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Abstract⎯A correcting digital filter for a mechanically dithered single-axis ring laser gyro (RLG) is proposed.
The filter is intended to determine the angular position of a strapdown inertial navigation system (SINS) in
the RLG sensitivity axis using the known value of the RLG angular position with respect to inertial space,
taking into account the models of the suspension elastic forces nonlinearity, the hysteresis model of vibration
energy dissipation, and the model of the suspension piezoceramic vibratory drive. Parameterized models of
nonlinearity, dissipation, and the output characteristic of the suspension piezoceramic drive have been devel-
oped. A method for finding nonlinearity parameters of elastic forces using a set of experimental amplitude-
frequency characteristics (AFC) is proposed. Numerical simulations of the AFCs of an elliptic eliminator and
a correcting filter under sinusoidal rotation of the SINS with the amplitude of 1 arcmin in the frequency band
of 80–3600 Hz have been performed. The efficiency of the proposed filter has been verified experimentally
under pulse action on the SINS; the test results are discussed. Comparison of the experimental and calculated
data shows the adequacy of the proposed models and satisfactory operation of the correcting digital filter.
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INTRODUCTION
Ring laser gyroscopes (RLG) are widely employed

in navigation-grade SINS [1–3]. RLG errors caused
by lock-in of the counter-propagating modes at low
speeds of rotation can be reduced due to nonreciprocal
elements used in the external magnetic field or alter-
nating-frequency mechanical dither [2, 3]. The latter
technique makes RLG less sensitive to the magnetic
field and provides higher accuracy of SINS. Applica-
tion of alternating-frequency mechanical dither
requires that the RLG body be installed on an elastic
vibrosuspension (subsequently referred to as “suspen-
sion”) with piezoceramic plates fixed to it. Under
alternating voltage the suspension undergoes torsional
vibrations in the RLG sensitivity axis [3, 9]. By these
means, the RLG output signal contains a sum of the
SINS angular position in a specified axis with respect
to the inertial space and rotation of the RLG body with
respect to the SINS. Only the first term is of impor-
tance for the inertial algorithm, whereas the RLG
rotation due to dither should be excluded from the
RLG output data. The electrodynamic method com-
monly used for this purpose suggests that a permanent
magnet be fixed onto the RLG body and a coil, gener-
ating a voltage proportional to the RLG speed of rota-
tion relative to the SINS, fixed onto the SINS body.
The drawback of this method is significant time-and-
temperature dependence of the coil analog signal and
additional labor input in manufacturing.

Digital methods are currently in wide use for RLG
signal processing. In this connection, various methods
for mathematical elimination of dither from RLG sig-
nals have been developed in recent years [3–9]. A
sequence of digitized RLG readings is passed through
a narrowband digital filter, called an eliminator [3],
adjusted to the RLG frequency of mechanical dither.
However, this method has two significant drawbacks.

Firstly, complete suppression of frequencies in the
vicinity of mechanical dither eliminates not only the
dither but also the corresponding harmonics of the
SINS rotation signal, giving rise to an error in the
operation of the navigation algorithm.

Secondly, the inertial mass of the RLG body
attached to the elastic suspension forms a mechanical
oscillatory (rotary) loop, with the AFC decreasing
inversely to the second power of the frequency for
those above the resonance one. This means that, when
used in the form presented in [3, 9], the eliminator
limits the passband of the SINS rotational motion to
the frequencies below the resonance one for the given
suspension. Since the mechanical dither resonance
frequencies for RLG with an optical path perimeter of
28 cm lie within the range between 300 and 450 Hz
and are different for the three orthogonal axes of the
SINS, the navigation algorithm operates on the data
that are very limited in spectrum, which makes it
impossible to correctly describe high-frequency com-
ponents of the SINS rotational motion. At the same
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time, currently the rotational motion passbands of
modern navigation-grade SINS are no less than 1 kHz
[10].

It is important that the above mentioned electrody-
namic method is free from such drawbacks. At the
same time, the idea of eliminating analog electronic
components and replacing them with a mathematical
algorithm is attractive. In this paper, the authors pro-
pose a digital filter designed for elimination of
mechanical dither from the signal of a single-axis
RLG.

