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INTRODUCTION

If a vehicle control law is synthesized using a non�
invariant approach with account for vehicle dynamics,
the vehicle mathematical model is required to estimate
its state vector. Usually, the mathematical model in
state space can be constructed based on the natural
forces and moments affecting the vehicle accurate to
several parameters, which are refined or determined
by solving the identification problem during the full�
scale tests. Identification methods should satisfy cer�
tain requirements, namely: 

⎯sufficient accuracy;
⎯independence of initial conditions;
⎯immunity to external disturbances;
⎯consideration for the measurement errors of

onboard devices.
Currently, the most widespread methods used for

identification of vehicle model parameters are based
on [1–3]

⎯prediction errors;
⎯subspaces; 
⎯multialternative filtering.
In publications [4, 5], which became classical in

identification of surface ship model parameters,
hydrodynamic model coefficients are determined by
the error prediction method using gradient procedure.
The measurement prediction is realized by extrapolat�
ing the value of state vector using the Kalman filter
multiplied by the observation matrix. In dynamic
model of Kalman filter no external disturbances are
considered, which makes the identified parameters
very sensitive to disturbances.

Algorithm for identification of hydrodynamic
coefficients of autonomous underwater vehicle (AUV)
model using Gauss�Newton gradient procedure is
addressed in [6]. Navigation and dynamic motion

parameters are estimated by the Kalman filter using
invariant model of the vehicle motion and orientation,
which allows parameter determination by IMU data
with sonar receiver aiding. 

An approach described in [7] uses error prediction
method with model parameter identification by the
least squares method (LSM). Measurements were per�
formed using AUV special cable�supported model
under various motions reproduced by the test facility,
which also measured the model motion characteris�
tics. The forces acting on the model were measured by
dynamometers.

The method considered in [8] determines the
parameters of ship linear dynamic model described in
state space. Specific features of LSM application are
discussed, however, external actions such as wind,
heave, and stream are not taken into consideration. 

Subspace identification approach has been
recently studied in many publications (see for example
[9]). In [9], identification is performed in two steps:
(1) Hankel matrix is constructed using input and out�
put signals; the model order is determined by this
matrix; singular value decomposition of Hankel
matrix is performed; and augmented observation
matrix, and vehicle dynamic and observation matrices
are constructed; (2) control matrices are constructed
using LSM. With this approach, the model initially has
an approximating character. Construction of approxi�
mating dynamic models is illustrated in [10, 11].
Example of using multialternative filtering is provided
in [12].

It should be noted that the described methods suf�
fer from significant dependency of parameter esti�
mates on external disturbances. Advantages and disad�
vantages of these methods are analyzed in detail in
[13], and the list of drawbacks of methods is given in
Table 1. 

Identification of Vehicle Model Parameters 
under External Disturbances 

A. E. Pelevin 
Concern CSRI Elektropribor, JSC, St. Petersburg, Russia

e�mail: aepelevin@mail.ru
Received October 30, 2014

Abstract—The paper proposes an approach to identification of model parameters of a vehicle subjected to
external disturbances. Parameter estimates are generated using iteration procedure, which consists in estima�
tion of the vehicle state vector including the disturbances and in estimation of vehicle model parameters using
the least squares method. Identified parameters are insensitive to various external disturbances. The proposed
approach was tested in full�scale tests. Modeling results are presented.

DOI: 10.1134/S2075108715020091



144

GYROSCOPY AND NAVIGATION  Vol. 6  No. 2  2015

PELEVIN

External disturbances critically complicate identi�
fication of model parameters. Then as described in
above�mentioned publications, the identified model
parameters strongly depend on the disturbance level,
which degrades the parameter estimates if the contri�
bution of disturbances is not considered in identifica�
tion. The paper considers the techniques used to
reduce the effect of external disturbances on parame�
ter determination accuracy if identification problem is
solved using prediction error method. Modeling
results are presented which demonstrate the efficiency
of the proposed methods. This approach was used to
identify the model parameters for a hydrographic ship.

Main Aspects of Identification Problem

Effective application of identification methods is
mostly determined by correct understanding of associ�
ated limitations, so here we provide the statement of
identification problem. 

Let the vehicle dynamic model be described by an
equation

(1)
where XK is model state vector at time K, uK is the con�
trol vector (input signal); A is the dynamic matrix lin�
early depending on parameter vector α, B is the con�
trol matrix linearly depending on parameter vector β,
W and WK are the vectors characterizing low�fre�
quency (constant and slowly varying) and high�fre�
quency components of disturbances. 

Measurement vector (output signal) is given by 

(2)
where VK is the vector of measurement errors.

To account for disturbances we include them in the
state vector and describe by the following models: con�
stant disturbances Wi, by  and slowly varying
disturbance components, by first order Markov pro�
cess.

Based on the model (1) and additionally intro�
duced state vector components the output can be pre�
dicted. Predicted output  for the next step is
described by the relations: 

( ) ( ) ,1K K K KX A X B u W W
+
= α + β + +

,K K KY HX V= +

0,iW =
�

1KY
+

�

(3)

where  is the predicted state vector;  is the sate
vector estimate for the current step determined by the
equation: 

(4)

In (3), vector  is the augmented vector including
constant and slowly varying disturbances; matrices of
extended system are denoted by A and B and are
given by 

 

where AW is the matrix of dynamic models of distur�
bances W, 0 denotes the corresponding zero matrixes.

