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Abstract—Algorithms for a dispatcher of a multi-agent control system for an autonomous underwater vehicle
(AUV) are described. The algorithms are designed on a modular basis, which provides for the control
of a wide range of tasks assigned to the AUV, and, in addition, makes the implementation of each algorithm
simple.
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INTRODUCTION
Autonomous underwater vehicles (AUV) hold

great promise for the study and development of the
World Ocean [1–8].

The use of AUVs in areas covered with ice, as well
as at deep depths inaccessible for submarines, is the
most relevant of their applications.

Heavy class vehicles occupy a special place among
AUVs; they can take up many functions that were tra-
ditionally fulfilled by surface vessels and submarines,
among which are the following:

• offshore prospecting for minerals;
• cargo deliveries to hard-to-reach areas;
• laying of underwater communication lines;
• search for sunken ships and aircraft;
• ecological monitoring of the World Ocean;
• research on marine f lora and fauna;
• underwater archaeological research;
• patrolling of territorial waters to prevent unau-

thorized intrusion of foreign underwater vehicles;
• detection and destruction of sea mines, includ-

ing silted ones.
Heavy class AUVs can also be effectively used in the

military sphere since they fit well with the conceptual
framework for network centric warfare at sea [9–11].

Since AUVs are autonomously operating underwa-
ter robots, their creation requires the solution of sig-
nificant scientific and technical problems. One of the
most challenging issues is the development of a con-
trol system capable of providing proper fulfillment of
the assigned mission task. The latter is a set of formal-

ized instructions, specific to time and geographical
coordinates, developed by a human operator [12].

However, the control system is difficult to use for a
number of reasons, both external and internal. The
external factors are the following:

• AUV deviation from the assigned route due to
navigation errors;

• danger of collision with underwater objects;
• detection of stationary obstacles (underwater

ridges, etc.) that are not included in the navigation
map but they need to be avoided;

• unexpected changes in the speed and/or direc-
tion of the sea current, resulting in changes in the AUV
motion parameters;

• changes in the ice cover boundaries, which pre-
vent the AUV surfacing for observation at a fixed time.

Most of the above factors lead to additional loss of
time and energy and, as a result, the need to correct
the mission task. The situation may become even
more complicated in the case of deliberate counter-
measures to the AUV mission, which is not uncom-
mon when AUVs are used in special operations.

Internal factors are fatal malfunctions of the AUV
hardware and unrecoverable software failures, which
also requires correction of the mission task, and in
some cases, termination of the mission.

The above-mentioned negative factors, as well as
the need to take into account the quantity of energy
reserves, the vehicle speed, the accuracy of autono-
mous navigation, and the range of underwater com-
munications, make it rather difficult to take effective
decisions aimed at the accomplishment of the mission
task. For this reason, the AUV control system must be
341



342 BYKOVA et al.

Fig. 1. A block diagram of an AUV multi-agent control system.
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able to implement complicated adaptive algorithms
with elements of artificial intelligence. But this raises
another issue of concern: to date, there are no formal-
ized methods for designing such algorithms; instead,
there are only general recommendations on the prin-
ciples of their design [13]. Such algorithms are heuris-
tic, this being the reason why their design involves a
long experimental stage. But this situation is not com-
mon to the design practice in Russia.

The AUV control system is extremely sophisti-
cated, which is explained by the need to exercise real-
time control over a large number of heterogeneous
technical facilities in a fully automatic mode under
conditions of a continuously varying, often aggressive,
environment and limited capabilities of autonomous
underwater navigation and communication with the
command post, located on shore or the ship [14].

A large number of publications, which continue to
grow, are devoted to the approaches to the creation of
control systems for AUV both in Russia [14–24] and
abroad [25–63].

As has been pointed out in various publications [14,
26], it is very difficult to build a centralized (multi-
object) system capable of controlling all of the AUV
equipment. This is particularly true of heavy class
AUVs, designed to operate at considerable distances
from the base and in a wide range of depths. They are
equipped with sophisticated electronics and a large
number of technical systems. A control system with a
multi-agent structure is the best choice for such AUVs
[14, 26, 64, 65].

In a multi-agent structure, each system of the AUV
is an independent intelligent agent with its own control
system. The coordinated interaction of the agents is
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provided by a special dispatcher agent (dispatcher),
which must send tasks to the agent’s control systems at
the right time. To execute the task, the agent can
involve other agents or request data from them.

Further, based on the results of the task execution,
the dispatcher forms new tasks. If the dispatcher finds
out that the mission task cannot be executed in strict
accordance with the mission task due to some unex-
pected circumstances, it corrects the mission task.