CORRECTING FILTER

The proposed filter is intended to determine the
SINS angular position  with respect to the RLG
sensitivity axis, provided that the angular position of
the RLG body  relative to the inertial coordinate
system is known. Note that the case under consider-
ation concerns a single-axis RLG.

The equation of the RLG body rotation by angle
 with the inertia moment I relative to the sensitiv-

ity axis under the action of the moment of forces M,
taking into account the elasticity of the suspension,
dissipation of oscillation energy, and the oscillations
generated by the suspension piezoceramic plates with
voltage V, can be written as

(1)

Because of space isotropy, the moments of forces
associated with elasticity  and dissipation 
can only depend on the difference 
which makes it possible, after dividing the elastic
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forces into linear and nonlinear parts, to write Equa-
tion (1) as follows:

(2)

where с is the suspension torsional rigidity,
 is the term describing nonlinear-

ity of elastic forces,  is the term
describing dissipation of oscillation energy, 
is the term describing the moment of forces caused by
the suspension piezoceramic plates.

Equation (2) describes an oscillation system with a
combined⎯kinematic ( ) and dynamic
( )⎯excitation [11].

It is known that the AFC of such a system at both
excitation inputs is a resonance circuit, the quality fac-
tor of which is determined by losses

Equation (2) can also be regarded as an equation of
a mechanical filter, with  at its input and  at
the output.

Because of the AFC ripple of the mechanical filter,
the value  measured by the RLG contains ampli-
tude-and-phase distortions. At frequencies above the
resonance one, AFC shows a roll-off of about  (
is an angular frequency), which is due to the second
time derivative in the left side of Equation (2). The dis-
tortions can be corrected and dynamic excitation can
be subtracted if the received signal  is passed
through an additional correcting filter, the AFC of
which multiplied by the AFC of the mechanical filter
in a required passband band should provide 1.

The correcting filter can be described by
Equation (2) given above, but the input and output are
reversed:  is an input parameter, and the output
parameter is, in the general case, the root of the non-
linear equation  At the frequencies above the
resonance one, the AFC of the correcting filter shows
the growth proportional to  (Fig. 1, curve 2).

To obtain a correcting digital filter, we need to
change over from the continuous (Equation (2)) to
discrete time. For this purpose, taking into consider-
ation the fact that the terms 
are small (about ten arcsec), they are omitted in Equa-
tion (2) for the time being, whereby we derive:

(3)

where  is the circular self-resonant fre-
quency of the suspension at small oscillation ampli-
tudes.
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Fig. 1. AFC at the kinematic input of the oscillating system
with damping (curve 1; the dynamic input is not excited),
AFC of the correcting analog filter (curve 2), and AFC of
the correcting digital filter (curve 3,  = 0.139 ms).
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In the digital processing, the values of angles 
are available at discrete points in time with a sampling
period of . To change over from the analog filter
(3) to a discrete one, it is necessary, after the Laplace
transformation and bringing the result to the canoni-
cal form, to make the following replacement in Equa-
tion (3):

where s is the parameter of the Laplace transform, z is
the parameter of Z-transformation, and  is the poly-
nomial pole [12]. Therefore, after introducing the
notations  and  the equa-
tion of the digital filter takes the form:

(4)

After taking into account the terms
 we can finally write the formula for

the correcting digital filter:

(5)

Equation (5) solves the problem of determining the
SINS angular position  in the RLG sensitivity
axis, provided that the angular position of the RLG
body  relative to the inertial coordinate system in
digital form is known and the functional dependences
of  on their arguments are also
known.

Note that the AFC of the correcting digital filter
shows lower values in the Nyquist frequency band

 as compared with the AFC of the corre-
sponding analog filter due to the symmetry of the AFC
of the correcting filter with respect to the specified fre-
quency (Fig. 1, curve 3) and quadratic dependence of
the AFC of the correcting analog filter on the frequen-
cies above the resonance one.

The accuracy of the angular position  pro-
vided by the correcting digital filter (5) depends on the
accuracy of parameters obtained for the correspond-
ing mechanical filter of the suspension. Therefore, in
order to use filter (5) in practice, it is necessary to rep-
resent the dependencies  in the form
of parameterized functions. Because of the tempera-
ture and time dependence of the resonance frequency

 and the parameters of functions 
the latter should be estimated and corrected in the
operation mode of the SINS.

