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INTRODUCTION

Most phenomena taking place with oxide nuclear
fuel under irradiation (swelling, fission gas release,
radiation induced densification, etc.), together with
irradiation, are determined by its temperature. The
temperature distribution in the pellet is a calculated
quantity. The temperature difference between the cen�
ter and the surface is determined by the thermal con�
ductivity coefficient. In spite of a large number of pub�
lications concerning thermal conductivity of oxide
nuclear fuel and its dependence from burnable neu�
tron absorbers, initial density (porosity), degree of
deviation from uranium dioxide stoichiometry, and
degree of burnup, there exist a small number of studies
containing the results of measurements of this quan�
tity. In surveyes [1,3] the approximate formulas usually
contain the parameters fitted to the experimental
points by means of least squares method.

Traditionally, the uranium dioxide thermal con�
ductivity is expressed in the following form [4–7]:

(1)

where x ≈ 2. The first term is connected with the
phonon contribution to thermal conductivity, and the
second term involves the contribution of electrons and
holes in the conduction band and valence band,
respectively. It is assumed that the phonon contribu�
tion to thermal conductivity of uranium dioxide
describes well this thermophysical quantity in the tem�
perature range 298 < T < 1300 K, while the term
describing the contribution of electrons and holes to
the heat transfer should be taken into account in the
range of higher temperatures 1300 < T < 3100 K.
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The coefficients A, B, C, and D in formula (1) are
the fitting parameters whose values are given in [1–3].
The parameters A and B, however, have a physical
interpretation. For temperatures satisfying the ine�
quality kB T � ћωmax, most phonons in the spectrum
of normal modes of the dielectric have the energy
ћω ≈ ћωmax. The average number of phonons in states
with the frequency ~ωmax increases linearly with tem�
perature. In this limiting case, it follows from the solution
of the linearized Boltzmann equation for the phonon dis�
tribution function in a solid [8, 9] that the thermal con�
ductivity linearly decreases with temperature,

(2)

Concerning the coefficient B, studies [8, 9] devoted
to investigation of thermal conductivity of solids give a
parametric estimate to a constant factor obtained for a
crystal with a monatomic unit cell.

In [9], the coefficient B was calculated for the case
of a face�centered cubic lattice in the Debye approxi�
mation,

(3)

where λ0 = 5 × 10–8  W/(m K), θD is the

Debye temperature, γ is the Grüneisen constant,  is
the average atomic weight in the unit cell, and a is the
lattice constant.

Let us not that the Debye approximation does not
statisfactorily describe the real ionic or covalent crys�
tals in which optical branches of the phonon spectrum
can be excited even at room temperatures. Practically
all theoretical estimates of the lattice thermal conduc�
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tivity coefficient use the approximation of a simple
monatomic crystal whose oscillation spectrum con�
tains only acoustic phonon branches. The maximum
frequency in the spectrum of normal modes is close to
the Debye one. The parameter θD in (3) occurs
because of the approximation of a simple monatomic
crystal. In real crystals, the temperature correspond�
ing to the maximum frequency may differ from the
Debye one by several hundred degrees, ћωmax/kB � θD.

Figure 1 shows the phonon spectrum of uranium
dioxide [10] experimentally measured using the neu�
tron scattering method. It can be seen that, at temper�
atures above 300 K, optical branches are excited in the
spectrum of normal modes of the UO2 crystal, but the
temperature corresponding to the maximum longitu�
dinal optical frequency is ~900 K. Therefore, it can be
expected that, at T > 900 K, the behavior of uranium
dioxide thermal conductivity is Debye�like.

For these reasons, the calculation of the coefficient
B in formula (3) for dielectrics and semiconductors
does not provide agreement with experimental data on
thermal conductivity. The values of this coefficient for
a particular substance can be determined only by fit�
ting using the least squares method.

The constant A in the expression for thermal resis�
tance W is usually connected with the processes of
scattering of thermal phonons on isotopes and admix�
tures,

(4)

where WI = A is extrinsic thermal resistance in high
temperature range, and WU is the thermal resistance
determined by the Umklapp processes (U processes).