Kalman gain K and covariance matrix P are
given by 

(5)

Here P0 is the initial covariance matrix of state vec�
tor components, R is V covariance matrix, G is the
matrix of intensities of generating noises included in
disturbance model.

Let us make two comments on generation of
filter (4), (5). 

First, the Kalman filter should be calculated with
account for matrix A, whose components should be
determined. Further suppose that components of A
are known but to a low accuracy and thus the filter
should be robust to uncertainty of model parameters.
This filter can be constructed by studying the sensitiv�
ity to dynamic matrix components. Constructing
robust filters is addressed for example in [14]. If the
model parameters are unknown, it is difficult to con�
struct a filter. 

Second, matrices A and H should be such that
observability condition (all components of state vector
can be estimated using the measurements) is met.
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Table

Method Drawback

Prediction errors Values of identified parameters depend on external disturbances. Nonlin�
ear filtering problem should be solved with account for sensitivity equa�
tion if extended Kalman filter is used. 

Subspaces Values of identified parameters depend on external disturbances. It is dif�
ficult to associate the state vector components with physical meanings.

Multialternative filtering The set of models should be constructed with account for external distur�
bances; data recording interval to select the most reliable hypothesis is 
rather long; a large set of models is required to provide sufficient accu�
racy; nearly identical models have the same identification procedure
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The Problem of Identification 
of Vehicle Model Parameters 

We have a set of data 
ZN = {Y1, u1, Y2, u2, … YN, uN}. (6)

The structure of dynamic and control matrices is
set accurate to unknown parameters. Information in
ZN should be used to determine the parameters of
model (1), i.e., identify unknown parameters of matri�
ces A(α) and B(β).

In this context, the criterion of model parameter
determination will be the prediction error [2, 3]. Thus
a good model is a model which predicts well, i.e., gen�
erates small prediction errors for the available observa�
tion data. Prediction error for one step is determined
by the equation 

(7)
Model parameters are determined by error mini�

mization criterion 

(8)

Then the estimate of model parameters is given by 

(9)

After introduction of criterion the identification
problem is reduced to searching for its extremum.
Computational methods used to determine the param�
eters are described in sufficient detail in [2, 3].

Approach to Model Parameter Identification

Here, we consider the case where the parameters of
dynamic and control matrices are unknown. There�
fore, data required to construct the filter and to esti�
mate the state vector are lacking.

Make the following assumptions: (1) observation
matrix is such that all components of state vector of
dynamic model (1) are observed, some part of which
are observed jointly with the disturbances; distur�
bances are not observed directly; (2) conditions of
state vector observability are met, i.e., disturbances
included in the state vector can also be estimated.

With these assumptions, observation matrix H can
be represented as 

(10)
where E is the unity matrix of the relevant dimensions,
matrix H1 has at least one nonzero component. 

To estimate the model parameters in the first
approximation, we use only available data: data set ZN

according to (6) and the structure of extended
dynamic and control matrices.

As a state vector estimate, we use the measurement

at the previous step  according to the first
formula in (3) and the corresponding control uK – 1,
assuming that disturbances are zero. Summing the
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prediction errors (7), we come to criterion (8). Mini�
mizing this criterion by unknown model parameters,
we obtain the equation to determine the first approxi�
mations of these parameters. Minimization is per�
formed using LSM method. 

We generate the matrix 

(11)
and matrix 

 (12)

Then matrix equation to determine the first
approximations of model parameters using the obser�
vations of input�output pairs will be given by

(13)
Equation (13) has the only solution with respect to

the block matrix [A B]

(14)

if there are no linearly depending columns among the

matrix columns  (otherwise, Eq. (13) has
infinitely many solutions, among which we choose the
solution with the minimal norm).

The first approximations of parameters are used to
construct the Kalman filter according to (4) and (5).
The estimates of state vector components including
the disturbances obtained using this Kalman filter and
data set (11) and (12) are used to determine the
approximations of model parameters as follows. Gen�
erate the updated measurements 

(15)
by subtracting the estimates of disturbances obtained
at each filtering step from the available measurements.

Generate matrix  (12) with the updated measure�

ments  Using (14) and replacing  by  we
obtain the next approximation of the model parame�
ters. We repeat the calculation procedure in the same
manner as for the first approximation with updating of

measurements  to determine the next approxima�
tion, etc.

The described iteration procedure refines the dis�
turbances and the parameter estimates at each step.