RLGϕ

TΔ

11 ,
p T

z e
s p

T

− Δ−− →
Δ

p

RLG( )n nX t≡ ϕ SINS( ),n nY t≡ ϕ

2 12
0

0
12

0

1 ( 2 )
( )

2(1 cos( )) .
( )

n n n n

n

Y X X X
T

T
X

T

− −

−

= + −
ω Δ

− ω Δ+
ω Δ

Nonl,Diss,Piezo,

2 12
0

0
1 1 12

0

1 1 1

1 ( 2 )
( )

2(1 cos( ))( Nonl( )
( )
Diss( ) Piezo( )).

n n n n

n n n

n n n

Y X X X
T

T
X X Y

T

X Y V

− −

− − −

− − −

= + −
ω Δ

− ω Δ+ + −
ω Δ

+ − +

SINSϕ

RLGϕ

Nonl,Diss,Piezo

1 2NF T= Δ

SINSϕ

Nonl,Diss,Piezo

0ω Nonl,Diss,Piezo,

NONLINEARITY OF ELASTIC FORCE

To specify the dependence  we consider
the experimental oscillation amplitude dependences
of the RLG suspension on the frequency. The RLG
with a 28 cm perimeter was subjected to dynamic exci-
tation with fixed amplitudes of ac voltage V. Figure 2
shows an example of such dependencies.

Two specific features of the AFC set of the elastic
suspension are the following: decrease of the reso-
nance frequency with the increase of the amplitude,
and asymmetry of the resonance curve. The values of
asymmetry of the resonance curves may vary for
RLGs from different manufacturers.

To determine the function  from the
experimental dependence of the period of resonance
oscillations  on oscillation energy E, we can use
the known formula (12.2) [13] for single-axis rotation
of a body with the moment of inertia I:

(6)

Introducing variable amplitudes of oscillation a
and integration parameter v, using the definitions

 and  we can go from integration

with respect to energy E to integration with respect to
oscillation amplitude; thus, from Equation (6) we
derive:

(7)

where F0 is the resonance frequency at small oscilla-
tions (see Fig. 2),  is the dependence of the reso-
nance frequency on the oscillation amplitude.
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Fig. 2. Oscillation amplitude of an RLG with a perimeter
of 28 cm at dynamic excitation.
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Then, the moment of elastic force Mf lex is defined
as follows:

which makes it possible to determine function
 using the inverse dependence  obtained

with the use of (7):

 (8)

The results obtained in the processing of the exper-
imental dependence  from Fig. 2 using Equa-
tions (7) and (8) are shown with blue dots in Fig. 3.
Integration by formula (7) involved linear interpola-
tion between the experimental values of  and
extrapolation to zero amplitude.

Application of filter (5) for RLG real-time signal
processing requires analytical parameterized approxi-
mation of the experimental dependence 
which was approximated in this case by the two-
parameter formula (9):

(9)

This formula provides a minimum approximation
error in the range of the specified amplitudes of the
sinusoidal dither as well as a satisfactory approxima-
tion error beyond the range of the specified ampli-
tudes, which is important at pulse action on the SINS.
Approximation (see Fig. 2) was performed at k1 =
1.75 × 10–4, k2 = 1.05 × 10–3 for angle ϕ in radians.
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DISSIPATION OF OSCILLATION ENERGY

Physical mechanisms of the suspension oscillation
energy dissipation determine the analytic formula for
the term . Dissipation may be due to losses
caused by viscous friction of the RLG ambient gas or
the losses in elastic torsions of the suspension. The
quality factor  of the resonance oscillations of the
RLG with a perimeter of 28 cm and a frequency of
about 400 Hz due to viscosity of the ambient gas is
estimated to be about 107, which is much higher than
the experimental values of  ~ 102.

Hence, the main mechanism of dissipation is inter-
nal friction in the material of the suspension torsions.
The internal friction in solids is well understood [14–
17]. Its distinguishing feature is the hysteresis nature of
force-displacement relationship and independence of
force from speed. As distinct from viscous friction
(often called “wet”), the force of which is proportional
to the speed uneven degree, loss in oscillation energy
at hysteresis is proportional to the figure square in the
force-displacement coordinates and does not depen-
dent on the shape of this figure. The equation of ellipse
[14–17] is convenient to use to obtain the formula:

(10)

Parameter  determines the value of the suspen-
sion vibration energy dissipation,  determines the
dependence of the dissipation value on the vibration
amplitude.

