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Abstract—This paper aims at investigating and analyzing the behavior of Micro-Electromechanical Systems
(MEMS) inertial sensors stochastic errors in both static and varying dynamic conditions using two MEMS-
based Inertial Measurement Units (IMUs) of two different smartphones. The corresponding stochastic error
processes were estimated using two different methods, the Allan Variance (AV) and the Generalized Method
of Wavelets Moments (GMWM). The developed model parameters related to laboratory dynamic environ-
ment are compared to those obtained under static conditions. A contamination test was applied to all data sets
to distinguish between clean and corrupted ones using a Confidence Interval (CI) investigation approach. A
detailed analysis is presented to define the link between the error model parameters and the augmented
dynamics of the tested smartphone platform. The paper proposes a new dynamically dependent integrated
navigation algorithm which is capable of switching between different stochastic error parameters values
according to the platform dynamics to eliminate dynamics-dependent effects. Finally, the performance of
different stochastic models based on AV and GMWM were analyzed using simulated Inertial Navigation Sys-
tem (INS)/Global Positioning System (GPS) data with induced GPS signal outages through the new pro-
posed dynamically dependent algorithm. The results showed that the obtained position accuracy is improved
when using dynamic-dependent stochastic error models, through the adaptive integrated algorithm, instead
of the commonly used static one, through the non-adaptive integrated one. The results also show that the sto-
chastic error models from GMWM-based model structure offer better performance than those estimated
from the AV-based model.
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1. INTRODUCTION
The Global Navigation Satellite System (GNSS) is

an accurate positioning system for different applica-
tions in outdoor environments. A major demerit of
GNSS, is the performance degradation during GNSS
signal outages [1]. On the other hand, the Inertial
Navigation System (INS), classified as a dead-reckon-
ing system, provides high frequency precise short-
term navigation information. Nevertheless, a major
drawback is related to the inertial sensors’ errors that
lead to accuracy degradation of navigation informa-
tion with respect to time [2]. Over the last two
decades, the integration of both systems provides an
accurate, reliable and complementary system with
better performance, in comparison to each stand-
alone system. In GNSS/INS integrated systems, the
GNSS provides the absolute positioning information
while the INS is at the helm of attitude determination.
However, some limitations regarding frequent occur-
rence of GNSS signal outages caused by signal block-
ages in some situations, such as tunnels and urban

areas [3]. In these cases, the INS provide the naviga-
tion information, as a stand-alone system, until the
GNSS signal are re-acquired. Therefore, the overall
system positioning accuracy, during GNSS signal out-
ages, is totally dependent on the quality of the INS
sensor data which, in turn, could be improved if pre-
cise inertial sensor error models are implemented.

Recently, Micro-electro Mechanical Systems
(MEMS)-based inertial sensors became an attractive
candidate for INS/GNSS when compared to the tra-
ditional systems. Although MEMS-based inertial sen-
sors have various advantages regarding cost and size
reduction, low power consumption and light weight,
some limitations concerning the overall accuracy
should be addressed [4]. To be more specific, the fact
that such cheap and small MEMS-based sensors
rarely provide the required accuracy, in some applica-
tions, could not be denied [5]. The reason for that is
related to additional unwanted error signals being
added to the true value measured by the sensor and
usually classified into two parts, deterministic and sto-
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chastic [6]. The deterministic part such as sensor bias
and scale factor, could be eliminated by laboratory cal-
ibration where sensor errors could be determined by
comparing the sensor outputs with a known reference
inputs [7], which are beyond the scope of this paper.
On the other hand, stochastic errors require correct
modelling and estimation using special noise charac-
terization techniques. Consequently, both previously
mentioned error types significantly influence the esti-
mated position, velocity, and attitude which, in turn,
reflects as a performance degradation of the overall
navigational accuracy, especially when INS is working
as a standalone system in areas of poor GNSS signals.

1.1. Review of Previous Work

Generally, inertial sensor stochastic modeling is
considered to be a nontrivial and time-consuming task
especially for low-cost MEMS-based sensors. This
due to the complicated stochastic error model struc-
ture that may contain one or more random latent pro-
cesses, e.g. White Noise (WN), correlated noise, Ran-
dom Walk (RW), etc. Based on that, different stochas-
tic modeling techniques have been used, some of them
are time domain, others are frequency domain, to mit-
igate the inertial sensors error terms.

For instance, Autocorrelation function (ACF)
technique was used in [8] and [9] to investigate the
correlation time of consumer grade inertial sensor
errors used for providing an attitude determination
algorithm. However, according to be highly model-
sensitive, correlation technique are not usually the
best choice to deal with high dynamic range or higher
order random processes [10]. Moreover, Power Spec-
tral Density (PSD), which is the Fourier Transform
(FT) of the ACF, has been used in some researches for
inertial sensor error modeling [11, 12]. However, a
major limitation of such technique is related to the low
frequency part of the PSD log-log plot which still con-
veys some information but with quit high uncertainty.
Such a drawback could highly affect the accuracy of
identifying low frequency noise parameters while
investigating long inertial sensor output noise data-
sets.

Moreover, an additional approach was presented in
the mid-1960s, namely the multiple-model method
[13]. Such an approach has been applied for structural
and parametric identification of stochastic models,
with their posterior probabilities computations utiliz-
ing a bank of Kalman filters (KF), where each individ-
ual KF is tuned for a specific model. Multiple-model
method has been used in various fields including nav-
igation and target tracking to solve different problems,
for instance GPS ambiguity removal [14] and
advanced tracking techniques that are based on deci-
sions regarding target maneuvers [15]. However, con-
structing a set of KFs leads to dramatically increase the
computational load which could be considered as a

major demerit of such an approach, especially for real-
time applications.

In addition to the above methods, the most widely
used approach to study the stochastic characteristics of
inertial errors is the Allan Variance (AV) which was
basically introduced for studying the frequency stabil-
ity of precision oscillators [16]. Due to being simple to
compute, simple to understand and straightforward,
AV has been used in numerous researches for identify-
ing different types of random noise processes in iner-
tial sensors measurement’s [10, 17–20]. Nonetheless,
applying AV to low-cost MEMS units revealed signif-
icant limitations. One of these limitations is regarding
the ambiguity occurrence while representation a real
AV log-log curve as a sum of two or more random pro-
cesses.

A recently developed estimation method, called
the Generalized Method of Wavelet Moments
(GMWM) [21]. GMWM combine the Wavelet Vari-
ance (WV) and the Generalized Least Square (GLS)
principle to finally estimate the so-called latent com-
posite processes of a time series. Some recent research
works used the GMWM to analyze simulated inertial
sensor data [22] and actual data collected by various
Inertial Measurement Units (IMUs) [23, 24]. Based
on that, it is obvious how the AV and GMWM are
based on the slope fitting techniques (KF-free tech-
niques) which increase the potential of using both,
even for future online estimation for noise parameters,
to avoid computation complexity compared to the
multi-model method.

