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Abstract—This paper describes an approach for fusion of monocular vision measurements, camera motion,
odometer and inertial rate sensor measurements. The motion of the camera between successive images gen-
erates a baseline for range computations by triangulation. The recursive estimation algorithm is based on
extended Kalman filtering. The depth estimation accuracy is strongly affected by the mutual observer and
feature point geometry, measurement accuracy of observer motion parameters and line of sight to a feature
point. The simulation study investigates how the estimation accuracy is affected by the following parameters:
linear and angular velocity measurement errors, camera noise, and observer path. These results impose
requirements to the instrumentation and observation scenarios. It was found that under favorable conditions
the error in distance estimation does not exceed 2% of the distance to a feature point.

DOI: 10.1134/S2075108717020043

INTRODUCTION
Reconstruction of three-dimensional geometry

from two-dimensional images is one of the primary
objectives of computer vision. The image sequence
acquired by a moving monocular camera in a static
environment contains detailed information about both
the motion of the camera and the shape of the envi-
ronment. This phenomenon is called motion parallax
effect. Recovery of the structure of the scene using
parallax effect is commonly referred to as structure-
from-motion (SFM). Closely related to SFM is also
relative position and depth estimation using monocu-
lar vision. Development of approaches to determine
the relative position between a robot and objects in its
environment is an active area of research. The purpose
of relative position sensing includes obstacle avoid-
ance, mapping (building a catalog of objects and their
positions), localization (determining the robot posi-
tion relative to mapped objects), and relative position
control of the robot with the respect to an object to
enable observation, modeling and manipulation.

The camera motion between successive images
generates a baseline for the range computations by tri-
angulation. However, estimating distance to the fea-
ture points is often quite challenging due to very small
motion between frames, especially when a feature
point is located close to the focus of expansion. Suc-
cessful approaches usually integrate proprioceptive
sensors to estimate the observer’s ego-motion to pro-
duce a more robust sensing system than typical vision-
only techniques. The fusion of a bearing measurement

provided by a camera with ego-motion measurements
leads to a nonlinear estimation problem, which can be
solved by a nonlinear estimator like the EKF. Better
results are obtained when a specific state representa-
tion is used that eliminates non-linearity in measure-
ment model. These algorithms can be implemented on
mobile robotic platforms equipped with inertial sen-
sors, odometer and monocular cameras.

The proposed algorithm is motivated by the fact
that humans can reliably estimate the scene structure
without using binocular vision (with one eye only) by
relying on motion parallax and on their vestibular sys-
tem. In this case proprioception is supported by the
brain, which uses information from the vestibular sys-
tem in the head and motion sensing throughout the
body to understand the body’s translational and rota-
tional kinematics. A similar approach inspired by
nature can be applied to machine vision based on
monocular camera and motion sensors. We present an
algorithm that fuses information from a monocular
camera with information from an IMU and an odom-
eter to estimate the relative position between a camera
mounted on a moving wheeled robot and a stationary
landmark. This paper describes an extended Kalman
filter (EKF) based algorithm that is uniquely adapted
to this sensor fusion problem, and presents simulation
results for different observation scenarios and instru-
mentation errors. The sensing strategy takes advantage
of the complementary nature of monocular vision
measurements, inertial rate sensor measurements, and
camera motion.
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RELATED WORK
Currently stereo vision is the main approach for the

reconstruction of three-dimensional geometry from
two-dimensional images [1, 2]. Stereo vision is usually
implemented using a so-called stereo rig: two identical
cameras with parallel optical axes that are separated by
a known distance. The main difficulty in this approach
is more in the hardware side: the stereo rig has to be
rigid, the cameras must be identical, synchronized and
have a wide viewing angle [3]. During fast vehicle
motion no difference between capturing time is toler-
ated. In this approach the cameras have to be carefully
calibrated by computing the rotation and the transla-
tion between the cameras. Another implementation
problem is a point-by-point matching between the two
images from the stereo setup to derive the disparity
maps. This task is more difficult for stereo vision com-
pared to a monocular camera because the correspond-
ing point is not necessarily in the same location on
image sensor in both images while in monocular
vision the corresponding points between the succes-
sive images are almost in the same location provided
that the frame-rate is high enough. Stereo vision can
accurately recover the depth for near field objects, but
the accuracy degrades with the distance and it
becomes inaccurate for distant objects [4].