The constant contribution to the thermal resis�
tance at temperatures T � ћωmax/kB was first obtained

W 1
λ
�� WI WU+ A BT,+= = =

in [11] in the Debye approximation for a monatomic
crystal,

(5)

where Ω is the atomic volume, c is the average Debye
speed of sound, Γ ≡  f is the fraction of iso�
topes in the solid, and Δm/m is the mass defect for iso�
topes. If the solid contains several isotopes of the same
element, the value of Γ is equal to the sum of contribu�
tions from each group of isotopes.

The approximate mean free path in the form of the
product of the relaxation time τk and the phonon
group velocity with the quasi�wave vector k,

(6)

was used for determination of extrinsic thermal resis�
tance in [11].

However, the τ approximation is inapplicable for
description of phonon collision processes. It is known
[12] that, for normal processes (N processes), the
exact solution to the Boltzmann collision equation
can be chosen in the form

(7)

where  is the phonon branch of the spectrum

and  is the phonon distribution function.

Distribution function (7) results in the zero colli�
sion integral [12], that formally means a lack of ther�
mal resistance. In this case, the thermal flux generated
by the function of form (7) is nonzero, and therefore,
the thermal conductivity for N processes is infinite. It
was noted in [9] that, in the τ approximation, the col�
lision integral for normal processes does not vanish,
since formally in the approximation of the mean free
path even N processes contribute to the thermal resis�
tance. Thus, the application of the method [11] for
derivation of the high�temperature part of the admix�
ture thermal resistance is unfounded. Moreover, for
most dielectrics, Debye law (2) is very well satisfied
[9, 12], and the isotopic contribution to the thermal
conductivity becomes considerable only in the low�
temperature region, 0 < T � ћωmax/kB.

ELECTRON CONTRIBUTION TO THERMAL 
CONDUCTIVITY OF URANIUM DIOXIDE

The last term in formula (1) was derived in [4, 5, 7]
on the basis of the Wiedemann–Franz law connecting
the thermal conductivity of degenerated electron gas
in metals and its conductivity. The Wiedemann–Franz
law, however, is inapplicable for dielectrics and semi�
conductors, since the number of charge carriers in the
conduction band and the valence band for them is
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Fig. 1. Experimental phonon spectrum of uranium dioxide
along three directions in the Brillouin zone [10]: (a) Γ(0, 0,
0) → X(0, 0, 1); (b) M(1, 1, 0) → Γ(0, 0, 0); and (c) Γ(0, 0,
0) → L(1/2, 1/2, 1/2). The x axis shows the coordinate
along the straight line between two typical points of the
Brillouin zone.
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small, and the chemical potential of a metal differs
from the chemical potential of a semiconductor and a
dielectric [8]. Stoichiometric uranium dioxide is a typ�
ical dielectric. The band gap in UO2 is large, εG ≈ 2.7–
3 eV [13]. The number of charge carriers (electrons and
holes) in the conduction band and the valence band is
exponentially small up to the melting point [14],

(8)

where   =  is the
de Broglie wavelength of the electron (e) or hole (h)
moving with thermal velocity, kB is the Boltzmann

constant,  is the effective electron (hole) mass,
and ћ is the Planck constant.

The effective electron mass in the conduction band
is usually smaller than or equal to the electron mass,

 ≤ m0, and the effective hole mass is smaller than m0

by at least a factor of two; therefore, the de Broglie
wavelength in the temperature range 1000 < T < 3100 K
varies within 0.5 <  < 0.9 nm, and the number of
electrons (holes) in the conduction (valence) band is
4 × 1012 < n < 3 × 1018 cm–3. Such concentration of
charge carriers even at melting temperature is by four
orders of magnitude smaller than the number of elec�
trons in conducting band of metal. 

In the temperature range 100 < T < 3100 K all opti�
cal branches of the phonon spectrum are excited.
Therefore, electron scattering mainly takes place on
optical oscillations (phonons). The electron mean free
path determined by scattering on optical phonons is
independent of temperature and can be estimated as [14]

(9)

where a0 = 0.053 nm is the Bohr radius and ε is the
dielectric permittivity of UO2. For uranium dioxide,
the mean free path of the electron or hole is just several
lattice constants.

The average number of electrons in the conduction
band at any temperature is much smaller than the
number of states therefore the electron velocity in the
conduction band can be estimated in the classical way.
If the bottom of the conduction band is taken as the
zero energy of charge carriers, the average electron
velocity in the band coincides with the thermal veloc�

ity  � 

The contribution to the specific heat from charge
carriers is proportional to their number in the conduc�
tion band and the valence band. This yields that the
ratio of the specific heat of the electron and hole sub�
systems of a dielectric to the lattice specific heat is a
negligible quantity [14],
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where n0 is the average atomic density of uranium
dioxide.