However, almost all previous research work has a
common limitation regarding investigating the envi-
ronmental conditions effects on the stochastic error
part for sensors under test. Specifically, it is known
that the stochastic behavior of MEMS inertial sensor
errors depends on the environmental conditions
affecting the sensor such as temperature variation and
platform dynamics. For instance, collecting long data
sets using MEMS-based inertial sensor to construct
AV curve usually increase the temperature of the sili-
con-based sensor (as silicon is the core material used
for MEMS fabrication) under test which, in turn,
affects the stochastic behavior of the residual error sig-
nals [25]. Based on that, stochastic error modeling
based on long term data collected at room temperature
cannot be accurate enough for MEMS-based units. In
addition to the above, inertial sensors are being used to
provide positioning and attitude in kinematic mode.
In other words, these sensors are basically designed to
work in dynamic environments. Thus, it is important,
to investigate the relationship between inertial sensor
error behavior and the vehicle dynamics which, in the
same contest, means that the stochastic error model-
ing based on only static data will not guarantee the best
accuracy.

Despite this awareness, few researchers investi-
gated the behavior of MEMS inertial sensors stochas-
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tic characteristics during different environmental con-
ditions such as temperature variation [26, 27] and
dynamics of the platform on which sensors are
mounted [28, 29]. However, constructing and charac-
terizing a dynamically dependent error processes for
low-cost MEMS-based inertial sensors is an area that
should be investigated more. Also, it is important to
note that we previously examined the effect of the
thermal variation on the noise model of different low-
cost smartphone mounted MEMS-based IMUs in
[30] using long test data sets. Due to investigating rel-
atively short duration data sets in this article, the ther-
mal variation effect could be neglected.

1.2. Aim and Scope of Study

The main objective of this paper is to improve the
positioning accuracy of INS/GNSS integrated sys-
tems using dynamically dependent error models for
low-cost MEMS IMUs used in smartphones. This
main objective will be achieved through the following
sub-objectives:

First, reveal the stochastic characteristics of
MEMS inertial sensors and their changes due to
dynamic conditions using reference signals provided
in laboratory environment using an accurate single
axis turn table. All navigation filters typically include
residual deterministic sensor errors (e.g., gyro and
accelerometer biases and scale factors) in the state vec-
tor. However, stochastic errors are commonly mod-
elled by using relatively simple stochastic processes
such as 1st order Gauss−Markov (GM), RW, and
Random Constant (RC) processes. The stochastic
parameters, which compose the navigation system
error noise matrix in the used estimator, KF with feed-
back, are commonly set according to the RW in the
datasheet. In this research, we performed abundant
number of laboratory tests using two different IMUs,
test results will be presented for both static and
dynamic conditions as well. Also, we will also analyze
whether we need to use more complex stochastic mod-
els for sensors work under various dynamic conditions,
and choose different parameter settings according to
the changes of platform dynamics.

Second, expose the link between the MEMS iner-
tial sensor errors and platform dynamics using a suit-
able observation technique to investigate how the
dynamics has an influence on the errors of the IMU
under test. Two different methods, the most widely
used AV and the recently proposed GMWM will be
utilized. Thus, we would be able to investigate the
advantages and limitations of the AV method in iden-
tifying low-cost MEMS sensor error sources and com-
puting the error parameters quantification under vari-
ous laboratory dynamic conditions.

Third, propose a new dynamically dependent inte-
grated navigation algorithm, which is an extension to
what was introduced in [31]. Such an algorithm uses

an additional adaptive function to automatically
switch between different stochastic error parameters
values according to the applied platform dynamics to
finally eliminate dynamics-dependent effects. The
general layout of the proposed adaptive algorithm will
be given.

Finally, evaluate the performance of estimated
model parameters based on both aforementioned
approaches using the proposed adaptive loosely cou-
pled INS/GPS integration architecture and during
GPS signal outage periods, i.e., the navigation states
are determined independently from GPS data. We will
clarify how obtained stochastic sensor models associ-
ated with the proposed dynamically dependent navi-
gation algorithm lead to more robust navigation solu-
tion based on low-cost MEMS units.

2. METHODOLOGY

2.1. Inertial Sensor Errors’ Stochastic Processes

Generally, inertial sensors’ measurements have
various errors which contaminate the true measure-
ments from the gyroscopes and the accelerometers.
Therefore, in order to obtain an optimal navigation
solution, the first step starts with evaluating the deter-
ministic sensor errors such as bias and scale factor.
Such deterministic errors could be eliminated by
proper laboratory calibration of the inertial measure-
ment unit sensors [32]. Another type of errors has ran-
dom nature and known as stochastic sensor errors. The
impact of deterministic and stochastic sensor errors
can be mitigated through deterministic and stochastic
modelling, respectively.

The main random processes related to inertial sen-
sors are briefly defined as follow:

• Quantized Noise (QN): The small difference
between the real amplitude of the point under sam-
pling and the bit resolution of the Analog-to-Digital
Converter (ADC) is called a quantization error [33].

• White Noise (WN): The random amount added to
the actual signal and with a long term average equals to
zero is defined as white noise [34]. This noise term is
often known as Angular/Velocity Random Walk
(ARW/VRW) for gyros and accelerometers, respec-
tively.

• Bias Instability (BI): Also known as f licker noise
and generally this type of noise is related to the insta-
bility of the bias offset for a sensor output measured in
ideal environment [34].

• Random Walk (RW): As defined in [35] and [10],
RW is a random process of uncertain origin, possibly
known as a very low frequency noise term. Mathemat-
ically, RW is an integral to the WN.

This noise term is often known as Rate/Accelera-
tion Random Walk (RRW/AccRW) for gyros and
accelerometers, respectively.
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• Drift Ramp (DR): A very low frequency noise pro-
cess that is often called Drift Rate/Acceleration Ramp
(DRR/DAccR) for gyros and accelerometers, respec-
tively.

• Gauss Markov (GM): If a Gaussian process has an
exponentially correlation time, it is called a Gauss-
Markov (GM) process as defined in [6]. Generally,
GM process can have any order. However, in this
paper we are only interested in the stationary 1st order
one. Sometimes it is used as an approximation for the
BI noise term [36].

2.2. Allan Variance
Allan Variance (AV) is a method of representing the

Root-Mean-Square (RMS) random drift error as a
function of averaging times [16]. Originally, it was
developed to study the frequency stability in clocks,
oscillators and amplifiers in the mid-1960s by David
Allan. Later, it was used to identify different latent ran-
dom processes hidden in different measurements [17].

Moreover, AV is known to be simple to compute,
much better than having a single RMS drift number to
apply to a system error analysis, and also simple to
understand [10].

The calculation process for the standard AV could
be illustrated as follow [37]:

• Divide the whole dataset into smaller number of
clusters, each with a cluster length (T) as illustrated in
Fig. 1.

• Calculate the mean value of each cluster individ-
ually.

• Calculate the difference between the mean values
of every two consecutive clusters.

• Calculate the mean square of these differences
and divide by a certain factor. This value is called the
AV (σ2) related to the cluster time (T).

• Change the cluster time (T) from small value to a
larger one and recalculate the AVs, thus we can repre-
sent the signal instability on different time scales.

• Draw the AV plot which is a log–log plot of the
AV versus the cluster time (T) in order to analyse the
error characteristics.

Consequently, the mathematic form of the AV is:
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Since the AV is being used to analyze the sensor
output measurements, then there should exist a rela-
tionship between the AV and the Power Spectral Den-
sity (PSD) of the latent random process hidden in the
aforementioned measurements. Such a relationship
was illustrated by [10] as follow:
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 and the term  is the transfer
function of the applied filter.

