equations), a system can have a unique solu-
tion when the number of equations coincides with the
number of unknowns. The number of equations in
Diophantine systems is substantially less (as in our
case), but the integer values and other constraints
allow the combinatorial number of solution variants to
be drastically reduced.

An additional constraint emerged from an expert
idea of the quantitative hierarchy among the shares
S(s) of the daughter rhizomes developed from the par-

Table 1. Fragment of the summary table with biomorphological description of woodreed plants in the meadow 2 plot

Ramet no.

2014 2013

status
the umber of

status
the number of

vegetative 
shoots

generative 
shoots

daughter 
rhizomes

vegetative 
shoots

generative 
shoots

daughter 
rhizomes

1 1 1 0

2 1 1 0

3 1 1 0

4 ss3 1 1 1 2

5 1 1 1 1

6 1 2 0

7 1 0 0

8 1 1 2 1 1

9 1 1 0

10 1 1 0

11 ss2 1 0 1 1

12 1 0 0

13 1 0 0

14 ss2 1 0 1 3

15 1 1 0

16 1 1 0

17 1 1 1 1 0

18 1 1 0 2 1 1

19 1 2 0

20 1 2 0

21 1 2 0

22 1 0 0

1
1v
1
1v
1
1v

2
1g

2
1v 1

1v
1
1v
1
1g
2
1g 1

2v
1
1v
1
1v

1
1v

1
1v
1
1v

1
1v

1
1v
1
1v
1
1g
2
1g 1

2v
1
1v
1
1v
1
1v
1
1v
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ents with different s statuses that gave offspring,
namely,

(6)
We also took into account any significant bounds

from below provided by the daughter ramets of unam-
biguously identified parents. The solutions were found
by an algorithm iterating through all possible variants.

For each of the finite number of solutions to the
Diophantine system with constraints (6), we further
formed the projection matrix L (in accordance with
the constructed LCG) of the matrix population
model, i.e., system of equations (1), where x (t = 2013)
and x(2014) are the vectors of age-stage structure
restored from the excavation data in each of the plots.
For each matrix L, its dominant eigenvalue λ1(L) > 0
was calculated as the measure of adaptation of ceno-
population with the observed set of status-specific
reproduction rates, an analog of the traditional
(Fisher’s) fitness for multidimensional population
(Logofet et al., 2006, 2014; Logofet, 2013a). The max-
imum and maximum λ1(L) were found among the
(finite number of) the obtained values to get the range
[λ1min, λ1max] as a tool for comparing the local popula-
tions in the quantitative measure of adaptation

RESULTS
Cenopopulation structures. The technique imple-

mented to analyze the dug woodreed colony allowed
us to determine the cenopopulation structures in 2014
and restore those structures for 2013 (Table 2). These
structures are characteristic of all four plots; the v1

ramets are prevalent (accounting for 46–74% of all
ramets), while v2 ramets (6–29%) and all generative
(g) ramets (5–19%) are less abundant. The meadow
plots house a few ss ramets (5–10%); only some of
them reach the age of 4 years. The woodreed ontogeny
under favorable meadow conditions is faster, with a
few ramets senescing, while the majority perishes at
adult stages not reaching the ss and s stages. The fell-
ing habitat displays another pattern: a considerable
share of the ramets (9–18%) ends its life cycles at ss
and s stages, with many ramets reaching the age of 4
years.

Along with the restoration of cenopopulation
structures, the analysis of the relations between the
belowground and aboveground parts of the colony has
revealed certain survival statistics for the newly formed
ramets in different phytocenoses (Table 3). The mean
values and variances for the number of rhizomes in the
felling and a meadow differ in a statistically significant
manner: 99% according to t-test (t > t0.01) and Fisher’s
test (F > F0.01), respectively.

LCGs and the limits to cenopopulation fitness. The
LCGs corresponding to the obtained structures and
rhizome link patterns (Figs. 3a–d) are shown in Fig. 4
and illustrate the polyvariance of PVO itself even

1 1 2 2 2
1 1 2( ) ( ) ( ) ( ) ( ).S S S S S≥ ≥ ≥ ≥v g v g g

within a single habitat. Every LCG unambiguously
(accurate to the numbering of components in popula-
tion structure vectors) determines projection matrix L,
which depends on parameters a, b, …, g, and h, while
each solution to Diophantine system (5)–(6) and
analogous systems gives quantitative certainty to L,
enabling us to calculate λ1(L). The results of these cal-
culations are listed in Table 4.