If two images relative to the same area of observa-
tion are acquired sequentially when the camera is
moving the three-dimensional geometry can be also
reconstructed. If the scene reconstruction is based on
only one stereo pair at one time the data processing is
similar to a stereo rig case from geometrical point of
view [2]. However, the accuracy can be improved if a
sequence of images is available for the scene recon-
struction. The application of a sequence of stereo
images assumes successive processing of a series of ste-
reo pairs [5]. This approach can achieve better accu-
racy because of the potentially wide baseline and can
be successfully used for computing the distance to
remote objects.

In human vision the binocular disparity is the most
important depth cue when the distance is less than
5 meters [4]. For larger distances the monocular depth
cues, especially the motion parallax, play a more
important role in sensing the depths. Perceptual psy-
chologists have extensively studied motion parallax
and have shown that it is of paramount importance for
the spatial orientation of car drivers [6] and for landing
an aircraft [7]. Regan et al. [8] described experiments
in which pilots in the act of landing planes were
deprived of the use of one eye. Their performance did
not deteriorate significantly, so binocular cues cannot
be important. Many authors agree with Gibson [7, 9]
that the main cue in these cases is the so-called focus
of expansion.

Wexler et al. [10] studied the importance of self-
motion for perception of 3D structure from motion.
They compared the non-moving, passive observer in

an environment of moving rigid objects with the active
observer moving in an environment of stationary
objects. It was demonstrated that this substitution is
not fully equivalent, because despite experiencing the
same visual stimulus the active observers’ perception
of 3D structure depends on extra-visual self-motion
information.

Longuet-Higgins et al. [11] used an equation that
relates the coordinates of a texture element in the
scene and its velocity with the observer’s translational
and angular velocities to derive an equation describing
the kinematics of retinal position and velocity. They
analyzed these equations and showed that from a
monocular view of a rigid, textured surface it is possi-
ble to determine the motion of the eye relative to it
from the velocity field of the changing retinal image.
They also came to conclusion that the depth com-
puted based on motion parallax is specified completely
by the retinal velocity.

Motion parallax can be combined with other depth
cues such as stereovision, kinetic depth effect, shading
and occlusion to obtain a more stable estimate of view-
ing distance. Landy et al. [12] proposed to fuse motion
parallax information with stereo disparity by minimiz-
ing the inconsistency between depth from disparity
and depth from motion parallax.

Tkocz and Janschek [13] developed a method for
the distance to landmark estimation that can be
applied for an airborne camera mounted on UAV. In
addition to the distance they also estimated the camera
velocity. Their approach is based on EKF. The novelty
was a batch algorithm for landmark initialization.
Although the algorithm can track many points at a
time the accuracy is not improved compared to indi-
vidual landmark tracking. The algorithm was validated
only by simulations under very optimistic assump-
tions.

Hustler and Rock [14, 15] proposed a system that
fuses monocular vision with inertial measurement unit
(IMU) measurements to estimate the distance
between a moving observer and a stationary object.
The approach is adapted to underwater robots, which
have to operate in the presence of disturbances and
uncertain dynamics. They observed that the combined
IMU and vision sensing strategy is robust to vision
drop-outs and is able to determine relative position
with minimal requirements on the vision system. They
also mentioned that the combination of limited
observability and significant nonlinearities, which are
inherent to this sensing strategy, creates an estimation
problem that cannot be solved with a standard EKF.
To overcome this difficulty they used a specific state
representation that leads to a linear sensor model and
transfers all of the nonlinearities into the state dynam-
ics avoiding linearization in the measurement update.
The state propagation is implemented with the
unscented transform, which does not require linear-
ization.
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Our work is closely related to the relative position
estimation approach proposed by Hustler and Rock
[14, 15], and the algorithm for distance to landmark
estimation proposed by Tkocz and Janschek [13]. The
algorithm has the ability to determine relative position
by tracking just one feature point. However, taking
advantage of additional features, when available,
should provide significant benefits, like improved
accuracy and increased robustness. This multi-feature
approach provides additional sensor measurements
without adding additional hardware. It also adds f lex-
ibility to the sensing strategy, whereby a feature that is
traveling out of the field of view of the camera can be
augmented by a more appropriate feature before the
first feature is lost.