Different types of stochastic processes of particular
interest for inertial sensors, which are either known to
exist in inertial sensors or are suspected to influence
the inertial data, are illustrated in Fig. 2 (QN,
ARW/VRW, BI, RRW/AccRW, DRR/DAccR) and
1st order GM process), as well as the corresponding
slopes of the standard deviation obtained from the
Allan deviation plot where the figure highlights the
theoretical Allan deviation log-log plot.

It is clear that AV works successfully because differ-
ent noise terms operate in different frequencies. In this
paper, the characteristic curve is first obtained by
applying the AV algorithm to the entire data. The
curve is then measured to determine the types and
magnitudes of certain random errors possibly residing
in the data according to its slope. Finally, the random
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errors are identified and modelled. This operation is
being carried out within laboratory environment for
static data, and then repeated for various dynamic
conditions through a single axis turn table. Detailed
AV mathematical calculation steps can be found in
[38] and [37].

2.3. Generalized Method of Wavelet Moments

GMWM is an estimation method based on the idea
of Generalized Method of Moments (GMM) estima-
tors [39] which is based on using the Wavelet Variance
(WV), defined as the variance of a process after it has
been subject to an approximate bandpass filter . The
GMWM makes use of the relation between the WV
and the parameters of a latent process, estimating the
latter by minimizing the distance between the empiri-
cal and model-based WV [21]. The calculation process
for the GMWM can be illustrated as follow:

• Applying a wavelet filter , where  is

the wavelet filter level of length

, Haar wavelet filter in this

paper, to the stationary or non-stationary process ,
we get the Maximum Overlap Discrete Wavelet Trans-

form (MODWT) coefficients 

. (3)

• Using the previous equation, the WV could be
defined as the variance of the wavelet coefficients

(4)

• For a finite observed processes, the MODWT
estimated WV can be calculated as follow [40]:

(5)

where:  is the total number of wavelet

coefficients at the considered time scale.

• A direct relationship between the WV and PSD
exists where the variance of the mentioned series of
wavelet coefficients is the direct integral of its PSD as
follow [41]:
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• The GMWM estimator is being used to minimize
the distance between the empirical and estimated WV
in order to estimate the parameters of the latent com-
posite processes as follow [23]:

(7)

where θ represents the time series model parameter
vector that we intend to estimate belonging to the
compact set Θ and Ω is a symmetric positive definite
weighting matrix chosen in a suitable manner to make
the GMWM estimator is as efficient as possible [42]. It
is also important to mention that this method could
also be based on the AV since the aforementioned
Haar WV is simply twice the AV with additional bene-
fits [43, 44]. A full theoretical f lowchart for the
GMWM calculation steps is illustrated in Fig. 3 [30].

The standard WV is being calculated to obtain the
characteristic curve. Robust WV is also computed,
compared to the standard calculated WV to check the
existence of any outliers in the data. The next step is
the estimation of the model parameters where more
than one model can be estimated and ranked using the
Wavelet Information Criteria (WIC), which will be
discussed in Section 3.4, to determine which model is
the best.  Detailed mathematical background for the
GMWM can be found in [21] and [45].

3. EXPERIMENTS AND ANALYSIS
FOR STATIC/DYNAMIC DATA USING AV

AND GMWM

Tests were conducted to identify the major noise
terms existing in the smartphone mounted MEMS
units. Since we focus more on the stochastic perfor-
mance of gyros in this paper, the data were collected at
the University of Calgary (UofC) using the Animatics

SmartMotorTM Series 4 Single-Axis Positioning and
Rate Table (Fig. 4). The table has a rate accuracy of
0.02% (Over 1 revolution) and was pre-levelled before
starting data collection. Also, based on previous expe-
riences regarding the locations of internal inertial
modules through smartphone disassembling [46],
each smartphone was fixed on the turntable where the
sensitive axes of both the Z-gyro and the turntable are
aligned, as much as possible, to ensure acceptable
measurement accuracy. The data was collected in two
different modes, the first one is the static mode and
the second is the dynamic mode. Static data sets were
collected first at room temperature using MEMS-
based IMUs inside two different smartphones, namely
Samsung Galaxy S4 and Apple iPhone 5S. For the
IMUs inside the tested smartphones, the Apple
iPhone 5S is equipped with a 3D accelerometer
(Bosch Sensortec BMA220, Gerlingen, Germany)
and an integrated 3D gyroscope (ST-Microelectron-
ics, L3G4200DH, Geneva, Switzerland). On the other
hand, the Samsung Galaxy S4 has an InvenSense
MPU-6500 inertial module which is a 6-axis motion

( )( ) ( )( )ˆ ˆ ,argmin ˆ
T

θ∈Θ
θ = − θ Ω − θv v v v
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tracking device that combines a 3-axis gyroscope,
3-axis accelerometer, and a Digital Motion Processor
(DMP) all in a small 3 × 3 × 0.9 mm package.

3.1. Static Data
The IMU static data was sampled at 20 Hz and

100 Hz for the Samsung Galaxy S4 and Apple iPhone
5S respectively for about 15 minutes at room tempera-
ture. The reason for choosing such data length will be
discussed later.

The performance of each inertial sensor of the two
MEMS-based IMUs is estimated using AV and

GMWM to study the noise characteristics and identify
the corresponding sensor stochastic error model
parameters. This was performed for the two different
modes, static and dynamic. Fig. 5 shows the AV plot
for the Samsung Galaxy S4 and Apple iPhone 5S Z-
Gyro measurements (static mode) while Table 1 lists
the corresponding identified error coefficients after
AV analysis for the Z-Gyros. According to having
identical sensors at the same inertial module, we pro-
vided the analysis of one gyro, Z-Gyro, for each mod-
ule to avoid redundant results.

From Table 1 and using slope fitting, it is clear that
the ARW is the dominant noise parameter that could
be observed for both Samsung Galaxy S4 and Apple
iPhone 5S gyros as it is considered to be the high fre-
quency noise term that appears at slope –1/2. Other
low frequency noise terms such as correlated noise
require long-term data in order to be observable.

3.2. Dynamic Data

After performing the AV analysis on the static data,
additional analysis is needed to see how the inertial
sensor noise parameters change with dynamics. Dif-
ferent quantities could be used to define the meaning
of “dynamics”. Such quantities could be summarized

as linear velocity ,  linear acceleration  , linear

jerk , angular velocity , angular acceleration  

and angular jerk  [47]. In this paper, we are inter-

ested in investigating the effect of angular velocity 

and angular acceleration  on stochastic model

parameters of MEMS inertial sensors mounted on the

( )v ( )v�
( )v�� ( )ω ( )ω�
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Fig. 3. GMWM estimator f lowchart [30].
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aforementioned smartphones. Using the Animatics

SmartMotorTM Series 4 Single-Axis Positioning and
Rate Table commands, it is possible to let the turntable
rotate with, for example, a constant angular velocity
(defined as reference signal) and collect inertial mea-
surements from the smartphones fixed on the turnta-
ble (defined as measured signal).

The sensor error signal (defined as residual signal)
is simply the difference between the measured signal
and the reference one. The next step will be to study
the relation between residual signal and the applied
platform dynamics. As mentioned for static data col-
lection, dynamic data was collected at the same previ-
ously mentioned sampling rates as well as room tem-
perature.