Thus, the thermal conductivity of the electron and
hole subsystems of a dielectric (or a pure semiconductor)
in the high�temperature region can be estimated as

(11)

Figure 2 shows the thermal conductivity of the
electron–hole subsystem for stoichiometric admix�
ture�free UO2 as a function of temperature calculated

using (11) for εG = 3 eV and  = 2a. It can be seen that,
even in the vicinity of the melting point the electron–
hole contribution to the thermal conductivity is ~0.2
W/(m K), while the experimental thermal conductiv�
ity at T ≈ 2800 K is ~2 W/(m K). Since the experimen�
tal accuracy of the thermal conductivity measured
using the laser flash method in the high�temperature
region (T > 1800 K) is not lower than 10%. Therefore
the contribution to the total thermal conductivity of
pure uranium dioxide with stoichiometric composi�
tion from the electron and hole subsystems can be
neglected.

EXPERIMENTAL DATA ON THERMAL 
CONDUCTIVITY COEFFICIENT 

FOR ADMIXTURE�FREE 
STOICHIOMETRIC UO2

The thermal conductivity of uranium dioxide was
experimentally measured, as a rule, using two tech�
niques, the radial heat flow method [15] and the laser
flash method (Parker’s method) [16].
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Fig. 2. Electron and hole thermal conductivity of stoichi�
ometric uranium dioxide.
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The radial heat flow method is a stationary mea�
surement method. In this method the thermal con�
ductivity coefficient is derived from the solution of the
inverse problem of temperature distribution in a cylin�
drical sample with the generatrix length L. The axial
heater situated at the center of the sample transmits
the thermal power P to the sample [15],

(12)

where T1 and T2 are the temperature values at the
radial distances r1 and r2, respectively, measured by
thermocouples, and T0 is the temperature at the sam�
ple surface. The quantity λ(T0) formally represents the
average thermal conductivity in the temperature range
from T0 to T0 + ΔT, where ΔT =  is the maxi�
mum heating during the time Δt and CP is UO2 specific
heat at constant pressure. It is assumed that thermal
losses from the sample surface are absent. At tempera�
tures above 1000 K, however, infrared (in vacuum) or
convective (in a gaseous medium) thermal losses in the
installation chamber containing the sample become
considerable. Therefore, the temperature distribution
along the sample cannot be considered stationary. In
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these conditions, formula (12) is inapplicable, and the
temperature distribution in the sample should be cal�
culated on the basis of the solution of the nonstation�
ary problem of heat conduction taking into account
thermal losses to infrared radiation and convective
flows. Therefore, usually the stationary heat flow
method is used for measurement of the thermal con�
ductivity of ceramics in the temperature range 300 <
T0 < 1600 K.

The laser flash method (Parker’s method) [16] is a
nonstationary method. The essence of this method is
as follows: the base of a cylindrical sample with the
generatrix L ~ d/10 (d is the sample diameter) placed
in technical vacuum at the initial temperature T0 is
irradiated by a laser pulse with the duration τ ~ 10–3 s.
The width of the laser beam is equal to the base area
πd2/4 of the sample. The laser transmits the amount of
heat Q = 3–5 J to the sample, and the pyrometer at the
other base of the sample measures its temperature evo�
lution.

In the absence of thermal losses, the time derivative
of the heating curve of the sample at half maximum is
proportional to the thermal diffusivity coefficient k(T)
of the investigated substance [16],

(13)

where ΔTmax is the maximum sample heating and K =
1.37 is the constant. The thermal diffusivity coefficient
included in expression (13) on the basis of the laser
flash method is determined from the relation [16]

(14)

It follows that, in order to calculate the thermal dif�
fusivity using the laser flash method, it is necessary to
measure the value of τ1/2 at half maximum of the heat�
ing curve.