RECURSIVE ESTIMATION OF DEPTH
FROM SEQUENCE OF IMAGES

This section presents an approach for a depth (dis-
tance to a feature point) estimation from a sequence of
images while tracking a feature point. The direction to
the feature point is usually called Line-of-Sight (LOS)
and it can be measured by a camera. The geometry of
an observer and a feature point is shown in Fig. 1. The
XN, YN, and ZN axes define the geographical coordi-
nate system N. The XC, YC, and ZC axes define the
camera frame C and the coordinate system of the cam-
era where the ZC axis corresponds to the camera’s
optical axis.

Many points can be tracked at the same time and
distance to them can be estimated using independent
estimators for each point. The accuracy of the estimate
depends on the point observability: points which are
close to the focus of expansion have poor observability
and as a consequence, the distance to these points
cannot be estimated very accurately. A cooperative
estimation algorithm can be also considered in the
future. It allows improving the estimation of points
with poor observability by imposing additional con-

straints and thus estimation of distance to a certain
point is now supported by other points.

The Estimation Algorithm
The estimator design is based on the Kalman

Filter framework. We assumed a pinhole camera,
which is represented by the standard perspective pro-
jection model shown in Fig. 2. The Cartesian compo-
nents of the projection of a feature point on the image
plane is denoted by x and y. The image plane is shown
at ZC = f. It is assumed, without loss of generality, that
the camera measurements are scaled such that the
effective focal length is 1. A feature point located at
R = [XC, YC, ZC] in the camera frame appears as an
image plane feature at x = XC/ZC and y = YC/ZC.
Therefore, the camera measurement z is the projection
of a feature point onto the image plane, and is mod-
eled as follows:

(1)

The camera measurement errors n are assumed to
be zero-mean Gaussian noise. Feature tracking results
in measurements of image location of the feature in
subsequent frames. The kinematic relation between
the feature point and its projection to the camera
image plane is described by the following equations
[11]

(2)

In these equations v = [vx, vy, vz]T is the observer
translational velocity and ω = [ωx, ωy, ωz]T is the angu-
lar velocity. Both of these ego-motion parameters are
assumed to be measured by the IMU and odometer
with reasonably good accuracy. We used a specific rep-
resentation of range, ζ = 1/Z, which was introduced by
Hustler and Rock in [14, 15]. This representation
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Fig. 1. Relative geometry of a camera (observer) and a fea-
ture point.
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reduces the dominant nonlinearities in the state
dynamics and results in more accurate estimator time-
updates. The estimation algorithm is based on the
extended Kalman filter (EKF) where for every feature
point the measurements and the state dynamics are
described by Eqs. 1 and 2 respectively. When several
feature points are tracked several independent sets of
equations have to be solved simultaneously. However,
addition of new points does not improve the estima-
tion accuracy if independent estimators for each point
are used.

SIMULATION STUDY

The simulation results for estimating distance from
the camera to a single point are presented below. The
purpose of this simulation study is to understand how
the estimation accuracy is affected by the following
parameters: linear and angular velocity measurement
errors, camera noise, and mutual observer and feature
point geometry. In all cases it is assumed that the cam-
era is moving forward with constant speed of 0.2 m/s
during 20 s and covering a distance of 4 m. In most of
the cases the feature point is located at R = [5, 5, 10]T.
In two cases with poor observability the feature points
are located more closely to the focus of expansion at
R = [1, 1, 10]T and at R = [0.5, 0.5, 10]T respectively.
The estimation is based on a sequence of 20 images.