3.2.1. Constant Angular Velocity 
and Angular Acceleration

In order to study the effect of the applied angular
velocity and angular acceleration, different angular
velocity and acceleration commands were sent to the

Animatics SmartMotorTM turntable via SmartMotor
Terminal Window. First, such commands allow the
turn table to rotate with five constant (fixed) angular
velocities that represent the mentioned reference sig-
nal for 15 minutes. The angular velocity values are (9,
18, 36, 72 and 120 deg/s; respectively). Thus, the per-
formed test covers the ordinary operational angular
velocity of smartphones. Second, starting from initial

angular velocity equals to zero  and making

use of the Animatics SmartMotorTM turntable, differ-
ent angular acceleration values were applied, specifi-

cally 1 and 2 deg/s2. It is important to mention that
both static and dynamic data (used for angular velocity
investigation) have equal data length and collected at
the same lab. Thus, the only factor to be changed is the
applied dynamic quantity. Consequently, fair judg-
ment could be obtained. At each angular veloc-

0
( 0)zω =

ity/acceleration value, the data was collected twice for
both smartphones. The main reason for this is to make
sure that the performance of each sensor is almost the
same when repeating the same test, i.e. to ensure the
repeatability factor for the tested inertial sensors.

In additional to that, one major common concern
of most of the inertial sensors calibration techniques is
the time synchronization between the IMU output
measurements and the reference signal. Since the
IMU under test and the turntable, considered as a
source of reference signal, are two separate (self-con-
tained) systems, the clock difference might cause data
alignment discrepancies during the signal comparison
process [48]. To avoid that, the first and last 30s of
each dataset collected at each applied angular velocity
were discarded. The reason for that is to dodge the
regions at which the turntable is accelerating or decel-
erating and to ensure constant applied angular velocity
as well.

For angular acceleration experiments, data length
will be shorter than angular velocity measurement.
The main reason for this is that the Animatics Smart-

MotorTM turntable used for reference signal has a max-
imum angular velocity “threshold” that could not be
run over. Such a limit allows the collection of data with

Fig. 5. Allan variance log-log plot for smartphone gyro measurements at static mode (a) Samsung Galaxy S4 Z-Gyro (b) Apple
iPhone 5S Z-Gyro.
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Table 1. Identified error coefficients after AV analysis
for Samsung Galaxy S4 and Apple iPhone 5S Z-Gyros
(static mode)

Exp. no. Noise coefficient
ARW “N”

Samsung S4 Z-Gyro

0 1.5511

Apple iPhone 5S Z-Gyro

0 1.0978
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length 225 and 155 s for  equals to 1 and 2 deg/s2;
respectively. Moreover, attention was paid to consider
gyro measurements starting just after zero till 225 and
155 deg/s for applied angular acceleration of 1 and

2 deg/s2, respectively, to ensure synchronized mea-
surements.

Figure 6 shows the signal measured by the Z-gyro
for Samsung Galaxy S4 and Apple iPhone 5S after

applying different angular velocity  using the turn-

table. In general, Fig. 6 display that the Apple iPhone
5S gyro has higher noise level than the Samsung Gal-
axy S4 one. Moreover, it is visually noticeable how that
the Apple iPhone 5S gyro has different levels of noise
at different applied angular velocities, while this is not
so visible in case of the Samsung Galaxy S4 gyro.

Each data set was collected under fixed value of
angular velocity/acceleration, the reason for that is
referred to the tools used for the data analysis, i.e. AV
and GMWM. To be more specific, these tools require
situational environment for the stochastic behaviour

ω�

( )zω

[28] which could be obtained under fixed values of

dynamic quantity for each experiment, for instance

fixed angular velocity/acceleration. Also, Figure 7

highlights the signal measured by the Z-gyro for Sam-

sung Galaxy S4 after applying angular acceleration

 using the turntable. Fig. 7 illustrates both sensor

measured signal and reference signal designated in

blue and red colors, respectively.

It is clear how the gyro output (measured angular

velocity) forms a triangular or trapezoidal motion pro-

file due to the applied ascending angular acceleration.

To get the residual signal in each experiment, the

reference signal value is being subtracted from the

measured Z-gyro signal illustrated in Fig. 6 and Fig. 7.

Figure 8 gives an example of the residual signal for the

Samsung Galaxy S4 Z-Gyro measurements after

applying 9 deg/s constant angular velocity.

( )zω�

Fig. 6. Measured signals for smartphone gyro measurements (applied different angular velocities for 15 minutes) (a) Samsung
Galaxy S4 Z-Gyro (b) Apple iPhone 5S Z-Gyro.
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3.3. Allan Variance Analysis

Figure 9 shows the AV for Samsung Galaxy S4 and
Apple iPhone 5S Z-Gyro measurements while Table 2
lists the identified error coefficients after AV analysis
for Z-Gyros.

Table 2 shows the direct effect of changing dynam-
ics on the estimated stochastic error model parame-
ters’ values. Such an effect leads to the importance of
having a dynamic dependence stochastic model for the
aforementioned sensors. Regarding the 15 minutes
data sets, the practical reason for choosing it is that in
many applications, the major concern is usually only
for the short-term performance while in long-term the
INS errors can be corrected by integrating the IMU
with other systems, e.g. GPS through a KF. For such
data sets, which are considered to be “short” data, it is
clear that the ARW is the dominant noise parameter
that could be observed which is similar to the AV anal-
ysis performed for static data sets.

Other noise parameters such as correlated noise
and drift ramp need large amount of data in order to be
observable [49]. Consequently, Table 2 clarifies how
the ARW is the dominant noise term for short cluster
lengths. However, increasing the angular velocity
value always affects ARW values for both Samsung
Galaxy S4 and Apple iPhone 5S gyros. Specifically,
the change of the Samsung Galaxy S4 ARW parameter
reached more than 62% with angular velocity changes
from static condition to 120 deg/s. Moreover, the
change of the Apple iPhone 5S gyro ARW parameter
is more obvious where it reached about 128% for the
same range of angular velocity change. This analysis
illustrates how the ARW parameter related to the
Apple iPhone 5S gyro is more sensitive to the mea-
sured angular velocity value than the Samsung Galaxy
S4 one. Other stochastic noise parameters, such as BI,
could hardly be detected.

Fig. 9. Allan variance log-log plot for smartphone gyro measurements at dynamic mode (a) Samsung Galaxy S4 Z-Gyros (b)
Apple iPhone 5S Z-Gyros.
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Table 2. Identified error coefficients after AV analysis
for Samsung Galaxy S4 and Apple iPhone 5S Z-Gyro mea-
surements (dynamic mode)

(I) Increased, (D) decreased.