At high temperatures, infrared radiation from the
sample surface results in reduction of maximum heat�
ing of the irradiated substance. Figure 3 shows the typ�
ical heating curves of uranium dioxide samples
(dashed lines) measured using the laser flash method
[17]. The solid lines in Fig. 3 correspond to the heating
curves that would take place for the same initial tem�
peratures T0 in the absence of losses for “blackbody”
radiation. The time τ1/2 at heating half maximum is
also shown in this figure. It can be seen that, at 1500 K,
thermal radiation results in an error in determining
τ1/2 and, correspondingly, in overestimation of the
thermal diffusivity of uranium dioxide calculated
using (14). Therefore, the original Parker method
yields an overestimated value of the thermal diffusivity
coefficient [17].

Figure 4 shows the thermal conductivity coeffi�
cients of UO2 pellets with a density of 94–95% of the
theoretical density (TD) as functions of temperature
reconstructed in [15, 18] using the radial thermal heat
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Fig. 3. Heating of uranium dioxide sample as a function of
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radiation at an initial temperature of (a) 600 and (b) 1500 K.
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flow method and the laser flash method. It can be seen
that the values of the uranium dioxide thermal con�
ductivity coefficients measured using different meth�
ods in the temperature range T < 1200 K are close and
monotonically decrease with temperature. Moreover,
the spread of experimental points for these tempera�
tures is small. In the range T > 1800 K, however,
anomalous growth of the thermal conductivity coeffi�
cient is observed which cannot be explained on the
basis of the theory of lattice thermal conductivity or by
the contribution to the thermal conductivity from
degrees of freedom of charge carriers (electrons and
holes).

It should be noted that such anomalous growth of
thermal conductivity was experimentally observed in
the laser flash method, where the thermal conductivity
coefficient is not a directly measured quantity, but is
calculated as the product of the specific heat of UO2
and the thermal diffusivity coefficient (14).

Figure 5 shows the thermal diffusivity as a function
of temperature k(T) of uranium dioxide with the com�
position close to stoichiometric obtained using the
laser flash method [19]. Points in Fig. 5 correspond to
experimental data and curves correspond to its
approximation by power function using the least
squares method. It can be seen that, unlike λ(T), the
experimental thermal diffusivity coefficient k(T)
monotonically decreases with increasing temperature
up to 2800 K without any anomalies. The thermal dif�
fusivity as a function of temperature in the high�tem�
perature region is well described by the Debye law
1/T0.9.

The thermal conductivity coefficient of UO2 by
definition is the product of the specific heat of ura�
nium dioxide at constant volume CV(T), the density ρ,
and the thermal diffusivity k(T) [20],

(15)λ T( ) CV T( )ρk T( );=

i.e., the thermal conductivity coefficient is a quantity
defined at constant volume.

The equation of thermal balance in a dielectric is
formulated for the thermal part of internal energy U in
a unit volume,

(16)

Under quasi�equilibrium condition at constant
volume, according to the second law of thermody�
namics, the variation of internal energy coincides with
the variation of the amount of heat,

(17)

Substituting thermodynamic relation (17) into the
energy conservation law results in the classical form of
the thermal conductivity equation,

(18)

Sometimes, when calculating the thermal conduc�
tivity coefficient using formula (15), the specific heat
at constant pressure is used instead of the specific heat
at constant volume. According to the second law of
thermodynamics the system performs the work

(19)

Substituting second law of thermodynamics (19)
into kinetic equation (16) we obtain the thermal con�
ductivity equation in the system at constant pressure:

(20)

It follows from conservation law (20) that at con�
stant pressure the thermal conductivity equation con�
tains an additional energy source connected with the
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work performed by the system upon heating. The last
term in the right�hand part of Eq. (20) can be repre�
sented as

(21)

The equation of state of a solid in the Grüeneisen
form PV = γΔU and the thermodynamic relation
3αBT =  [8], where ΔU is the thermal part of inter�
nal energy, α is the coefficient of true linear thermal
expansion, and BT is the isothermal compression
modulus were used for obtaining relation (21).

Thus, quantity (21) represents the work of anhar�
monic forces spent for thermal expansion of a solid.
This work per unit time is proportional to the rate of
change of temperature therefore term (21) can be
combined with the left�hand part of Eq. (20),

(22)

The following Nernst–Lindemann relation [9] was
used for writing equality (22):

(23)

Thus, even for a system at constant pressure taking
into account the work of anharmonic forces on ther�
mal expansion of the solid results in the classical equa�
tion of thermal conductivity in the solid.