The minimal possible λ1 values are considerably
larger than unity for all plots except felling 4, where
still λ1max > 1. These results quantitatively confirm the
expert opinion on extensive growth in young popula-
tions, the growth rate in the meadow being greater
than that in the felling habitat (the growth almost
ceased in the felling 4 plot, where λ1max > 1 by only
0.03). The absolute width (λ1max – λ1min) of the fitness
measure range varies from 0.0425 in the meadow 2
plot to 0.2269 in the felling 3 plot or from 2.8 to 17.6%
(100(λ1max – λ1min)/λ1max). On the whole, the second
and third plots have ranges [λ1min, λ1max] located more
to the right on the real axis than the first and fourth,
respectively, indicating a difference in growth condi-
tions even within a single habitat.

Testing the maximal adaptation hypothesis. The
obtained data on the cenopopulation structures allow
for calibration of the L matrices (L = T + F), where T
is calculated according to (2) directly from the data,
while the search of F is based on the maximization
hypothesis, i.e., without using the data on direct
counting of status-specific reproduction rates (ele-
ments of F). As is mentioned above, the calibration
problem then reduces to a nonlinear maximization
problem for λ1(L) with the linear constraints stem-
ming from the data. Here, the unknown variables are
no longer the absolute numbers (a, b, …, h) of the
daughter ramets developed from parental plants of dif-
ferent statuses, but rather the proportional elements
(ra, rb, …, rh) of matrix F, i.e., the mean (per one paren-
tal individual of a particular status) numbers of alive
offspring at a certain stage. Equality constraints are the
analogs of equation (3): the component-wise equa-
tions of system (1) that describe the recruitment of
population via the elements of F and the structure vec-
tors x(t) (Table 2). The constructed LCGs (Fig. 4) sug-
gest that two such equalities hold for each plot (Table 4;
Appendix A).

The situation with inequality constraints is more
complex. Although the hierarchy of conditions (6) can
be equivalently expressed in terms of parameters ra, rb,
…, rh, the denominators in the respective inequalities
are known only from the “belowground” analysis.
Coarsening these inequalities leads to a heuristic hier-
archy, the very simple form (A2) of which no longer
depends on the details of the belowground sphere.

A special role is played in posing the maximization
problem by bounds, which are grouped as a special
class of constraints in the Matlab syntax (Appendix A),
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Table 2. Age-stage structure of C. epigeios in 2013 and 2014 in four studied pots

Blank cells indicate that no ramets of the corresponding age-stage status have been detected after excavating the plot. The vector is
obtained by concatenating the table structure by rows.

Stages
2013, ramet age (years) Total 

number 
of ramets

2014, ramet age (years) Total 
number 

of ramets1 2 3 4 1 2 3 4

Meadow 1

v 294 24 2 361 81 0
g1 25 29 26 67
g2 0 10 0 1 8 2
g3 02 2 7
ss 2 10 0 398 10 16 4 585

Vector [294, 24, 2, 25, 29, 0, 10, 0, 0, 2, 2, 10, 0]T [361, 81, 0, 26, 67, 1, 8, 2, 2, 7, 10, 16, 4]T

Meadow 2

v 218 27 1 312 78 0
g1 13 18 2 28 16 0
g2 5 0 0 1
g3 0 3
ss 6 19 7 316 10 11 2 461

Vector [218, 27, 1, 13, 18, 2, 5, 0, 0, 6, 19, 7]T [312, 78, 0, 28, 16, 0, 0, 1, 3, 10, 11, 2]T

Felling 3

v 303 81 5 220 124 6
g1 4 15 0 20 39 1
g2 2 7
g3 1 2 1 6
ss 4 47 8 15 30 9
s 20 16 508 2 3 483

Vector [303, 81, 5, 4, 15, 0, 2, 1, 2, 4, 47, 8, 20, 16]T [220, 124, 6, 20, 39, 1, 7, 1, 6, 15, 30, 9, 2, 3]T

Felling 4

v 193 37 2 144 82 6
g1 7 11 3 2
g2 2 14 1 0 1 0
g3 1 4 2 0
ss 7 8 0 11 15 3
s 2 9 2 300 3 4 5 281

Vector [193, 37, 2, 7, 11, 2, 14, 1, 1, 4, 7, 8, 0, 2, 9, 2]T [144, 82, 6, 3, 2, 0, 1, 0, 2, 0, 11, 15, 3, 3, 4, 5]T

the constraints being semantically important to test
the hypothesis.