Exp. no
Noise 

coefficient

ARW “N” BI “B” RRW “K”

Samsung S4 Z-Gyro

1 1.6087 (I) … …

2 1.7695 (I) 33.2482 …

3 1.8353 (I) … …

4 2.0574 (I) 23.8295 …

5 2.5242 (I) … …

6 2.5656 (I) … …

7 2.4189 (D) … …

Apple iPhone 5S Z-Gyro

1 1.1788 (I) 66.3658 …

2 1.702 (I) … …

3 2.4233 (I) … …

4 1.6711 90.1593 17.2218

5 2.5048 (I) 68.5729 …

6 3.4811 (I) … …

7 3.0855 (D) … …
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Regarding the angular acceleration, only an ARW
noise term could be detected for both Samsung Galaxy
S4 and Apple iPhone 5S gyros. The reason for that is
having a short data length due to the previously men-
tioned limitation of the turntable usage. Results from
Experiments 6 and 7 shows that applying angular
acceleration always increases the ARW value of the
gyro under test for both smartphones when compared
to static data (Experiment 0). For more numerical
details, the ARW value growth is 65 and 56% for the
Samsung Galaxy S4 Z-Gyro and 217 and 181% for the
Apple iPhone 5S. It is clear that the angular accelera-
tion effect on the white noise value is larger than the
angular velocity effect on the same stochastic parame-
ter even for a shorter time. Though, increasing the
angular acceleration value showed a reversal effect on
the Samsung Galaxy S4/Apple iPhone 5S gyros com-
pared to increasing the angular velocity.

In addition, Table 2 shows how the change of the
ARW parameter for the Samsung Galaxy S4 Z-Gyro
reduced by almost 6% with angular acceleration

changes from 1 to 2 deg/s2. Taking into consideration
that we only used two sets of data for such analysis, this
could be considered a low percentage compared to the
angular velocity effect.

In addition to that, similar behaviour was detected
for the Apple iPhone 5S Z-Gyro where the change of
its ARW parameter is slightly more obvious as it
decreased to 13% of its value for the same range of
angular acceleration increase. However, using short
data with only two angular acceleration values might
be the reason for having a contradiction between
angular velocity and angular acceleration effects, with
respect to the ARW behaviour. Consequently, longer
data is highly recommended with more angular accel-
eration values in order to fairly judge the angular accel-
eration effect on ARW noise parameter. Also, longer
data could allow low frequency noise parameters, for
instance correlated noise and DRR, to appear.

3.4. Generalized Method of Wavelet Moments Analysis
The GMWM was proposed lately by some

researchers to estimate the so-called latent or compos-
ite process. In order to attain an accurate noise model
for any measured signal using the AV approach, it
should be guaranteed that the data under test is
“clean”, i.e. free of contaminations, outliers or any
extreme observations that might be hidden inside the
data. In general, this is not an easy task to accomplish.
On the other hand, the GMWM offers a way to over-
come such issue by simply replacing the estimated WV
with the robust M-estimator proposed by [43]. This
estimator has well-defined asymptotic properties as
well as better finite sample performance compared to
other existing estimators. To be more specific, the WV
estimator illustrated in Equation (5) is not robust and
can be considered to be biased in the presence of out-
liers or different forms of contamination. In order to

obtain a WV estimator that can be robust, Equation (5)

should be re-expressed as an M-estimator  which

is based on having stationary and ergodic wavelet coef-

ficients, . A signal is known to be ergodic if its sta-

tistical properties could be identified from a single,
sufficiently long and random sample of the process.
When comparing both the robust and the classical WV
to do such a contamination test, if there is significant
difference over the initial time scales such as one WV
lying outside of the other’s 95% Confidence Interval
(CI), then it is generally better to use the robust ver-
sion as this means that the contamination test fails.
Otherwise, the classical WV would be appropriate for
such data with an indication of having an outliers’ free
data set [22]. As a next step, the top part of Fig. 10
shows how the contamination test was applied on
Samsung Galaxy S4 Z-gyro residual signal obtained

from rotating the Animatics SmartMotorTM turn table
with an angular velocity value of 9 deg/s. It is obvious
that both classical and robust WVs are lying inside
each other’s CI, noticing that the light-brown area is
the overlapping between both classical and robust
CI’s. Consequently, such data is considered to be
“clean”, i.e. contamination free, which means that we
can use the classical WV for model parameters estima-
tion.

On the other hand, the right hand-side of Fig. 10
shows how the contamination test fails with Experi-
ment 4 (where 72 deg/s angular velocity was applied)
for Apple iPhone 5S Z-Gyro data set. This could be
designated by the red circle area where the robust WV
lies outside the CI of the classical one. Considering
the fact that the Apple iPhone 5S data set for Experi-
ment 4 contains outliers, and referring to Table 2, it is
noticeable that the ARW value of this specific data set
does not follow the general pattern as the other data
sets. Moreover, the appearance of RRW noise param-
eter only in this data set is another clue that confirms
the idea of how such data is contaminated. Therefore,
we will not depend on the AV analysis for the data col-
lected using the Apple iPhone 5S for Experiment 4.
After the contamination test, it is important to identify
the most accurate noise model for each data set indi-
vidually. Based on the length of data sets, a set of nine
candidate models were constructed for the Samsung
Galaxy S4 and Apple iPhone 5S Z-gyros at each data
set just to demonstrate the concept of modelling selec-
tion. Candidate models are illustrated in Table 3 with
their related model parameters.

The main outcome of model selection process is to
find the model that describes the latent stochastic pro-
cesses of the inertial sensor data sets under test [44].
Usually, more than one model, among a list of candi-
date models, could describe such behaviour. To ensure
maximum accuracy, GWMW provides the ability to
select the best model based on WIC which illustrates
in general how well the estimated model can predict

( )jv

,j tW
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the values of the WV issued from another realization of
the same process [23].

Mathematically, such criterion could be high-
lighted as follow:

(8)

The above-mentioned criterion is based on two
terms. The first one is called the “Objective Function”
which is related to the goodness-of-fit of each candi-
date model. This term usually decreases as the number
of model parameters is increased to reach a better fit-
ting with the observed signal WV. The second term is
called the “Optimism” which represents the complex-
ity of the model. Consequently, its value increases
with increasing the number of model parameters as a
penalty for over fitting. The sum of both terms gives
the WIC which could be considered as a way to judge

( )( ) ( )( )
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how adequate the selected stochastic model is suitable
for the data under test [23]. It is important to mention

that  values are being calculated by given a number

of observations and a hypothetical model . How-
ever, a possible extension of the GMWM where ana-

lytical expression for  exists was proven to be too
complicated [21]. By calculating the WIC for each
model listed in Table 2, the model ranking operation
was performed and the best model would be the one
with the smallest WIC value, which was model 1 and 6
for the Samsung Galaxy S4 and the Apple iPhone 5S
Z-gyros, respectively.

Based on the proposed criteria, the estimated
parameters of the error models are calculated for the
Samsung Galaxy S4 Z-Gyro and Apple iPhone 5S Z-
Gyro under different angular velocity/acceleration
values. Figure 11 shows the comparison between
empirical and implied (estimated) WVs for the two

aforementioned gyros at some selected values of .
Equivalent results are highlighted in Table 4 which
shows the influence of dynamics changing on the
model parameters for both Z-Gyro.

For both Z-gyros, Table 4 highlights how the
gyro noise model structure did not change due to
changing a certain applied dynamics value. To be
more specific, a model composed of only white noise
was detected to be the best fit model for all values of
angular velocities/acceleration related to the Samsung
Galaxy S4 Z-Gyro. Also, for angular velocity effect, a

white noise random process added to two 1st order GM
processes was selected for all error measurement
related to the Apple iPhone 5S Z-Gyro.