The Effect of Observer Trajectory

The distance estimation accuracy for the cases with
good observability and without odometry and gyro

errors is shown in Fig. 3. The only source of error is the
random noise in estimated feature point coordinates
on cameara’s image plane. The error in distance esti-
mation after 20 images is about 0.14 m. It takes about
15 s for the filter to converge.

The distance estimation accuracy for poor observ-
ability when a feature point is located close to the
focus of expansion at R = [1, 1, 10]T is shown in Fig. 4.
In this case the filter converges slowly and 20 s is not
enough to obtain good accuracy. The error in distance
estimation after 20 images is about 1.3 m.

The next example demonstrates the filter perfor-
mance when the feature point is located very close to
the focus of expansion (R = [0.5, 0.5, 10]T). The angle
between the camera’s boresight and the LOS to a fea-
ture point is smaller than 5 deg. The estimation results
are shown in Fig. 5. The convergence is very slow and
the error in distance estimation after 20 images is
about 2.1 m. From these results we can see that the
camera’s trajectory can make significant impact on
the accuracy of distance estimation. Since this
approach is based on motion parallax effect the
accrued camera’s path during estimation has to be at
least 30% of the distance to a feature point and the
angle between the camera’s velocity and LOS to a fea-
ture point has to be larger than 10 deg. Currently only
straight camera paths were considered. A curved path
can improve the accuracy of distance estimation. The
results are scalable and depth estimation accuracy
depends on non-dimensional parameter similar to
what was used in [16, 17]:

(3)

where V is average speed, T is observation time, R0 is
initial range to a feature point. The K parameter rep-
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Fig. 3. Estimation error in distance to the feature point for
a good observability without linear and angular velocity
measurement errors. Camera measurement noise is 1 pixel
(0.1 mm).
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resents the camera’s (observer) ability to create maxi-
mum difference in the apparent position of a feature
point viewed along two different lines of sights.
Parameter K does not take into account the shape of
the camera’s path. So, for the same K the estimation
accuracy will be different for different observation sce-
narios.

The Effect of Camera Noise

This parameter corresponds to camera measure-
ment noise as well as random errors in feature point
tracking. The camera’s pixel size is 5.5 μm, therefore
the additive Gaussian noise with standard deviation of
100 μm (0.1 mm) in Eq. 1 will be a good representation
of this type of error in nominal case. In addition to this
two other cases of very large measurement noise of 1
mm and 10 mm are considered to find out when the
estimation starts to diverge. To investigate the effect of
camera noise on estimation accuracy we can assume
good observability without linear and angular velocity
measurement errors. The nominal case is shown in
Fig. 1. The depth estimation accuracy for 10 times
larger camera noise of 1mm is shown in Fig. 6. The
error in distance estimation after 20 images is about
the same as in the case with nominal measurement
noise.

When the camera noise is increased to 10 mm (not
possible in practical applications) to show the effect of
very large noise, the filter still can converge to a true
distance as is shown in Fig. 7. These results show that
the additive measurement noise in feature point coor-
dinates estimation on the image plane does not have
significant impact on the estimation accuracy.

The Effect of Angular Velocity Measurement Errors

The measurement of camera’s angular velocity is
required to calculate coordinates of a feature point
projection on image plane as is described by Eqs. 2.
This type of error can be caused by the measurement
errors in angular velocity as well as unaccounted error
in vehicle’s orientation tracking and LOS trembling.
These errors can be caused, for example, by vehicle’s
vibrations when IMU sampling rate is not sufficient to
accurately track the vehicle’s movement. This type of
error can be modeled as additive systematic or random
error to the nominal angular velocity.