Equalities (3) themselves cause the parameters to
be already bounded from above; however, rejection of
the positive lower bounds brings to zero values of some
parameters in the formal solution to the optimization
problem, which contradicts the presence of the corre-
sponding reproductive arcs in the LCGs. If the con-
straint maximization problem is solved (as in our case)

after analysis of the belowground part of the colony
and solution of the Diophantine system of equations
and inequalities (Table 4), then the values (A4) close
to actually observed ones will be the best choice of the
lower and upper bounds. The corresponding solution

 is the closest to the range [λ1min, λ1max] of its true
values and coincides in the integer parameters [a, b,
…, h] = p with most components of the vector p for
λ1max (Table 4; Appendix A).

1*λ
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Table 3. Number of young rhizomes that formed woodreed
ramets in 2014

* Per one parental ramet.

Statistical values Meadow Felling

Sample size 747 663
Mean* 1.329 1.525
t-Test 4.373
t0.01-Test 2.576
Deviation, σ 0.762 0.848

Variance, σ2 0.581 0.718

Fisher’s test, F 1.238
F0.01 test 1.000

Since the calibration according to λ1 maximization
is intended to replace the laborious belowground anal-
ysis, we need the a priori bounds to formulate the
problem, i.e., the bounds that are specified in the
absence (or without taking into account) the results
obtained by analyzing the rhizome links. The variant
(A4) described above is not of an a priori nature in this
sense and is used in this project to illustrate and check
the algorithm of constraint maximization. However, if
we omit the details in the belowground sphere struc-
ture and use the experimental statistical data summa-
rized over the phytocenoses in the average number of
young rhizomes per parent plant (Table 3), this value,
for example, for meadow, is 1.329 ± 0.762, whereby
the averaged lower bound for the reproductive rate
equals 0.567. However, this uniform statistical bound
turns out to be in conflict with one of the equality con-
straints (Appendix A), and the constrained maximiza-
tion problem has no solution.

A practically efficient choice of the a priori bounds
for reproduction parameters is based on the following
consideration. Since the formal optimization often
reaches the parameter boundary values, the uniform
and/or too coarse bounds give a solution that, while
the best in formal optimality, noticeably distorts the
actual pattern of reproduction. That is why the a priori
bounds should not be uniform as above; they should
rather be chozen as a function of the status of the
maternal ramets. For example, it is possible to fit the
heuristic hierarchy of inequalities a priori embedded
into the constraint maximization problem (Appendix
A, conditions (A2) and (A5)).

It is logical that many of the optimal parameter val-
ues a*, b*, …, h* (recalculated from r*) turn out to be
integers, despite posing the maximization problem in
real numbers, i.e., over the more powerful set of feasi-
ble values. However, when noninteger values are opti-
mal, they logically improve the solution optimality,

i.e., elevate the  value (although not greater than the
third decimal place) as compared with the corre-

sponding set of integer values. Thus, the values  >
λ1max found by the maximization principle localize
close to the range of true λ1 values (Table 4; Appendix A).
Therefore, the maximization hypothesis is confirmed
in its refined formulation: when found as the maxi-
mum possible value under the observed constraints,
the λ1 value is the closer to the actual range of values,
the more accurate bounds are given in the constraint
maximization problem for the status-specific repro-
duction rates.