Formally, replacing the heat capacity at constant
volume by the heat capacity at constant pressure in
formula (15) is equivalent to neglecting the work of
anharmonic forces in heat conduction equation (20).
The specific heat at constant volume for uranium
dioxide at temperatures above 500 K reaches the
Dulong–Petit limit 9R (R = 8.31 J/(mol K) is the uni�
versal gas constant). Therefore, according to defini�
tion (15) the thermal conductivity coefficient as a
function of temperature at temperatures T > 500 K
should have the same form as the thermal diffusivity as
a function of temperature; i.e., the thermal conductiv�
ity of the purely stoichiometric uranium dioxide
should be described by the Debye law λ(T) ~ 1/T0.9.

The true linear thermal expansion coefficient
(TLTEC), the isothermal compressibility modulus,
and the lattice parameter of uranium dioxide weakly
depend on temperature. The product of the anhar�
monic correction and the thermal diffusivity coeffi�
cient slowly grows with increasing temperature as

(24)

1
V
�� ∂A

∂t
�����⎝ ⎠

⎛ ⎞
P

P 1
V
�� ∂V

∂T
�����⎝ ⎠

⎛ ⎞
P

∂T
∂t
����� 3αγΔU

V
���������������∂T

∂t
�����= =

=  3α( )2BT
ΔU
VCV

��������∂T
∂t
����� 3α( )2BTT∂T

∂t
�����.≈

γCV

CP
3α( )2BTT

ρ
��������������������– ρ∂T

∂t
�����

=  CVρ∂T
∂t
����� ∇ λ T( )∇T[ ].=

CP CV–
3α( )2BTT

ρ
��������������������.=

Δλ CP CV–( )ρk T( ) 3α T( )[ ]2∼ BT T( )T 0.1
.=

The contribution of this term to the thermal con�
ductivity coefficient determines its anomalous non�
physical growth at high temperatures (Fig. 4).

MODEL OF UO2 SPECIFIC HEAT
AT CONSTANT VOLUME

To calculation of the thermal conductivity coeffi�
cient of uranium dioxide in a wide temperature range,
it is necessary to know the temperature dependence of
its specific heat. Note that specific heat at constant
volume is a calculated quantity, since it is impossible to
provide constant volume in an experiment because of
the phenomenon of thermal expansion of solids under
heating.

According to Fig. 1 the phonon spectrum of ura�
nium dioxide contains nine branches (all transverse
branches of the normal spectrum are twice degener�
ate); therefore, the number of vibrational degrees of
freedom of unit cell for UO2 is also equal to nine. The
specific heat per one mole of uranium dioxide at con�
stant volume by definition is [20]

(25)

where  =  is the Bose–
Einstein distribution function for phonons, D(ω) =

 is the phonon density of

states (DOS),  is the phonon frequency, index s

denotes a phonon branch number, 
and NA is the Avogadro constant. The plot of the func�
tion D(ω) obtained in an experiment on neutron scat�
tering on a UO2 crystal [10] is shown in Fig. 6.

It is convenient to derive the expression for the spe�
cific heat of uranium dioxide in the form of an analyt�
ical function of absolute temperature using a model
DOS instead of the real DOS. This approach is
founded since the specific heat is an integral quantity
with respect to the phonon spectrum. The model
phonon density of states should be normalized per
unit,

(26)

and possess characteristic frequencies equal to the
characteristic frequencies of the experimental phonon
spectrum.

The first and second peaks of the experimental
DOS (Fig. 6) correspond to acoustic frequencies:
twice degenerate transverse frequency ωTA and longi�
tudinal frequency ωLA. The third and fourth peaks can
be correlated with the frequencies ωTO1 > ωTO2 of twice
degenerate transverse optical branches (Fig. 1). The
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remaining frequencies of longitudinal optical oscilla�
tions ωLO2 and ωLO1, due to the closeness of their val�
ues, are indistinguishable on the plot.

To development of the numerical model of specific
heat at constant volume of uranium dioxide, we take
into account the contribution to the specific heat from
acoustic branches within Debye model and the contri�
bution of optical phonon branches within Einstein
model [20].