Example. Here we provide an example of using
the proposed identification approach for the model of
lateral motion of hydrographic ship:

(16)

where Vy is the ship lateral speed through the water; ω
is the yawing angular velocity; F is the normalized
slowly varying lateral component of the wind force
(force divided by the sum of the ship weight and the
additional mass); VTy is the unaccounted slowly vary�
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ing current component being the systematic error of
measurement; μF and μV are the values inverse to cor�
relation interval;  and  are RMS disturbances; 
is the independent generating white noise of unit
intensity; V is the ship speed through the water (mea�
sured by water speed log and assumed known to suffi�
cient accuracy); δ is the control action (rudder dis�
placement); aij and bi are the model parameters; l is the
known normalized arm of lateral component of wind
force (the arm multiplied by the sum of the ship weight
and the additional mass and divided by the sum of ship
inertia moment and the added mass moment of inertia
of water with respect to the vertical axis; the formulas
to calculate them are given in all reference books on
ship control theory).

Generate the discrete model using the continuous
model (16):

(17)

with the parameters aij and bi to be identified denoted
as in earlier formulas. 

Measurement equations are given by

(18)

where VGPS is the speed over ground, COGGPS is the
course over ground measured by GNSS receivers; ν

ω
,

νV are white noise processes. 

For identification purposes, the vehicle performs a
zigzag maneuver set by the following rudder control.
At the initial moment, the ship heading K0 is fixedd.
Yawing angle ψ is calculated by the formula ψ = K –
K0, where K is the current heading. At initial moment
the rudder is displaced to the starboard through the
angle δ = δ0 with maximum speed. The rudder is kept
in this position until yawing angle ψ reaches the preset
value ψ0. Then the rudder is displaced to the port
through the angle δ = –δ0 and is kept in this position
until the yawing angle reaches (–ψ0), etc. Denote this
maneuver by (ψ0/δ0). 

Due to methodical reasons, Eq. (17) does not
account for the dependency of discrete model param�
eters aij and bi on the speed of motion (this depen�
dency is known, and parameters of discrete model can
always be recalculated for continuous model with
account for the speed through the water measured by
the water speed log or speed through the water can be
estimated by the proposed method using the equations
of the ship longitudinal motion). As confirmed by the
practice, during zigzag maneuver speed through the
water is nearly constant after the second rudder dis�
placement.
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First measurement (18) is related to the state vector
components as follows

 (19)

where V0 is the speed through the water, αD is the
drift angle; VT is the current speed, KT is the current
heading.

The first summand in (19) is Vy, and the second
summand after expanding the sinus of angle difference
with account for first order smallnesses for angle ψ can
be presented as  +

 Then 
and the second summand can be neglected if heading
K0 is crossing the main current stream. 

The measurement matrix becomes 

State vector components are observable in accor�
dance with observability criterion.

Error in measurement prediction yVK+1 using the
first model equation (17) according to the proposed
approach is generated using the previous measure�
ments 

Using all the measurements from the first to the
N�th measurement, summing the prediction errors
and minimizing criterion (8), determine the first
approximation of model parameters for the first equa�
tion. Similarly, we determine the model parameters in
the system second equation (17). After estimating the
system state vector (17) using the first approximation
of model parameters, we obtain the estimates of state
vector components given in Fig. 1.

The plots demonstrate that the yawing angular
velocity is estimated rather accurately (true values and
estimates agree); for the component Vy the estimate is
between the measurement and true value curves; dis�
turbing force is practically not estimated (true value of
normalized force is 5 × 10–3 m/s2); the current compo�
nent is estimated as a half value (true value is 0.3 m/s).

Generate the prediction error using the parameters
of the first approximation for the second approxima�
tion with account for the estimated wind force and
current 

For the next iterations, the procedure is repeated.
Estimate the parameter second approximation

using the set of prediction errors. Use the similar pro�
cedure for the second equation of the system (17).
After several iterations we obtain the refined model
parameters (Fig. 2) and parameter estimates (Fig. 3).
Horizontal straight lines in Fig. 2 correspond to the
true values. 
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Figure 3 shows that the disturbances are estimated
sufficiently accurately, the estimates of lateral velocity
component practically coincide with the true values. 

The 25th iteration provided the following accura�
cies of model parameter estimation: for a11—10%, for
a12—10%, for a21—25%, for a22—20%, for a1—20%,
for a2—5% of the true values.

Modeling results demonstrate that iterative process
of refining the model parameters converges, then
parameter estimation error is 10–15% of the true
value. 

This procedure was checked in the tests of control
channel of navigation�control system onboard a
hydrographic ship. The identified model parameters
were used to synthesize a control law, whose quality
is confirmed by highly stable stabilization during tack�
ing [15].

CONCLUSIONS

Analysis of traditional methods used to identify the
vehicle model parameters in state space has shown that
their disadvantages are associated with parameter high
susceptibility to the acting disturbances. 

We propose an approach to identify model param�
eters of sea vehicles exposed to slowly varying distur�
bances (with neglected high�frequency components)
with initially unknown model parameters, which
makes the identified parameters immune to external
disturbances.

The proposed approach was implemented in navi�
gation control system software to stabilize the hydro�
graphic ship. The results of sea trials reveal fairly good
ship stabilization using the control law synthesized

Fig. 1. Estimate of system (16) state vector based on the first approximation of model parameters.

Fig. 2. Modeling the refinement of model parameters in 25
iterations.
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with the help of identified model parameters in condi�
tions of wind and wave disturbances. 
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