Reproductive core of LCGs and the “off-core”
reproductions. The Perron–Frobenius theorem for
nonnegative matrices, the mathematical foundation of
matrix population models, applies primarily to irre-
ducible matrices (Gantmacher, 1966), while the crite-
rion of irreducibility reduces to the strong connected-
ness of the digraph associated with a given matrix

1*λ

1*λ

(Harary et al., 1965; Horn and Johnson, 1990; Logo-
fet, 1993), i.e., of the LCG in our case. If a population
structure contains postreproductive groups, the corre-
sponding matrix L turns out to be reducible, while the
LCG is not strongly connected. This means that the
dominant eigenvalue λ1(L) of matrix L is actually the
λ1 of its irreducible principal submatrix associated
with the reproductive core (Logofet, 2008, 2013a), the
maximal strongly connected subgraph of the LCG
comprising the reproductive arcs (the reproductive
cores in Fig. 4 are marked with gray background). In
turn, this means that the reproduction rates that cor-
respond to the LCG arcs outgoing from (or/and ingo-
ing to) the vertices outside the reproductive core have
no effect on the value of λ1(L). These are the following

arcs:  in Fig. 4a,  in Fig. 4b, and
 in Fig. 4d.

These off-core reproductive arcs create a contra-
dictory situation. On the one hand, they contribute, to
a low but still nonzero degree, to population reproduc-
tion and growth, although these contributions are
omitted in the λ1(L) value, the measure of fitness for a
given cenopopulation. On the other hand, the pres-
ence of the off-core reproductions means a higher
degree of PVO as compared with their absence, hence
such a cenopopulation should formally have a higher
fitness too. The general meaning of the off-core repro-
ductive arcs consists in a certain acceleration of the
reproduction process, which implies a higher fitness.
Since the λ1(L) measure is exactly the same in the
absence of the off-core reproductive arcs in LCGs, the
described situation reveals inaccuracy of λ1(L) as a
measuring tool to compare cenopopulations in their
degree of fitness. We can eliminate this inaccuracy by
reasoning in analogy to that for the experiment of 2013
(Logofet et al., 2014).

Let μ(L) ≥ λ1(L) denote an accurate measure of
cenopopulation fitness; note that μ(L) > λ1(L) when
the LCG has off-core reproductive arcs. Consider the
LCG for an imaginary (virtual) population where all

2 1
2 2→g g 2 1

2 2→g g
1 1
2 1→g g
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Fig. 4. LCG for the C. epigeios woodreed by the outcome of excavating the plots with 4-year-old plants in 2014 (after the immature
and virginal stages having been aggregated into a single stage, v). See Fig. 3 for the meaning of parameters a, b, …, g, and h. Gray
denotes the LCG reproductive core (see text for explanations).
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the off-core reproductive arcs are redirected and

included into the core, for example, arc  is

replaced with  (Fig. 4a), an outgoing status of

arc  (Fig. 4b) is replaced with  and an out-

going status of arc  (Fig. 4d) is replaced with

 As a result, the new Lvir matrix is obtained from the
original L matrix by increments in the corresponding
elements. As a result, λ1(Lvir) > λ1(L), since the Frobe-
nius eigenvalue of any irreducible matrix is a mono-
tone increasing function of its elements (Gantmacher,
1966; Horn and Johnson, 1990). However, λ1(Lvir) is
still less than μ(L) because the virtual population (all
else being equal) now has no accelerating effects of the

2 1
2 2→g g

2 1
2 1→g g

2 1
2 2→g g 2

1,g
1 1
2 1→g g

1
1.g

off-core reproductions from the real population.
Thus,

(7)

where ε(L, Lvir) is a small positive variable relating the
contributions of common and off-core reproductions
to the fitness of cenopopulation and proportional to,
for example, the matrix norm (Horn and Johnson,
1990, Section 5.6; Caswell, 2001, Section A.8) of the
difference L – Lvir (Logofet et al., 2014) with a coeffi-
cient of the order of magnitude as the difference
λ1(Lvir) – λ1(L). See Appendix B for the corresponding
calculations and Table 4 for results. The error of λ1(L)
as compared with μ(L) has ranged in different plots
from a few thousandths to hundredths of unity.

1 vir vir( ) ( ) ( , ),μ = λ + εL L L L
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DISCUSSION
The woodreed population biology attracts the par-

ticular interest of researchers since the species of this
genus (especially C. epigeios) are regarded as the most
aggressive and dominating the early stages of succes-
sion, and they actively colonize free areas in Europe
(Prach and Pysek, 1999). The ecology of C. epigeios is
unique since this species grows under almost any
moisture conditions and soil richness; in its life strat-
egy, this is a typical ruderal species. As a strong edifi-
cator, the woodreed holds the territory in the meadow
and young felling areas for many years and signifi-
cantly alters the environment both in the aboveground
and belowground spheres (Ulanova, 1995).