Fig. 5. Estimation error in distance to the feature point for
a very poor observability when the feature point is very
close to the focus of expansion. Image noise is 1 pixel.
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To investigate the effect of angular velocity mea-
surement errors on estimation accuracy we can assume
good observability without linear velocity measure-
ment error. The following cases will be considered:
constant bias in angular velocity of 10 deg/hr,
100 deg/hr and 1000 deg/hr, and random error addi-
tive error in angular velocity measurement with the
standard deviation of 1000 deg/hr. The depth estima-
tion accuracy for 10 deg/hr bias is shown in Fig. 8. The
error in distance estimation after 20 images is about
0.18 m, therefore the accuracy degradation because of
small angular velocity is small. The estimation accu-

racy for the 100 deg/hr gyro bias is shown in Fig. 9.
The error in distance estimation after 20 images is
about 0.45 m. The estimation accuracy for the
1000 deg/hr gyro bias is shown in Fig. 10. In this case
the filter did not converge to the true distance. The
error in distance estimation after 20 images is about
5 m. This measurement error is well above the limit
that can be tolerated by the filter. The estimation accu-
racy for the 1000 deg/hr random error in angular
velocity is shown in Fig. 11. The distance estimation is
noisy, but the filter converges to the true distance. The

Fig. 8. Estimation error in distance to the feature point for
a good observability without linear velocity measurement
error. Gyro bias is 10 deg/hr. Image noise is 1 pixel.
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error in distance estimation after 20 images is about
less than 1 m.

The Effect of Linear Velocity Measurement Errors
To investigate the effect of linear velocity measure-

ment errors on estimation accuracy we can assume
good observability without angular velocity measure-
ment error. The following cases will be considered:
constant bias in linear velocity of 0.02 m/s and 0.1 m/s.
The depth estimation accuracy for 0.02 m/s velocity
bias is shown in Fig. 12. The error in distance estima-
tion after 20 images is about 0.2 m. So, no significant
accuracy degradation was observed. The estimation
accuracy for the 0.1 m/s velocity bias is shown in
Fig. 13. The error in distance estimation after
20 images is about 2 m. This velocity measurement
error is too large for obtaining good distance estima-
tion accuracy.

FUTURE WORK
We are planning to implement the presented algo-

rithms in the two different mobile robots shown in
Fig. 14. The first is a robotic manipulator arm
mounted on a mobile base and the second is a com-
mercially available Robotnik mobile platform. Both of
these robots are equipped with the Linux Ubuntu
computer with robot operating system (ROS),
Microstrain 3DM-GX3-25 inertial measurement unit
and odometer. These mobile platforms are also
equipped with machine vision cameras that are con-
nected to the computer with USB cables. The instru-
mentation includes a triaxial accelerometer, triaxial
gyro, triaxial magnetometer, temperature sensors, and
an on-board processor that fuses the measurements to

provide static and dynamic orientation and translation
measurements. The range of the attitude and heading
in IMU unit is 360 deg in all three axes and the sam-
pling rate is 100 Hz. The angular attitude accuracy of
the IMU is 0.5 deg in static conditions and 2.0 deg in
dynamic conditions. The Renishaw RM22I odometer
has the resolution of 0.7 deg and the sampling rate of
40 Hz. The machine vision cameras are manufactured
by Point Grey and have the resolution 4 Mpixels and
the imaging rate 10 Hz. The camera is mounted on
holders with servomotors and can be tilted up to 90
deg and panned up to ±90 deg. The field of view of
cameras is 48 deg.

Feature Points Detection
Real environments present the typical challenges of

identifying good visual features, establishing feature
correspondences and robust tracking. The feature-
tracking algorithm tracks a set of points using the
Kanade−Lucas−Tomasi algorithm. The image cap-
tured with camera describes the intensity of light,
which is ref lected from the surface of objects. The
intensity can rapidly change in the image for example
because of the color changes or the orientation
changes of the object. If the intensity changes at the
same time in two directions such spot is called a corner
in image. There exist a large variety of corner detection
algorithms [18, 19] for instance. In this work the algo-
rithm described in [20] was applied. In such method
the corner detection is based on the gradient covari-
ance matrix, which is computed from the area of
25 pixels (5 × 5) pixels. Such covariance matrix is
computed for each pixel location in the image and the
minimal eigenvalue of matrix is computed which is the
quality measure of the corner. Next the local maxi-

Fig. 12. Estimation error in distance to the feature point for
a good observability without angular velocity measure-
ment error. Velocity bias is 0:02 m/s Image noise is 1 pixel.
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mums from the 3 × 3 neighborhoods are obtained.
Finally the corners whose minimal eigenvalue is less
than the product between the quality measure of best
corner and the value 0.01 are rejected. Furthermore,
the algorithm rejects corners for which there is a stron-
ger corner at a distance less than 2 pixels. These two
threshold limits in this algorithm are adjusted such
that at least 500 feature points are found from each
image.