PIEZOCERAMIC DRIVE
OF THE ELASTIC SUSPENSION

The elastic suspension of the single-axis RLG is
generally designed in the form of elastic torsions (an
even number) that mechanically connect the glass-
ceramic body of the RLG with the SINS housing. The
torsions have electrically interconnected piezoceramic
plates glued onto their surfaces; the plates are supplied
with AC voltage V.

Under voltage V, the inverse piezoelectric effect of
the piezoceramic plates causes bending deformation
of the torsions, which in turn causes RLG rotation rel-
ative to the SINS.

Since the oscillations of piezoceramics are directed
normally to the applied voltage, this corresponds to
the piezoelectric soft mode  with independent
electrical variable , and the equations of the state of
inverse and direct piezoelectric effects have the form
[18]:
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Fig. 3. Experimental dependences of resonance frequency
on amplitude (blue dots) and approximation by analytical
formula (9) with parameters k1= 1.75 × 10–4, k2 = 1.05 ×
10–3—red line.
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where  are deformation and mechanical stress of
the piezoceramic plate along the suspension radius,
respectively:  are induction and intensity of the
electric field in the direction perpendicular to the plate
plane:  is the perpendicular piezoelectric coeffi-
cient of piezoceramics:  are the elastic coeffi-
cient and the absolute dielectric constant of piezoce-
ramics.

Using the notation  for the thickness and
height of the torsion bar, —the thickness and width
of the piezoelectric plate along the suspension radius,

—the number of torsions in the suspension, —
the suspension radius, and taking into account that

 from Equation (11) we obtain the formula
for 

(13)

The first term in (13) describes increase in the tor-
sional stiffness of the suspension due to the elastic
properties of piezoceramics; it can be taken into
account in the coefficient c of Equation (2). The sec-
ond term describes the dynamic excitation of the oscil-
lator under the applied voltage .

The direct piezoelectric effect described by (12)
determines the value of the equivalent capacitance 
of the suspension piezoceramics. Large values of 
and output resistance of the suspension drive can
cause an antiresonance effect [18], when at frequen-
cies higher than the basic mechanical resonance, the
RLG oscillation amplitude decreases significantly,
leading to a more balanced form of AFC. In this case,
equation  and hence Equation (13),
become sufficiently approximate.

The antiresonance effect has a less impact on RLG
with lower resonance frequencies of the suspension.
According to the results of AFC measurements for
RLGs with a perimeter of 28 cm from different manu-
facturers, the AFC simulation accuracy with account
of only the proportional relationship between 
and  (13) may be from a few arcsec to several tens of
arcsec for different batches.

In this paper we restrict ourselves to the case when
Equation (13) can be applied. The coefficient of pro-
portionality between  and V contains the values
of physical parameters of piezoceramics that can vary
significantly with temperature and time during SINS
operation. Therefore, we need to enter the parameter
of dynamic excitation 
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the value of which should be determined during SINS
operation.
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To obtain the relationship between the dissipation
model parameter  and the dynamic excitation
parameter  with the values determined experimen-
tally during SINS operation, consider Equation (2) in
the absence of kinematic excitation ( ) and
nonlinearity of elastic force 

Assume that at the resonance frequency the preset
voltage  is given as

We seek the solution to , where
 is the function slowly varying over the period of

resonance oscillations. The substitution in Equation
(2) and neglect of the second derivative of  result in
the following equation:

 (15)

Taking into account the determination of the
mechanical quality factor  of the oscillatory circuit
[14–17], from (15) we derive:

(16)

In the conditions of stationary amplitude , we
obtain the formula for :

(17)

Equations (16), (17) allow the dissipation model
parameter  and the dynamic excitation parameter 
to be determined during the SINS operation using the
value of the mechanical quality factor  and the aver-
age value of voltage Vm applied to the elastic suspen-
sion, needed to provide the required average value of
the oscillation amplitude . Parameter  has little
effect on the simulation accuracy (see below) and can
be set as a constant for a batch of elastic suspensions.

The value of the mechanical quality factor  and
coefficients  can be determined in the process of
SINS operation at amplitude modulation of the elastic
suspension, applied to eliminate dynamic minibands
of the RLG. The algorithm of this determination
depends on the specific amplitude modulation algo-
rithm, which is why it is not considered in this paper.