The major life cycle of C. epigeios woodreed (i.e., of
the plants germinated from seeds) proceeds with
strengthening the shoots of sequential orders (Sere-
bryakova, 1971); the principal axis and shoots develop
but do not pass the complete developmental cycle,
being smaller and weaker than the subsequent-order
shoots. Only the third-order shoots can complete the
full cycle of development. All the shoots are di- or
polycyclic and are of the fourth-year f lowering (ibid.).

Here, we consider the minor life cycle, namely, the
tufts developing from the apical buds of rhizomes. Pat-
rabolova (1953) described in detail the formation and
development of a partial tuft from the rhizome. The
apical buds of rhizomes, curving upwards, give rise to
the principal axis of partial tufts. The formation of lat-
eral shoots begins on the axis during the first year in
the life of a tuft, when the axis is represented by a
growing bud (immature stage), and continues during
the second year, when the principal axis is a shortened
rosette shoot (virginal stage). The principal axis of
partial ramets begins f lowering in the third year of
their life (young generative stage); then the ramet per-
sists for 1–2 years more with the last of its lateral
shoots, which may (middle-aged and old generative
stage) or may not f lower (subsenile and senile stages)
and then completely dies. Patrabolova (1953) studied
the woodreed ontogeny in the pine plantings of the
Buzuluk pine forest (steppe zone). Our studies in
young spruce fellings of the Tver oblast (southern taiga
zone, Central Forest State Nature Biosphere Reserve)
also confirm that the ramets f lower in the third year of
their lives; note that the f lowering is typical of the
ramets of the third and second generations (Ulanova,
1995, 1996). According to our data, the C. epigeios
woodreed can flower even in the second year in favor-
able environments.

Janczyk-Weglarska (1997) observed the C. epigeios
PVO in Poland under natural conditions of the broad-
leaved forests. The woodreed in a pine forest has a
reduced ontogeny without f lowering, a complete
ontogeny with f lowering in the third–fourth years in
fellings, and a complete ontogeny with f lowering only
in the third year with transition to senile stage in the

fourth year in alluvial soils and meadows. The author
experimentally demonstrated (ibid.) that PVO (in par-
ticular, the development of the monocarpic shoots
within a single plant) do not represent a genetically
controlled trait but is phenotypically determined by
habitat conditions, i.e., it represents rather a modifica-
tion (phenotypic) variation of an adaptive nature
under specific growth conditions.

Previous studies of woodreed ontogenies revealed
the need to rejuvenate (to enter the virginal stage) for
the daughter ramets formed on the rhizomes of parent
plants at the generative stage. Our study has discovered
generative daughter ramets growing on the rhizomes of
generative parent plants that did not pass rejuvenation
but f lowered in the first year of ramet formation.
Acceleration of the shoot growth rate acquires a spe-
cial significance under the conditions maximally
favorable for the development of the young colonies
with extensive growth and without competition with
other species. Presumably, the coniferous-deciduous
forest zone is favorable for the woodreed growth, along
with the fact that no droughts and cold periods
occurred in the spring–summer season of 2014. These
are comfortable environments for woodreed develop-
ment which seem to create the conditions for the
uniquely rapid development of the generative shoots.

Our discovery is formally expressed in the fact that
the LCG contains more than one recruiting stage (Pro-
tasov and Logofet, 2014; Fig. 4), i.e., the stage of pop-
ulation increase, unlike the LCGs described in the
previous projects (Fig. 1). This fact complicates the
model mathematics: the matrix L = T + F can no lon-
ger be considered a rank-one correction (ibid.) of the
transition matrix T since the rank of the corresponding
matrix F is 2; hence, the theorem (ibid.) on the indica-
tor ability of function R1(L) = 1 – det(I – L) is no lon-
ger applicable. However, the technical advantages of
indication (Logofet, 2012) are lost not for this reason
but because R1(L) as a function of the reproductive
parameters a, b, …, g and h loses the property to be lin-
ear, which is inherent in rank-one corrections. How-
ever, the indicator ability does preserve: the calcula-
tions demonstrate that R1(L) > 1 in all the cases in
Table 4 where λ1 > 1 and that R1(L) < 1 when λ1 < 1.
This observation raises a question on whether the the-
orem on rank-one corrections (or rather, its conse-
quences for the matrices L; Protasov and Logofet,
2014) can be expanded in what concerns the indicator
ability of function R1(L).