The direct effect of changing the applied dynamics
was reflected in the magnitude of the aforementioned
noise parameters. Compared to the static data results,
increasing the angular velocity value mostly affects the
ARW value to be increased for both Samsung Galaxy

( )θ̂v
Fθ

( )θ̂v

zω

Fig. 10. Comparison between classical and robust WV for Samsung Galaxy S4 Z-Gyro and Apple iPhone 5S Z-Gyro (dynamic
mode with applied 9 and 72 deg/s).
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Table 3. Candidate models for Samsung Galaxy S4 and
Apple iPhone 5S Z-Gyro measurements

Model number Candidate models

Model # 1 WN

Model # 2 WN + GM

Model # 3 WN + GM + RW

Model # 4 WN + GM + DR

Model # 5 WN + GM + RW + DR

Model # 6 WN + 2*GM

Model # 7 WN + 2*GM + RW

Model # 8 WN + 2*GM + DR

Model # 9 WN + 2*GM + RW + DR
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S4 and Apple iPhone 5S gyros with a maximum
increasing percentage of 41 and 986%; respectively.
Such behaviour was repeated in the case of angular

acceleration increase as well. In addition, the ARW
values increase to 55 and 51% for the Samsung Galaxy
S4 Z-Gyro and to 409 and 165% for the Apple iPhone
5S Z-Gyro; respectively.

Regarding correlated noise processes, a combina-

tion of two 1st order GM processes could be observed
under all angular velocity points but with different
response according to applied angular velocity value.
Specifically, according to the Samsung Galaxy S4 Z-

Gyro, both variances of the GM1 ) and GM2

) mostly increase with raising the angular veloc-
ity with a maximum change reached over 161% for

 and approximately 19% for . On the other
hand, (β1), which is the reciprocal of the correlation

time, appears to have reversal behaviour as it first
increases and then decreases with a maximum degra-
dation percentage of 90%. Unfortunately, the pattern
of β2 could not be well-detected with dynamics and

angular velocity variation. Due to shorter data sets for

angular acceleration experiments, only one 1st order

2

GM1(σ
2

GM2(σ

2

GM1σ 2

GM2σ
Fig. 11. Comparison between empirical and estimated WV
based on model #6 (WN+2GM) for Apple iPhone 5S Z-
Gyro (dynamic mode with applied 9 deg/s).
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Table 4. Identified Error Coefficients after GMWM Analysis for Samsung Galaxy S4 Z-Gyro and Apple iPhone 5S Z-Gyro
Measurements based on Model # 1 (WN) and 6 (WN + 2GM), Respectively

(I) Increased, (D) decreased,  contaminated dataset.

Exp. no Noise coefficient
WN(ARW) “N”

GM1 GM2

Samsung S4 Z-Gyro

0 2.5342 … …

1 2.7865 (I) … …

2 2.8379 (I) … …

3 2.8653 (I) … …

4 2.9579 (I) … …

5 3.0096 (I) … …

6 3.1647 (I) … …

7 3.1148 (D) … …

Apple iPhone 5S Z-Gyro

0 1.034 1.7101, 7.049 9.7259e-3, 1.0601

1 1.483 (I) 1.812, 10.9602 (I) 1.5432e-2, 0.9763 (I)

2 2.6197 (I) 6.9739 (D), 17.709 (I) 7.2487e-2, 1.7943

3 1.7224 1.8926 (D), 18.4464 (I) 1.4675e-2, 1.149188 (I)

4 … … …

5 3.4084 (I) 0.16507 (D), 0.3293 1.6252e-2, 1.26445 (I)

6 2.3335 (I) 1.4157 (D), 24.854 (I) …

7 1.6842 (D) 1.4488 (I), 23.8911 (D) …
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GM processes could be recognized. Table 4 shows

how the values of  and β1 are hardly changed

according to increasing  from 1 to 2 deg/s2.

Based on the proposed contamination test results,
the data set collected for Experiment 4 (where 72 deg/s
angular velocity was applied to the Apple iPhone 5S Z-
Gyro) is considered to include outliers. As a result, no
analysis was performed for such data set in Table 4.
Comparing values of WN parameter identified in
Table 2 and Table 4, it is clear how both AV and
GMWM can successfully detect the behaviour of WN
variance according to different applied dynamics.
However, an obvious shift of such variance value could
be noticed. Therefore, the next step is to carry out a
model verification approach in order to accurately
determine which method is better.

4. TESTING AND VALIDATION USING 
PROPOSED DYNAMICALLY DEPENDENT 

ADAPTIVE INS/GPS NAVIGATION 
ALGORITHM

This section is dedicated for two main reasons:

1. Study the performance of the estimated model
parameters based on both previously mentioned
methods, AV and GMWM.

2. Introduce a dynamically dependent adaptive
INS/GPS integrated navigation algorithm. Such an
adaptive feature is related to the stochastic sensor error
modeling.

In order to achieve that, simulation results are
introduced in three steps. First, a deterministic cali-
bration is performed to the smartphone’s MEMS-
based IMU. Inertial module for the Apple iPhone 5S
was selected based on the results listed in Table 2 and
Table 4, respectively. Where, in Table 2 the AV was
used, the identified stochastic model structure for the
Apple iPhone 5S gyro is, mostly, based on WN pro-
cess. On the other hand, in Table 4 where the GMWM
was used, the identified stochastic model structure for

the same gyro is a combination of WN added to two 1st

order GM processes. Such a difference in the model
structure worth to be tested to check the accuracy of
each structure individually. It is also important to
mention that data sheet of the ST-Microelectronics,
L3G4200DH gyros, mounted on the Apple iPhone
5S, provided by the manufacturer does not provide
guaranteed information regarding the stochastic char-
acteristics of such sensors. Such circumstance strongly
emphasizes the importance of our stochastic analysis.

We adopted the six-position static calibration test
to determine both the deterministic bias and scale fac-
tor of gyros and accelerometers. Briefly, the six-posi-
tion test involves mounting the inertial instrument on
a leveled surface with its axis pointing alternately up
followed by down. For a triad of orthogonal sensors,
this leads to a total six positions. For accelerometer

2

GM1σ
zω�

and gyro, in order to determine their bias and scale
factor, summing and differencing measurements is
required, respectively. More detailed information and
equations about such technique could be found in [2].
Based on the above, obtained biases and scale factors
were being compensated through the following obser-
vation equations of both angular rates and specific
forces for gyro and accelerometer, respectively [2].

(9)

(10)

where  is the gyro output measurement,  is the

true rotation rate around the gyro sensitive axis,  is

the gyro bias,  is the gyro scale factor,  is the tem-
perature coefficient of gyro family,  is the tempera-

ture,  is the accelerometer output measurement, 
is the true specific force along the accelerometer lon-

gitudinal axis,  is the accelerometer bias,  acceler-

ometer scale factor,  is the temperature coefficient

of accelerometer family and  are the sensor noises.

As mentioned in the Introduction section, tempera-
ture variation effect is neglected here in this paper due
to the relatively short duration data sets. Conse-

quently,  and  values are considered to be zeros.