NUMERICAL SIMULATION 
AND EXPERIMENTAL VERIFICATION 

OF THE CORRECTING FILTER
To test the adequacy of the accepted models, we

performed numerical simulations of Equation (2)
under dynamic excitation and in the absence of kine-
matic excitation, which corresponds to four curves in
Fig. 2 for the ten selected frequencies close to the res-
onance one. Parameters ,  of the above mod-
els were varied to achieve the minimum of the objec-
tive function S:
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At its minimum, the value of S gives 4 arcsec RMS
deviation of the model from the experimental one.
The values of model parameters show a good qualita-
tive and quantitative agreement between the calculated
and experimental values of the oscillation amplitude
(Fig. 4).

The minimum value of the objective function was
used to calculate the sensitivity coefficients as the ratio
of increase in the RMS error to 1% of the value of this
parameter. The results are shown in the table.

Table shows that the error model is mostly affected
by the resonance frequency , whereas coefficient 
has the least effect on it.

The study involved numerical simulation of the
RLG operation in the SINS. Dynamic excitation was
applied on a resonance frequency of 386 Hz at the
RLG oscillation amplitude of 3 arcmin. Kinematic
vibration excitation was applied to SINS with the
amplitude of 1 arcmin in the frequency range of 80–
3600 Hz. The simulated RLG signal output was fed
with a frequency of 7.2 kHz both to the input of a 10th-
order elliptic IIR eliminator with a 370–410 Hz sup-
pression frequency band [3, 9, 19] and to the input of
the digital correcting filter (5).

The simulation results are presented in Fig. 5. It
can be seen that the eliminator suppresses the
mechanical dither frequency successfully, but, at the
same time, it does not pass the useful SINS signal of
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1 arcmin. We see the AFC rise near the resonance fre-
quency due to the mechanical resonance of the elastic
suspension. Above 500 Hz, there is a roll-off with a
slope of 6 dB /octave, which is due to the roll-off of the
mechanical filter AFC.

In general, the frequency response of the elimina-
tor shows passband ripple, and the mechanical dither
passband is limited.

The correcting digital filter shows much smoother
AFC with the exception for the range of frequencies
close to the Nyquist frequency (see Fig. 1). To improve
the smoothness of the correcting digital filter, the
sampling rate must be chosen with a reserve.

Note that the eliminator described in [7, 8] does
not provide uniform AFC on moving averages in the
desired bandwidth either, because, as with the elliptic
filter, it does not account for the AFC roll-off with a
slope of 6 dB/octave above the resonance frequency.

To experimentally test the correcting filter, we used
SINS with an RLG with a perimeter of 28 cm. The
inertial measurement unit was fixed rigidly (without
any shock absorbers) to the SINS base. The analog
beat-frequency signal was digitized at a frequency of
72 kHz by the dual comparator and a dual 12-bit AD
converter. Digital values from the comparator and the
AD converter were combined into two integers by the
digital signal processor. To reduce the noise, digitized
values were passed through a low pass filter with a 9
kHz bandwidth and then decimated to the frequency
of 7.2 kHz.

Coefficients  and the quality factor  were
estimated by a digital signal processor during SINS
operation, based on the results of amplitude modula-
tion of the dither in order to eliminate dynamic mini-
zones of the RLG.  was determined by a system of
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Fig. 4. Comparison of AFC simulations at k1=1.75 × 10–4,
k2 = 1.05 × 10–3, k3 = 4.4 × 10–3, k4 = 250 with the experi-
mental data.
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amplitude stabilization from the known average values
of amplitude and voltage ; due to the low sensi-
tivity value (see Table),  was set a constant. Reso-
nant frequency  was determined by the dither
phase-locked loop taking into account a relative mis-
match at known coefficients , and .

The quality of suppression of the dither signal by
the digital correcting filter was tested in the first exper-
iment. The SINS was stationary relative to the Earth.
After the correcting filter the digital signal was
recorded with a frequency of 7.2 kHz in the software
buffer during 4 oscillation periods of the dither. The
dither dynamic excitation amplitude was 3 arcmin.
The resonance frequency was 386 Hz.