The presence of more than one recruiting stage is
not unique for discrete-structured populations (Wer-
ner and Caswell, 1977; Shea and Kelly, 1998; Weppler
et al., 2006; Pathikonda et al., 2009); the uniqueness
of our LCGs is of another kind: three of the four
graphs (Figs. 4a, 4b, and 4d) contain reproductive arcs
beyond the reproductive core (we named them the off-
core arcs). Some authors neglected the need to deter-
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mine the reproductive core in the LCG and the corre-
sponding principal submatrix when calculating the
dominant eigenvalue (Logofet, 2013d and the refer-
ences therein), which may lead to erroneous overesti-
mation of the λ1 value (ibid.). However, the fact that λ1
is inaccurate when the “core rule” is met and when an
off-core arc is present has been noticed only in the
paper describing the results of our 2013 study (Logofet
et al., 2014). Meanwhile, the effects of ontogeny accel-
eration mentioned above require the adaptation mea-
sure, μ(L), to be also augmented for such cenopopula-
tions above the inaccurate λ1(L) value; only when the
arcs of “accelerated” generative plants remain within
the reproductive core (Fig. 4c), the former measure
retains its accuracy: μ(L) = λ1(L) (Table 4).

Note that the presence/absence of transition arcs
from the corresponding states (or to the corresponding
states) is crucial for the presence/absence of off-core
reproductive arcs in LCGs: for example, the absence
of  arc (Figs. 4a and 4d) and the presence of
v1 →  arc (Fig. 4c). This fact is certainly detectable
from the examination of the aboveground part of the
colony alone (i.e., under conditions of reproductive
uncertainty), while the presence of accelerating repro-
ductive arcs themselves can be just postulated, as is
actually done above (section “Testing the maximal
adaptation hypothesis”), when we used the LCGs
constructed from the excavation data (Fig. 4).

To calculate the dominant eigenvalue, λ1(L), under
the reproductive uncertainty and the maximization
hypothesis means to solve the constraint maximiza-
tion problem for reproduction rates under the known
equality constraints and a priori bounds (Logofet,
2010, 2013b, 2013c). A specific feature of this study is
that we complement the problem with the inequality
constraints reflecting the expert idea of the hierarchy
among the contributions by various status groups to
the annual population recruitment (Appendix A). At a
first glance, the hierarchy is completely a “below-
ground” knowledge (Table 4; parameters a, b, …, g,
and h), and it is inappropriate to recommend it as a
practice for the “aboveground” calibration. However,
since the belowground parameters are proportional to
the reproduction rates ra, rb, …, and rh to be optimized
(with a proportion coefficient known from the data on
population structure, x(2013), Table 2), the actual
hierarchy, (6), can in fact be converted to an a priori
heuristic one (A2) to be included into the maximiza-
tion problem.

As regards the a priori bounds for this problem, it is
easy to choose them when the data for belowground
sphere are in hand, and it is no wonder that maximiza-
tion in this case gives the same result (Appendix A,
column (A4)) as the counting of daughter ramets
(Table 4). Unfortunately, the bounds are no longer “a
priori” in this case. In other words, the intimate mech-

1 2
2 2→g g

2
2g

anism concealed under the ground that forms the abo-
veground reproduction rates does not allow the a pri-
ori bounds to be sufficiently fine. On the other hand,
even the preliminary results of the field experiment
(Logofet et al., 2014) demonstrate that the maximal
adaptation hypothesis is true to the degree to which
the chosen bounds are status-specific (Logofet,
2013b) and close to the results of analysis of the below-
ground part of the colony. That is why a priori bounds
(A5) fit for heuristic hierarchy (A4) turned out a rea-
sonable way out of the deadlock, while the results
gained on verifying the maximization hypothesis
(Appendix A) allowed the formulation of the hypoth-
esis to be improved.