Figure 1 shows a block diagram of a heavy class
AUV multi-agent control system, which includes, in
addition to the dispatcher, four electronic systems
(navigation, target detection, radio communication
and positioning, and underwater communication and
positioning), as well as four power and propulsion sys-
tems (power generation and distribution, propulsion
and steering, trimming, and alarm). The power and
propulsion control system (PPCS) serves as the dis-
patcher of the power and propulsion systems. It makes
the work of the central dispatcher simpler. If neces-
sary, the list of AUV systems can be extended.

Data exchange between the agents is carried out
through the network, allowing each agent to have
access to all data.

As Russian and foreign experience has shown, the
development of universal AUVs for execution of all or
most of the above-mentioned tasks proves to be inex-
pedient for various reasons. As a result, preference is
given to specialized vehicles or vehicles with a replace-
able payload. Nonetheless, because of the complexity
and high cost of the AUV control system, creation of a
universal dispatcher that could be used in the various
AUVs with a multi-agent control system is economi-
cally justified.
OSCOPY AND NAVIGATION  Vol. 11  No. 4  2020
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This paper describes the algorithmic structure of
such a dispatcher. Its versatility is based on the modu-
lar principle of the algorithm design, which provides
for the control of a wide range of tasks assigned to the
AUV, and, in addition, makes the implementation of
each algorithm simple.

1. ALGORITHMIC STRUCTURE 
OF THE DISPATCHER

The algorithmic structure of the dispatcher is based
on the principles listed below.

(1) The mission task, loaded into the dispatcher’s
memory during the preparation for the mission,
includes the following formalized documents:

• description of the AUV route in the form of a
sequence of tacks on which the vehicle moves with a
constant heading, speed, and depth. Since the length
of the tacks is not limited, the AUV route in the open
sea areas can be described using a small number of
tacks. This approach simplifies both the routing design
and operation of the AUV control system on it under
the influence of the factors that impede accurate exe-
cution of the mission task. If necessary, the descrip-
tion of each tack may include special tasks that the
AUV must carry out on it. The list of possible tasks
includes: observation using different methods, recep-
tion/transmission of messages using the radio or
hydroacoustic (h/a) channel, execution of special pro-
grams (for example, search for a sunken object, com-
piling maps of physical fields, etc.);

• description of the AUV’s behavior during the
execution of a special program, if it is provided by the
mission task;

• a table of constants that ensure the operation of
control algorithms, such as permissible depth, maxi-
mum speed, optimal distance from the bottom when
searching for bottom objects, maximum time for each
action, etc. All in all, about a hundred constants;

• formalized geographical, navigation-hydro-
graphic, and hydrometeorological description of the
planned AUV route area (coastline boundaries,
depths, parameters of sea currents, h/a conditions, a
list of available radio navigation aids);

• schedule of the planned power consumption
during the mission.

(2) To simplify the algorithms implemented by the
dispatcher, all AUV systems are divided into electronic
(navigation, target detection, communication) and
technical (power generation and distribution, motion)
systems. The electronic systems are controlled directly
by the dispatcher (the left column in Fig. 1), while the
technical systems (the right column in Fig. 1), through
the PPCS, which performs the following functions:

• conversion (taking into account the motion
model) of a set of the AUV motion parameters (head-
ing, speed, depth) received from the dispatcher into
control commands that must be given to the systems
GYROSCOPY AND NAVIGATION  Vol. 11  No. 4  20
for propulsion and steering, power generation and dis-
tribution, and trimming;

• optimization of power consumption;
• determination and reporting of the remaining

power reserves to the dispatcher;
• setting (by sending a message to the dispatcher)

the speed and depth limits of the AUV, taking into
account the failed equipment;

• translation of commands from the dispatcher to
up/down the radio communication antenna, turn
on/off various manipulators and alarm systems.

(3) During the mission, the AUV can be found in
one of the following states:

• movement and performance of different func-
tions in the telecontrol mode, in which the dis-
patcher’s functions are limited to translation of the
commands received via the radio/hydroacoustic com-
munication channel from the command post;

• emergency termination of the mission due to the
failure of some AUV systems or premature consump-
tion of the power supply;

• passing the detected moving underwater/surface
object;

• bypassing the detected stationary obstacle;
• execution of a special program in a designated

area;
• different kinds of observation: by signals from

satellite navigation and radio navigation systems,
regional h/a navigation system, different responding
beacons, as well as by underwater passive landmarks,
natural geophysical fields (bathymetric, magnetic,
gravitational);

• communication session over the radio channel;
• movement along the route in accordance with

the mission task.
The above states are given in decreasing order of

their priority. In the case when the AUV is in a certain
state but some conditions arise for a change to a state
of a higher priority, then this transition is carried out
immediately, before the normal termination of the
current state. If conditions arise for a transition to a
state of a lower priority, it is postponed until the nor-
mal termination of the current state. This approach
greatly simplifies the algorithms implemented by the
dispatcher.