In order to calculate the Debye frequency ωD of
uranium dioxide it is necessary to calculate longitudi�
nal and transverse speeds of sound in UO2. In [21] the
approximating formulas for calculation of isotopic
elastic moduli of oxide nuclear fuel at room tempera�
ture depending on the sample porosity P in the interval
0 < P < 0.1 were proposed,

(27)

(28)
According to (27) and (28), the values of elastic

moduli at 100% density of oxide nuclear fuel are equal
to E = 220 GPa and G = 84 GPa. Then the isothermal
compression modulus of uranium dioxide at 100% fuel
density and a temperature of 25°C is equal to

(29)

The longitudinal and transverse speeds of sound are
related to the isotropic elastic moduli by the known
relations [22]

(30)

(31)

where the density of the substance is taken to be equal
to the theoretical density of uranium dioxide at room
temperature ρ = 10960 kg/m3.

The average speed of sound c according to the
Debye model can be calculated using relation [8, 9, 20]

(32)

which yields the average value of the speed of sound
c = 3096 m/s. The Debye frequency represents the
product of the average speed of sound and the Debye

quasi�wave vector kD =  = 3.89/a (Ω = a3

is the volume of unit cell of uranium dioxide) and is
equal to

(33)

The Debye temperature for UO2 is equal to θD =
 = 168 K.

Since in the proposed model of specific heat of ura�
nium dioxide the acoustic phonon branches are taken
into account within the Debye model and the optical
branches are taken into account within Einstein

E 220 1 1.45P–( ) GPa,=

G 84 1 2.25P–( ) GPa.=

BT
1
V
�� ∂V

∂P
�����⎝ ⎠

⎛ ⎞
T

–
1– EG

9G 3E–
���������������� 192.5 GPa.= = =

cl
3BT 4G+

3ρ
������������������⎝ ⎠

⎛ ⎞
1/2

5271 m/s,= =

ct
G/ρ( )1/2

ρ
�����������������⎝ ⎠

⎛ ⎞ 2768 m/s,= =

3

c3
��� 1

cl
3

��� 2

ct
3

���,+=

6π2
/Ω[ ]

1/3

ωD ckD 2.20 1013
 Hz.×= =

ћωD/kB

model. So, in this approximation the model DOS can
be taken as the sum

(34)

where η(x) is the Heaviside function and δ(x) is the
Dirac delta function. It is obvious that the model DOS
satisfies condition (26).

The values of Einstein frequencies for optical
branches of the spectrum of normal oscillations (Fig. 6)
are given in Table 1.

Substituting DOS(34) into (25) we obtain the final
formula for calculation of specific heat at constant vol�
ume CV(T) within the proposed model:

(35)

where I3(z) ≡  is is the third order Debye

integral and θEi are the characteristic Einstein temper�
atures of the phonon spectrum for UO2. The values of
the parameters in formula (35) are given in Table 2. It
follows from this table that, even at room temperature,
optical branches are excited in the spectrum of normal
oscillations of uranium dioxide.

Experimental data describing the temperature
dependence of specific heat at constant pressure for
uranium dioxide [23–27] are shown in Fig. 7. This
figure also shows model specific heat at constant vol�
ume (35). It can be seen that in the temperature range
35 < T < 199 K the calculated specific heat at constant
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Fig. 6. DOS of UO2 [10].
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volume practically coincides with the low�tempera�
ture part of specific heat at constant pressure CP. It
proves that the choice of the model DOS in form (34)
is founded.

It should be noted that formula (35) for calculation
of specific heat at constant volume is inapplicable in
the vicinity of the Néel point and absolute zero since
at 0 < T < 32 K uranium dioxide is turned into the anti�
ferromagnetic state in which the specific heat is
defined mainly by degrees of freedom of antiferromag�
netic magnons.

MODEL OF UO2 THERMAL CONDUCTIVITY

In the core of WWER�type reactor, the working
temperature interval for oxide nuclear fuel is much
higher than the Debye temperature of uranium diox�
ide. In the range of high temperatures compared to θE3
(Table 2) the thermal diffusivity of uranium dioxide
satisfies the Debye law [8, 9],

(36)k T( ) k θE3( )
θE3

T
������⎝ ⎠

⎛ ⎞
0.89

,=

where k(θE3) = 1.3 × 10–6 m2/s is the value of the ther�
mal diffusivity coefficient at T = θE3.

Let us use for calculation of thermal conductivity
of UO2 a model of specific heat at constant volume of
UO2 developed in this work.

(37)

where M = 0.27 kg/mol is the molar mass of uranium
dioxide and ρ is its density.