Thus, obtained values for biases and scale factors,
for gyros and accelerometers, in additional to the sto-
chastic specifications provided by the manufacturer
for Bosch Sensortec BMA220 accelerometers were
being used as inputs to IMU Simulator (IMUS) Tool-
box, which is the second step of our simulation. The
IMUS was developed by the Mobile Multi-Sensors
System (MMSS) research group at the UofC and it
has the ability to generate simulated inertial sensor
measurements (i.e. accelerations and angular rota-
tions) based on two inputs, IMU specifications and a
designed trajectory. In other words, it provides the
simulated data of any IMU grade. Moreover, such a
tool can generate a variety of sensor errors such as con-
stant bias, scale factor errors and random walk, using
datasheet characteristics provided by the manufactur-
ers or obtained through lab testing, and their combina-
tions in any data rate specified by the user. Based on a
variety of vehicle dynamics such as straight line, accel-
erations and turns, the simulator can design any tra-
jectory for any application and, hence, provides GPS
position and velocity simulated measurements,
according to GPS parameters values defined by the
user. Moreover, such an inverse INS mechanization
tool has the ability to divide the pre-designed trajec-
tory into successive segments, will be illustrated
through Fig. 13, where utilized model parameters
could be changed based on the user’s criterion. Thus,
the theoretical inertial sensor outputs that should be
observed along the designed trajectory are obtained.

In our test, a multi turns trajectory was designed
(Figure 13) for a moving vehicle in the horizontal
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plane. IMUS provides two output files, raw IMU data

and reference trajectory data. Both files are being fed

as inputs to the new proposed dynamically dependent

loosely coupled-based Aided Inertial Navigation Sys-

tem (AINS+) Toolbox, which is an extended modified

version of the Aided Inertial Navigation System Tool-

box (AINS) of UofC introduced by [31], as a third step

of our simulation.

In our simulation, the external aiding integrated
with inertial data are represented as the reference
INS/GPS-based data trajectory generated as illus-
trated in the second step. However, for the standard

AINS algorithm, sensor errors are described using 1st

order GM models and their related parameters can be
set “once” as a priori information. In other words,
fixed values for the stochastic model parameters are

Fig. 12. INS mechanization and dynamically dependent error modeling in INS/GNSS integration for AINS+.
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fed to the used algorithm with no ability to change
these values under any environmental conditions
during the algorithm operation. In the Experiments
and Results section, we showed that such model
parameters are not fixed and could vary according to
the platform dynamics. Such variation could directly
affect the accuracy of the integrated INS/GPS system.
This implies that using a fixed error model in filter
design for the standard AINS algorithm is a major
drawback, especially for a changing dynamics envi-
ronment. Based on this point of view, the fixed sto-
chastic error model approach should be replaced by an
adaptive dynamically dependent one.

In this section, we introduce a dynamically depen-
dent extension for the AINS algorithm, namely
AINS+. Such a modified algorithm gives the user bet-
ter opportunity to feed more than a single value for
each stochastic error parameters, according to the
applied angular velocity, through an additional adap-
tive function and in the sense of multi-model based
estimation.

Moreover, the innovation part of the AINS+ refers
to adding a separate feedback, as shown in Fig. 12
which is a general layout of the proposed adaptive
algorithm, from the raw sensor output which is being
used as follow:

(1) Check the sensor output measurements, for
instance the gyro output angular rate, and feed them to
the dynamic dependent stochastic error modeling
adaptive algorithm which, in turn, detect the dynamic
level applied on the platform. More details about eval-
uated models will be discussed through the validation
procedure sequence.

(2) Based on Step 1, a stochastic model parameters
values selection criterion is being used to selects the
appropriate model values and use them through the
INS sensor stochastic error model part.

The designed trajectory, illustrated in Fig. 13, con-
tains straight lines and turns with about 8 minutes total
kinematic period. Turns were carefully designed to
represent different applied angular velocity to the ver-
tical axis as follow:

▪  for 10 s at  and , Clock Wise

(CW) and Counter Clock Wise (CCW) respectively.

Thus, a  turns are applied.

▪  for 5s at  and , CW and

CCW respectively. Thus, a  turns are applied.

The main reason for including multiple turns with
different applied angular velocities is to compare the
performance of pre-estimated stochastic models based
on static, AV and GMWM approaches during each
turn.

Consequently, validation procedure sequence used
in this section could be highlighted as follow:

• A precise full INS/GPS navigation solution for
the aforementioned trajectory is computed using

9 szω = ° 1Turn 3Turn

90°
18 szω = ° 2Turn 4Turn

90°

AINS+ toolbox and considered as a reference trajec-
tory.

• The real stochastic error parameters acquired by
the IMU under test, Apple iPhone 5S IMU, are added
to the inertial signals simulated by IMUS toolbox.

• Relatively short artificial GPS signal outages,
10s each (very common to occur in practice) were
introduced. Such GPS signal outages cover the four

previously mentioned  turns.

• The quality of three different stochastic models is
judged by comparing their corresponding trajectories’
position errors at the end of each GPS signal outage
period compared to the reference trajectory.

The three gyro stochastic models to be validated are
defined as:

▪  based on AV analysis for static data
as shown in Table 1 (dynamic dependency feature is
disabled here to evaluate model parameters obtained
from static data).

▪  based on AV analysis for

dynamics data as shown in Table 2, Exp.1 for Apple
iPhone 5S (dynamic dependency feature is enabled
here).

▪  based on

GMWM analysis for dynamics data as shown in Table
4, Exp.1 for Apple iPhone 5S (dynamic dependency
feature is enabled here). As show in Table 4, the cor-

relation time of the second 1st order GM process is
quite high for our short-simulated trajectory. Conse-
quently, the later model could be simplified as

 = 

• The proposed dynamically dependent part selects
the appropriate model parameters values, for gyros,
based on a feedback from the raw angular rate mea-
sured by the gyro (feedback line is highlighted with
purple dashed line in Fig. 12). According to the afore-
mentioned designed trajectory, selection criterion is
highlighted in Table 5.

It is important to mention that such selection crite-
rion, highlighted in Table 5, is based on the absolute
value of the gyro output measurements to coop with
both directions of rotations, CW and CCW.

Every sub-plot of Figure 14, which is a zoom-in for

the four  turns of Figure 13, shows a comparison
between: reference trajectory (green line) from the
INS/GPS solution with no GPS outage, the KF with
feedback solution implemented by AV-based static

model (black line) with 10s GPS outage “ ”, the
KF with feedback solution implemented by AV-based
dynamic model (red line) with 10 s GPS outage

“ ” and the KF with feedback solution

implemented by GMWM-based dynamic model (blue

line) with 10s GPS outage “ ”.

Now, for each GPS signal outage we have three tra-
jectories, each trajectory is based on a specific sto-

90°

static WNM =

( )dynamic AV WNM =

( )dynamic GMWM WN 2GMM = +

( )dynamic GMWMM WN GM.+

90°

staticM

( )dynamic AVM

( )dynamic GMWMM



GYROSCOPY AND NAVIGATION  Vol. 9  No. 1  2018

STOCHASTIC ERROR MODELING OF SMARTPHONE INERTIAL SENSORS 91

chastic model. Thus, the position errors are computed

by subtracting the INS/GPS solution that contains the

GPS signal outage, at the end of the outage, from the

reference solution. Then, the magnitude of the 2D

position errors during the selected GPS outage was

computed for each trajectory, individually. As shown

in Fig. 14, the values of all position errors at the end of

the outage period are represented by the dotted lines.