CONCLUSIONS

The concept of PVO as an adaptation mechanism
of local populations gets a vivid illustration in the
LCGs of woodreed age-stage-structured populations,
while the corresponding matrix models provide a
quantitative measure of adaptation as the dominant
eigenvalue λ1 of the projection matrix. Matrix calibra-
tion according to aboveground censuses faces the
challenge of reproductive uncertainty since the rhi-
zome links of the recruitment ramets with the parent
ones are hidden in the soil. The challenge was
answered by the adoption of the maximal adaptation
hypothesis, and the field study to test it has been per-
formed by a new technique with the C. epigeios

woodreed vegetatively propagating in a meadow habi-
tat and a spruce forest felling. Excavation of the sam-
ple plots and analysis of the system of partial ramets
linked by rhizomes have revealed a new phenomenon
in the ontogeny of woodreed when it grows vegeta-
tively, namely, the 1-year-old ramets originating from
generative parents and recruiting the population at the
generative stage, in addition to those at the virginal
stage. These findings have also predetermined a new
calibration method, namely, counting directly the sta-
tus-specific rates of reproduction in a combinatorial
number of variants to eliminate the residual uncer-
tainty. Thereby, we have established the reliable ranges
of values for the measure of fitness in the excavated
local populations.

The λ1 values mined from part of the data under the
maximization hypothesis turned out close to the upper
bound of the range, while an updated statement of the
λ1 constraint maximization problem and the ensuing
solution confirmed the hypothesis in a revised formu-
lation. The field experiment motivated by the need for
reliable calibration of the model matrix, has also
revealed situations that are novel for matrix models, in
which λ1 loses its accuracy as the measure for adapta-
tion and requires an adequate refinement as a tool for
comparative demography.
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APPENDIX A
Calibrating Projection Matrices 

under the Hypothesis of Maximality

The method for calibrating matrix L under the
reproductive uncertainty of the data (Logofet, 2012,
2013b, 2013c) from the meadow 1 plot according to
LCG (Fig. 4a) and structure vectors x(2013) and
x(2014) (Table 2) makes use of the same equality con-
straints as those in the Diophantine system (Table 4),
but the unknown parameters here are the elements of
matrix F arranged in the vector r = [ra, rb, …, rh]T:

294ra + 24rb + 25rc + 29rd = 361, (A1)
294re + 25rf + 24rg + 10rh = 26,

or in the vector-matrix form Aeqr = Beq:

If the hierarchy of inequality constraints (6) is put
down using parameters r, we obtainm

where the denominator numbers are not really known
under the terms of reproductive uncertainty. In this
system of inequalities, all coefficients are close to unity
except for the coefficient for rb, which is 2. Corre-
spondingly, the heuristic analogs for conditions (6) in
the a priori setting of maximization problem take on
the form

(ra + re) ≥ (rc + rf) ≥ 2rb ≥ (rd + rg) ≥ rh, (A2)
or in the vector-matrix form Ar ≤ B:

Equalities (A1) impose certain upper bounds on
the parameters, and the best choice of the lower and
upper bounds, i.e., of the vectors rlow, rup > 0, such that
the conditions

a
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rlow ≤ r ≤ rup, (A3)
hold (component-wise) true, is provided by the vec-
tors

rlow = min(rmin, rmax), rup = max(rmin, rmax). (A4)
Here rmin and rmax are the vectors recalculated from

the obtained values of a, …, h (the penultimate and last
columns of Table. 4, respectively), while the extreme
values of two vectors are obtained in a component-
wise manner. The a priori bounds fitting heuristic
hierarchy (A2) are, for example,

(0.9 + 0.02) ≥ (0.2 + 0.6) ≥ 2*0.3 
≥ (0.4 + 0.1) ≥ 0.1 lower and

(1.5 + 0.2) ≥ (0.3 + 0.8) ≥ 2*0.5 
≥ (0.7 + 0.2) ≥ 0.2 upper,

i.e.,

(A5)

Whether a particular choice of the bounds turns out
to be feasible is also verified by its compatibility with
equality constraint (A1), i.e., by holding the condi-
tions Aeqrlow ≤ Beq and Aeqrup ≥ Beq.