The results of comparison of the temperature
dependences of the thermal conductivity coefficients
of UO2 calculated using (37) and determined experi�
mentally [15, 18] are shown in Fig. 8. It can be seen
that, in the whole temperature range, the calculated
dependence λ(T) is close to the experimental points.
Therefore it is reasonable to use semiempirical for�
mula (37) for calculation of the thermal conductivity
of oxide nuclear fuel in the whole temperature range
400 < T < 2800 K.

In the case of nonstoichiometric uranium dioxide
or UO2 containing alloying dopants, burnable neutron
absorbers and simulated fission products the mecha�
nism of heat conduction of uranium dioxide changes.
The distance between the dopant�induced state and
the bottom of the conduction band is much smaller
than the band gap. According to [13] in hyperstoichi�
ometric uranium dioxide the energy gap between the
top of the valence band and the energy level of oxygen
interstitials—p�type impurity—is |εG – εA| = 0.4 eV,
while in the case of uranium interstitials or oxygen
vacancies—n�type impurity—the energy corre�
sponding to the donor level is εD = 0.9 eV. Thus, in the
high�temperature region nonstoichiometric uranium
dioxide shows semiconductor properties and its con�
tribution to thermal conductivity connected with the
charge carriers becomes comparable with the lattice
thermal conductivity. In this case, the number of
charge carriers in the conduction band or the valence
band is proportional to the square root of the number
of donor or acceptor dopants (nD, A)1/2 [14]. If alloying
elements, Al, Cr, Gd, and Nb oxides are introduced
into uranium dioxide, the number of either acceptor
dopants (interstitial oxygen) or donor dopants (oxy�
gen vacancies) increases depending on the ratio of the
number of oxygen atoms (O) to the metal atoms (M)
in the chemical formula of the metal oxide in the
alloying dopants. If the ratio O/M in the chemical for�
mula of the alloying dopant is less than 2 dissolution of
such dopant in the UO2 lattice increases the number of
holes in the valence band and therefore the amount of
oxygen interstitials. If the ratio O/M in the chemical
formula of the dopant is larger than 2 the correspond�
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Table 1. Characteristic phonon frequencies in formula (34)

ωD, THz ωTO1, THz ωTO2, THz ωLO2, THz

22.0 51.1 82.3 109.0

Table 2. Characteristic temperatures in the expression for
model specific heat of uranium dioxide (35)

θD, K θE1, K θE2, K θE3, K

168 391 629 836
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Fig. 7. Temperature dependences of specific heat CP of
UO2: (1) [23], (2) [24], x = 0.017; (3) [25], x = 0.002 ±
0.001; (4) [26], x = 0.004; (5) [27], x = 0.00; and (6) specific
heat at constant volume CV calculated using formula (35).
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ing dopant in the uranium dioxide lattice is the source
of additional electrons in the conduction band.

The thermal conductivity coefficient specified by
the processes of phonon scattering on isolated point
defects or isotopes is known [12] only for the case of
their small concentration nD, A/n0 � 1, when the
amplitude of phonon scattering on admixtures and
isolated defects is much smaller than the average dis�
tance between them (nD, A)1/3. Only in this case can
phonon scattering on admixtures be considered
coherent and the scattering probabilities be indepen�
dent from each other. Therefore, the phonon part of
the thermal conductivity coefficient for nonstoichio�
metric uranium or uranium with alloying dopants is at
present unsubstantiated.

CONCLUSIONS

A model of specific heat of uranium dioxide at con�
stant volume CV describing both the experimental data
on specific heat of UO2 at constant pressure CP in the
low�temperature region and the limiting transition CV
= 9R in the high�temperature region (the Dulong–
Petit limit) was proposed.

It was established that the contribution of electron
and hole thermal conductivity of pure (admixture�
free) uranium dioxide with stoichiometric composi�
tion in the whole temperature range up to the melting
point is negligible as compared to the lattice thermal
conductivity coefficient.

It was demonstrated that the thermal conductivity
of uranium dioxide follows the Debye law. The contri�
bution to the resulting thermal conductivity of UO2 in
the high�temperature region T > 900 K due to phonon
scattering on admixtures and isotopes can be
neglected.

The anomalous growth of the thermal conductivity
coefficient of uranium dioxide in the high�tempera�
ture region T > 1800 K is the systematic error caused
by neglecting of the work of anharmonic forces upon
thermal expansion of a solid during analysis of mea�
surement results of UO2 thermal conductivity using
Parker’s method.
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