(4) Each state of the AUV is serviced by a separate
algorithm implemented as an independent asynchro-
nously functioning software module. As a result, in
accordance with the logic described above, at each
moment of time, the algorithm that serves the current
state performs the functions of the dispatcher. When
the AUV passes into another state, another relevant
algorithm takes over the dispatcher’s functions.

In addition to the algorithms mentioned above, the
dispatcher includes a number of additional perma-
nently functioning algorithms, for example, the algo-
20
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Fig. 2. The structure of the software of the simulator for testing AUV control algorithms.
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rithm for target detection, consumption of the power
supply, and the operability of the AUV’s electronic
and technical equipment.

This decomposition also makes it possible to sim-
plify the dispatcher’s algorithms.

(5) While performing the mission task, the dis-
patcher interacts with the AUV systems (Fig. 1) (to be
more precise, with their control systems) using for-
malized information modules. The dispatcher interac-
tion with each specific system is implemented through
two information modules: one, to transmit data from
the dispatcher to the AUV system and the other one, in
the opposite direction. It should be noted that due to
the multi-agent structure of AUV control, the infor-
mation modules include a very limited set of com-
mands and data.

(6) The AUV interaction with the command post is
carried out through the exchange of formalized mes-
sages via a radio or h/a communication channel.

The command post sends three types of messages
to the AUV:

• request for the AUV current state;

• correction of the mission task;

• command of changing to the state (exit from the
state) of telecontrol.
GYR
The formalized message sent by the AUV to the
command post on request or on its own initiative
includes:

• AUV state code, for example, planned execution
of the mission task, the result of a special task, emer-
gency termination of the mission with indication of
the reason;

• remaining power supply;
• AUV coordinates;
• time of the last observation;
• a list of faulty equipment.

2. TESTING THE AUV CONTROL 
ALGORITHMS: SIMULATION RESULTS

To test the AUV control system, we created a sim-
ulator. The structure of its software is shown in Fig. 2,
wherein the yellow blocks show software models of the
AUV systems. The blue blocks are responsible for the
simulation of the input signals from the AUV antennas
and sensors, taking into account the h/a conditions of
propagation of signals and interference, as well as the
errors of their measurement. Regardless of what soft-
ware it contains, each block has an output to display
the simulation results.

Simulation of mobile and stationary objects
involves calculation of their motion and acoustic fields
(primary and secondary). The behavior of mobile
OSCOPY AND NAVIGATION  Vol. 11  No. 4  2020
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Fig. 3. AUV path in accordance with the mission task: (a) the whole path;  (b) maneuvering while searching for the object within 
the area; (c) maneuvering at depth.
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objects can be either adaptive (i.e., changes after they
are detected by the AUV) or nonadaptive (does not
change). Simulation of the h/a channel allowed us to
form a ray structure of the object’s noise or an echo
signal from it at the input of the receiving antennas of
the h/a target detection system, as well as the ray
structure of the sea noise and the intrinsic noise of the
AUV. This takes into account the h/a conditions in the
area and the current relative position of the objects and
the AUV.

We simulated the following functions of the com-
mand post:

• development of the mission task;
• generation and transmission of AUV messages

via the radio/hydroacoustic communication channel;
• reception of AUV messages via the radio/hydro-

acoustic communication channel;
• correction of the mission task;
• AUV telecontrol mode.
Simulation of the radio and hydroacoustic com-

munication and navigation channels takes into
account hydrometeorological conditions in the area of
the mission and the capabilities of the equipment
installed on the AUV and at the command post.

AUV motion is simulated as follows. In accordance
with the mission task and taking into account the cur-
rent situation, the dispatcher sends the AUV motion
GYROSCOPY AND NAVIGATION  Vol. 11  No. 4  20
parameters for the PPCS to set. Using the kinematics
model of the AUV, the PPCS generates commands
that are transmitted to the technical systems of the
AUV to perform the assigned task. Then, the AUV
motion parameters that were actually determined are
simulated in the corresponding block taking into
account the limitations and faults of the equipment.
Systematic and random errors typical of navigation
devices are added to them in the block for simulation
of motion parameters estimates. The latter are fed into
the navigation system, which uses them for routing
control.