The signal RMS error was calculated from its aver-
age value. Frequency mismatch  of the filter (5)
operation with vibrodrive operation frequency was
previously programmed. From Fig. 2 it is clear that
due to the vibrodrive nonlinearity, frequency  must
be above the resonance frequency. For complete sup-
pression, the calculated value of the relative mismatch
was 0.0025. The measurement results are given in
Fig. 6.

It is seen that when relative mismatch is about
0.002, which is close to the calculated value, the RMS
error is at its minimum, about 0.7 arcsec.

The second experiment was aimed at estimating
the adequacy of the simulated AFCs of the correcting
filter and elliptic eliminator (Fig. 5). The SINS was
mounted on the platform allowing for single-axis rota-
tion in the sensitivity axis of the RLG being tested. The
stationary platform was hit tangentially with a metal
striker, which caused SINS rotation. A wide spectrum
of SINS rotation at the moment of impact made it
possible to estimate the AFC ripple of the filters.
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The RLG output signal in one decimation cycle
was processed through the correcting filter and elliptic
eliminator. The program detector of the impact
recorded the filtering results into two memory buffers
simultaneously. The experimental data are shown in
Fig. 7 by the curves: 2—for the correcting filter and 4—
for the elliptic eliminator.

For the elliptic eliminator, after the impact at time
point  = 0 ms, we can see an oscillatory response with
a period of about 2 msec, which is in close agreement
with the calculated AFC with rises during the
mechanical resonance of the dither (see Fig. 5). On
the contrary, the correcting filter shows an abrupt start
of motion, which can be indicative of a broad band-
width and flat AFC.

Since the actual SINS rotation, common to the
both filters, after the impact was unknown, we per-
formed mathematical variation of the simulated rota-
tion (Fig. 7, curve 1) and postprocessing by the both
filters to minimize the differences between the results
of the simulated (Fig. 7, curves 3 and 5) and actual
(curves 2 and 4) data. The simulated rotation con-
tained an oscillating decaying component with a fre-
quency of about 1.6 kHz, which was most probably
caused by the mechanical vibration of the SINS after
the impact. We can see qualitative and quantitative
agreement of the results obtained for the both filters in
the simulation and the results of the real SINS rota-
tion. The eliminator output does not have an oscillat-
ing component at a frequency of 1.6 kHz because the
bandwidth is limited by the resonance frequency of the
vibrodrive. We can also see a good agreement between
the experimental curve 2 obtained with the correcting
filter and the optimal simulated rotation (curve 1).
This may mean that the correcting filter, in contrast to

t

Fig. 6. Experimental dependence of the RMS error of
dither signal suppression by the correcting filter for a sta-
tionary SINS.
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Fig. 7. The experimental (curves 2 and 4) and calculated
(curves 3, 5) dependences of SINS position under the
impact. Curves 4, 5 correspond to the 10th order elliptic
eliminator, curves 2 and 3, to the correcting filter, curve 1,
to the simulated simulation rotation. The curves are shifted
vertically for illustration purposes.
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the elliptic eliminator is much more accurate in restor-
ing the actual rotation of the SINS, which is necessary
for navigation algorithms.

According to the results of the numerical calcula-
tions and the experiments described above it may be
concluded that the correcting digital filter shows satis-
factory operation at zero frequency (absence of rota-
tion) and at broadband rotation (mechanical impact).

CONCLUSIONS

A correcting digital filter has been proposed to
determine the angular position of SINS in the sensi-
tivity axis of the single-axis mechanically dithered
RLG. The SINS angular position is determined by the
known value of the RLG angular position with respect
to the inertial space taking into account the models of
the suspension elastic forces nonlinearity, the hystere-
sis model of oscillation energy dissipation, and the
model of the suspension piezoceramic drive.

Parameterized models of nonlinearity, dissipation
and output characteristics of the elastic suspension
piezodrive have been developed.

The numerical simulations of AFCs of the elliptic
eliminator and correcting filter under SINS sinusoidal
rotation with the amplitude of 1 arc min over the fre-
quency range of 80 to 3600 Hz have shown that unlike
the correcting filter, the eliminator has a significant
AFC ripple.

The experimental results show that in the absence
of SINS rotation, the correcting filter is capable of
eliminating mechanical dither from the RLG signal.

The experimental verification of the efficiency of
the proposed correcting filter at pulse action on
SINS has confirmed the adequacy of the proposed
models and satisfactory operation of the correcting
digital filter.
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