For instance and regarding Fig. 14 (a), it is clear how

the length of blue line, related to the trajectory based

on the GMWM dynamic model, is the shortest line

which indicates that such a model reflects better

results than the other two models. Numerically, Table

6 clarify the effect of using a low-cost MEMS-based

smartphone mounted IMU which is obvious in terms

of the 2D position drift error values during the GPS

Table 5. Selection criterion for the dynamically dependent stochastic error modeling adaptive algorithm

Gyro output
Stochastic model parameters values for Apple iPhone 5S Gyro

AV 

Gyro Model = WN
GMWM 

Gyro Model = WN + GM

Table 1. Exp. No. 0 Table 4. Exp. No. 0

Table 2. Exp. No. 1 Table 4. Exp. No. 1

Table 2. Exp. No. 2 Table 4. Exp. No. 2

Table 2. Exp. No. 3 Table 4. Exp. No. 3

s°

0 5−

5 15−

15 25−

25 55−

Fig. 14. Influence of different inertial sensor stochastic error models on estimated trajectory (black trajectory was introduced
using a dynamically independent integrated navigation algorithm, AINS. Both red and blue trajectories was introduced using the
new proposed dynamically dependent integrated navigation algorithm, AINS+).
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outage periods. Moreover, last column of Table 6
highlights the mean value of 2D position error related
to each model. It is also worth to mention that the
standard deviation values of the estimated states
obtained from the KF covariance matrix (P-matrix)
are matching the actual RMS errors obtained from the
comparison of the reference solution with the esti-
mated one.

It can be seen that results of Table 6 demonstrate
the efficiency of GMWM model based on the dynamic

analysis, , over other models. Signifi-

cantly, GMWM-based dynamic model limits the
overall error growth during the GPS signal outage
periods more than the other two models.

In addition to the above and compared to the posi-

tion error value induced by using , the total
position drift error (mean value) was improved by 24

and 37% when using  and ,

respectively. Moreover, such an improvement is
reflected on the quality of the proposed dynamically
dependent integrated navigation algorithm, AINS+,
which is proven to be adaptive, form the stochastic
modeling perspective, based on the applied platform
dynamics.

Based on the previous analysis, it is clear that
assuming random inertial error processes are to be
independent of the dynamics of the platform on which
the inertial sensors are mounted is not a precise
assumption anymore. Consequently, performing a
dynamic dependent error analysis associated with a
dynamically adaptive integrated navigation algorithm
is essential to minimize position error during GPS free
periods. Moreover, GMWM approach is proven to be
more accurate than the traditional AV one. The reason
for that refers to the ability of GMWM to precisely
detect correlated noise as a latent stochastic process in
the gyro measurement. Such a correlated noise, repre-

sented in the form of multiple 1st order GM, included
in the GMWM-based model structure which finally
leaded to less position error compared to the AV-based
and static-based models.

( )dynamic GMWMM

staticM

( )dynamic AVM ( )dynamic GMWMM

5. SUMMARY AND CONCLUSIONS

The dynamic dependent sensor stochastic error
model for low-cost MEMS IMUs was investigated
and analysed in this paper. Two different tools, namely
the Allan Variance (AV) and the Generalized Method
of Wavelet Moments (GMWM), were utilized for
noise characterization related to inertial sensors resid-
ual measurements. The detailed estimation results
were highlighted for both static and dynamic data sets
collected at different applied dynamic quantities
(angular velocity and acceleration) using two MEMS-
based IMUs, InvenSense MPU-6500 and ST-Micro-
electronics L3G4200DH, mounted on two different
smartphones, the Samsung Galaxy S4 and the Apple
iPhone 5S, respectively. The AV/GMWM characteris-
tic curves were constructed and used to identify the
type and level of stochastic noise parameters in the
output datasets for gyros of both MEMS IMUs. The
same analyses were repeated for different applied
dynamics that allowed identifying the general behavior
of such parameters as a reflection of the platform
dynamics variation.

Comparing the AV and GMWM methods showed
that the classical AV could efficiently detect Angular
Random Walks (ARWs) as well as their general pattern
in both static and dynamic modes. As a demerit, the
AV tool did not have the ability to detect any outliers in
the data under test which could possibly lead to inac-
curate modeling for the measured signals. On the
other hand, the recently proposed GMWM overcame
this problem by comparing the classical WV with
another robust one using the so-called robust (or con-
tamination) test. Moreover, the GMWM could suc-
cessfully identify correlated noise parameters repre-

sented in the sum of one or more 1st order Gauss-Mar-
kov (GM) processes which never could be
discriminated using the AV. The main reason for that
was revealed to be related to the slope fitting analysis
technique utilized through the AV approach. Such a
technique degraded the accuracy of the AV regarding
correlated noise processes identification.

Moreover, different candidate models were evalu-
ated by the proposed Wavelet Information Criteria

Table 6. Position error during GPS signal outage using static, dynamic AV-based and dynamic GMWM-based models for
modelling Apple iPhone 5S sensor errors

Model

2D Position drift after GPS signal outages (m)

outage 1 ( ) outage 2 ( ) outage 3 ( ) outage 4 ( ) mean

16.302 17.504 20.21 15.316 17.333

14.401 12.822 16.101 9.104 13.107

9.866 11.214 11.761 10.681 10.881

1Turn 2Turn 3Turn 4Turn

staticM

( )dynamic AVM

( )dynamic GMWMM
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(WIC) that compromise the goodness-of-fit of each
model and its related complexity, which is considered
an additional merit of the GMWM over the AV. The
model selection results indicated that the noise model
structure was not affected by the applied dynamics.
Only model parameters’ values differ according to
dynamic variations. Consequently, augmented sto-
chastic noise models in a navigation Kalman Filter
(KF) will have the same structure but with different
parameter magnitudes depending on the applied
dynamics.

The validity of pre-estimated models was verified
by augmenting means of simulated specific forces and
angular rates corrupted by the real error signals, for the
Apple iPhone 5S IMU, into a new dynamically depen-
dent integrated navigation algorithm, namely AINS+.
Such an algorithm uses an additional selection crite-
rion to switch between different stochastic error
parameters values according to the applied platform
dynamics. This enabled eliminating dynamics-depen-
dent effects. The related stochastic error model was
compensated via different configurations based on
static, dynamic AV-based and dynamic GMWM-
based analysis. These configurations were compared
to a full INS/GPS navigation solution and their per-
formances were investigated during GPS signal outage
periods. The results showed that for the inertial stand-
alone performance during GPS signal outages, the
obtained position accuracy is improved when using
dynamic dependent stochastic error models, associ-
ated with the new proposed dynamically adaptive
algorithm, instead of the commonly used non-adap-
tive static one. Moreover, it has been demonstrated
that the GMWM-based stochastic model outperforms
the AV-based one in terms of a 2D position drift at the
end of the GPS signal free periods. As recommenda-
tions, we need to use more complicated stochastic
models rather than the traditional AV-based ones with
taking into consideration the correct choice of differ-
ent parameter setting according to platform dynamic
variations which, in turn, requires a dynamically
dependent adaptive integrated navigation algorithm.
Such recommendations could strongly improve the
overall performance for low-cost INS/GNSS inte-
grated navigation system.

To further promote this approach, other high-end
IMUs should be investigated and more error models
should be designed which will be investigated in our
future work.
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