In this work the detected feature points are not
associated with any specific object and the current
goal is to obtain an image where each chosen feature
point contains information about the depth or dis-
tance to the camera. In our future work we are plan-
ning to develop approaches for vanishing points iden-
tification and data association. The latter can help to
identify specific objects including moving ones and
build a map of the environment. The vanishing points
correspond to distant landmarks and therefore their
projections to the image plane are not moving unless
the camera is rotating.

Tracking Feature Points

Feature points can be found from each image
frames separately. However, the location of feature
points differs from one frame to another and therefore
the features between the consecutive frames must be
matched by their tracking over the image sequence.
Tracking method is based on the optical f low algo-
rithm, which uses the iterative Lucas−Kanade method
with image pyramids [21, 22]. The Lucas−Kanade
method assumes that the displacement of features
(optical f low vector) between the two consecutive
images is small. This condition was fulfilled in our
tests because of low speed of the ground robot and
high imaging rate. The optical f low is defined as a vec-

tor d = [dx, dy] that minimizes the residual function
defined as:

(4)

where x and y are the pixel locations in image plane, I
and J are the intensity functions of consecutive
images, ux and uy the coordinates of the image point,
and ωx and ωy determine the size of the search area.
This minimization is done for each level in image pyr-
amid. An image pyramid is a collection of images that
all are successively down-sampled from the original
image until some desired stopping point is reached. In
this work we used three pyramids levels. The minimi-
zation starts from the smallest image and proceeds to
middle image and finally ends to the original image.
Such pyramid procedure speeds up the minimization
and helps to match features from different distances.

CONCLUSIONS
This paper describes the algorithm for fusion of

monocular vision measurements, inertial rate sensor
measurements, and camera motion. The outcome of
this approach is a relative distance between a camera
and objects in its environment and it can be imple-
mented in many important practical applications such
as obstacle avoidance, mapping, localization of the
robot position relative to mapped objects, and relative
position control. The simulation study shows that this
approach can be very accurate in depth (distance to
objects) estimation with estimation error as low as 2%
of the distance to the object. However, the distance
estimation accuracy strongly depends on the accuracy
of gyroscopes and odometer as well as observation sce-
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Fig. 14. Robotic manipulator arm mounted on a mobile base (left) and commercially available Robotnik mobile platform (right).
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narios. Based on the simulation study the accuracy
requirements to the instrumentation and observation
scenarios have been established.

It was shown that this approach could tolerate quite
large (up to 100 deg/hr) angular velocity measurement
errors. To obtain good results medium accuracy
MEMS IMUs such as Microstrain 3DM-GX3-25 and
Xsens MTi-10 are required. Accurate velocity mea-
surement is also important since it is used to compute
the baseline between successive frames. Since velocity
is scaled to the distance to landmark the velocity mea-
surement error also should be scaled accordingly and
given in terms of relative error. Based on the simula-
tion study it was concluded that relative speed mea-
surement errors as large as 5% of camera speed can be
tolerated. This is not a very restrictive requirement,
because typical wheel encoders have better accuracy.
However, wheel slippage also has to be taken into
account.

Mutual camera and feature point geometry is also
very important. For obvious reasons this approach
cannot compute distance to a feature point located in
the focus of expansion (FOE). For practical reasons
distance estimation to feature points near FOE is not
accurate. The simulation study showed that there is no
significant degradation in accuracy of the distance
estimation when the angle between feature points and
the FOE is larger than 10 deg. However, accuracy
starts to deteriorate if a feature point is getting closer to
the FOE, and for feature points located at the angle of
less than 5 deg to the FOE the method does not pro-
duce reliable depth estimation. If the application
allows some freedom in observer path then the accu-
racy can be improved by moving to create a geometry
between a feature point and an observer that maxi-
mizes system observability.
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