The operation of the AUV control system is
demonstrated using the example of simulation of an
actual mission whose purpose is to detect a sunken air-
craft in a remote area.

After leaving the base, the AUV must reach the
assigned area, find the sunken aircraft, determine its
coordinates, report them to the command post via the
radio communication channel, and then return to the
base. The mission is planned to last 94.3 hours; the
planned length of the AUV path is 351.5 km. The sea
depth is 200 m. There is no ice cover.

The AUV route consists of three tacks:
• movement from the base to the assigned area;
• search for a sunken aircraft in the designated

area;
20
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Fig. 4. AUV route: (a) the whole path; (b) maneuvering within the area; (c) part of maneuvering on the way to the area and return 
to the base; (d) part of maneuvering after detection of the object; (e) maneuvering at depth.
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• return to the base.

The instructions prescribe that the aircraft must be
searched around using a sonar while the AUV contin-
ues moving spiraling, starting at the point of the
expected location of the aircraft.

Every 24 hours, the AUV must determine its posi-
tion by the signals of the satellite navigation system.

In addition to the main task during the mission, the
AUV has to carry out auxiliary tasks described above,
in particular, control the power supply and detect
GYR
mobile and stationary objects with subsequent
maneuvering for bypassing in order to avoid collision.

The simulation results are shown in Figs. 3 and 4.

Figure 3 shows the AUV path in accordance with
the mission task, which consists of three stages: mov-
ing in a straight line to the area, maneuvering along a
spiraling path within the area, and moving back in a
straight line. Movement to the area and back is
planned at a depth of 100 m, maneuvering, at a dis-
tance of 20 m from the bottom. Speed at all stages is
2 knots.
OSCOPY AND NAVIGATION  Vol. 11  No. 4  2020
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Figure 4 shows the AUV route generated by the
navigation system. We can see some differences from
the path presented in Fig. 3:

• the AUV path deviates significantly to the right
from the one specified in the mission task because of
the errors in determining the heading (Figs. 4a, 4c);

• as a result of the observation, the AUV’s dead-
reckoning position was corrected several times
(Figs. 4a–4e);

• on the way to the specified area, the AUV detects
an underwater object (Fig. 4c) with which it might col-
lide. Since the bearing of the object was slowly chang-
ing to the right, the AUV turned 90° to the left relative
to the bearing in order to diverge from it;

• the sunken aircraft was detected a little earlier
than it was assumed during the development of the
mission task (Fig. 4b);

• after detecting an object similar to the aircraft,
the AUV goes around it in a circle to classify the object
(Fig. 4d), then it comes to the surface to determine the
exact coordinates of the object and report them to the
command post via the radio communication channel.
Then it reverses the heading to return to the base;

• on the return route, the AUV path ends earlier
than it was planned, which is due to the emergency ter-
mination of the mission because of the early con-
sumption of the power supply (Figs. 4a, 4c and 4d).
The emergency termination of the mission involves
the AUV ascent to the surface, turning off the propul-
sion and steering system, turning on the alarm system,
specifying its coordinates using radio navigation sig-
nals, and periodically transmitting a message about
the emergency termination of the mission to the com-
mand post.

CONCLUSIONS
Development of an effective control system for

AUV is one of the main problems in the field of under-
water robotics. Though many developed countries of
the world are working in this direction, today we have
to admit that there still is a long way go to the final
solution of the problem. Yet, the work on the creation
of algorithms implemented in the AUV control sys-
tems must be continued.

The paper considers a multi-agent structure of the
AUV control, in which all of its electronic and techni-
cal systems are intelligent agents with their own con-
trol systems. Their interaction, aimed at the execution
of the mission task, is organized by the dispatcher,
which is a sophisticated software product. Since the
creation of a dispatcher for an AUV control system is a
long and expensive process, it would be appropriate to
develop a universal dispatcher that could be used in
AUV for various purposes with a multi-agent structure
of the control system.

The paper describes the algorithmic structure of
such dispatcher developed by the authors. Its versatil-
GYROSCOPY AND NAVIGATION  Vol. 11  No. 4  20
ity is based on the modular design of the algorithms
implemented by the dispatcher, which makes it possi-
ble to control the execution of a wide range of tasks
assigned to the AUV, and at the same time, signifi-
cantly simplify the implementation of each algorithm.
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