Table 5 lists the solutions to the maximization prob-
lem, i.e., the vectors r* = [  ]T meeting all
conditions (A1)–(A3), and the corresponding values

of λ1(L*) =  obtained at the best (A4) and heuristic

(A5) choices of the bounds by means of the Matlab
function for constraint minimization, fmincon (Math-
Works, 2012):
fmincon(@mlambda_N, r0, A, B, Aeq, Beq, rlow, rup).(A6)

Here, mlambda_N is a user-defined function cal-
culating the value of (–λ1) for the matrix L(r) = T + F(r)
from the input set r of the parameters (elements of F)
to be optimized and specific (according to T and the
structure of F) for each plot N; r0, the start point in
searching for solution; and matrices A, B, …, rup are
defined above.

Among the choices of lower bounds, the uniformly
“statistical” one,

rlowT = [0.5670, …, 0.5670], (A7)
was also considered. It gives Aeqrlow = [211, 203]T for
the meadow 1 plot. Here 211 < 361, which is permissi-
ble for the lower bounds, but 203 > 26 is unfeasible
under condition (A1’). Therefore, the problem had no
solutions for this choice of the bound.

APPENDIX B
Reproductive Submatrices of Virtual Populations

and the Refined Measures μ(L)
Three of the four LCGs shown in Fig. 4 contain

off-core reproductive arcs (Figs. 4a, 4b, and 4d). The

T
low

T
up

  [0.9 0.3 0.2 0.4 0.02 0.6 0.1 0.1] ,

  [1.5 0.5 0.3 0.7 0.2 0.8 0.2 0.2] .
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Table 5. Solutions (r*) to the λ1(L) constraint maximization problem (A1)–(A3) with the status-specific bounds for the
elements ra, rb, … rh of matrix F (from L = T + F) to be optimized

Equality constraints (A1),
Aeq
Beq

Inequality constrains (A2),
A
B

Parame-
ters

Actual (r*) and control (A4) solutions

rlow r* rup (A4), r (A4), p p

Meadow 1 ra 0.9 1.0946 1.5 1.1122 327.00 a

rb 0.3 0.4744 0.5 0.4167 10.00 b

rc 0.2 0.3000 0.3 0.2000 5.00 c

rd 0.4 0.7000 0.7 0.6552 19.00 d

re 0.02 0.0200 0.2 0.0102 3.00 e

rf 0.6 0.6488 0.8 0.6333 15.83 f

rg 0.1 0.1000 0.2 0.1782 5.17 g

rh 0.1 0.1000 0.2 0.2000
2.00

h

1.3280 1.3231 1.3231 λ1

Meadow 2

ra 0.9 1.2376 1.5 1.2431 271.00 a

rb 0.6 0.9000 0.9 0.8519 23.00 b

rc 0.4 1.1000 1.1 1.1385 14.80 c

rd 0.2 0.2000 0.4 0.1778 3.20 d

re 0.02 0.0417 0.2 0.0321 7.00 e

rf 0.8 1.1000 1.1 1.1538 15.00 f

rg 0.2 0.2000 0.4 0.2222 4.00 g

rh 0.2 0.2000 0.4 0.4000 2.00 h

1.5712 1.5643 1.5643 λ1

Felling 3

ra 0.4 0.4663 1.0 0.4851 147.00 a

rb 0.8 1.0000 1.0 0.8519 69.00 b

rc 0.5 0.7000 0.7 0.5000 2.00 c

rd 0.1 0.2000 0.2 0.1333 2.00 d

re 0.01 0.0116 0.2 0.0139 4.20 e

rf 0.7 1.0000 1.0 1.0000 4.00 f

rg 0.2 0.5000 0.5 0.4667 7.00 g

rh 1.0 2.5000 2.5 2.4000 4.80 h

1.3278 1.2884 1.2884 λ1
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modification consolidating them with the core gives
the LCGs of virtual populations, and the correspond-
ing reproductive-core submatrices Lvir are listed in
Table 6. The λ1min(Lvir) and λ1max(Lvir) were calculated
for the corresponding values of parameters a, b, …, h
from Table 4, as well as the increments ε(L, Lvir),
which refine the measure μ(L) according to (7).
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