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Abstract—An approach for calculating the surface thermodynamic characteristics of solid solutions (alloys,
salts, oxides, ferroelectrics, and nonstoichiometric compounds) with different degrees of ordering at the
vapor–solid interface is formulated on the basis of the lattice gas model. This approach is the only one that
makes it possible to describe the properties of phases and transition regions between equilibrium coexisting
phases with equal accuracy. The model is constructed for the mixture components having comparable (but
different) sizes with an arbitrary type of ordered structures in the bulk phase. The type of ordering is deter-
mined by some pattern formed by different sublattices periodically repeated in space. The transition region
between the solid solution and vapor is a multilayered region with a variable density of components. Inter-
atomic interaction potentials are taken into account in the approximation of pair contributions with preser-
vation of direct correlation effects for several coordination spheres. A change of variables was used to reduce
the equilibrium set of equations to component distributions, which allows one to reduce the problem to the
dimensionality of the concentration profiles of components in the transition region. The case of nonequilib-
rium states of a solid solution and description of its evolution by kinetic equations are discussed. Finding the
concentration profile of a solid solution allows one to evaluate the state of the interface roughness, the specific
area of the rough surface, and the surface segregation of the solution components, and to analyze the effect
of the surface segregation on the degree of ordering of the solution components in the transition region.

Keywords: surface tension of solid solutions, alloys, salts, oxides, ferroelectrics, nonstoichiometric com-
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INTRODUCTION
The phenomenon of ordering is associated with the

regular alternation of solid solution components that
form the so-called “order” [1–4]. The emergence of
ordering changes many physicochemical properties of
solid solutions; therefore, their study is of great inter-
est. It is well known that Landau’s phenomenological
theory [5–10] based on the introduction of an order
parameter is applied to this phenomenon, which is
widely used for interpreting structural phase transi-
tions in various compounds, salts, oxides, alloys, and
ferroelectrics [11–13].

In parallel, model concepts regarding the micro-
scopic nature of the processes of redistribution of com-
ponents in solid solutions of different nature were being
actively developed [1–3, 14–16]. These approaches were
used to explain the experimental data on magnetic,
electrical, mechanical, structural, and other bulk
properties. Similarly, microscopic approaches were
used to discuss the surface properties of solids [17–32].

However, thermodynamic approaches have been
used and are being used to describe the surface prop-
erties of solids even more actively than microscopic

approaches [33–36]. Let us remind that studies
devoted to surface phenomena occupy an important
place in the literature on thermodynamics of solids.
Nevertheless, both purely thermodynamic and phe-
nomenological approaches have turned out to be
insufficiently substantiated and accurate. The most
obvious example of such a discrepancy is the issue of
the values and even the sign of the surface tension (ST)
of solids. The source of this discrepancy is fundamen-
tal study [37] by Gibbs, who introduced the following
two types of surface tension depending on the method
of formation of a solid surface: surface tension due to
mechanical disturbances that lead to the creation of a
new surface and surface tension due to precipitation
and crystallization processes that can be carried out
under conditions that are close to equilibrium condi-
tions.

It has been shown only recently that such a discrep-
ancy is associated with strong nonequilibrium behav-
ior of real solids, in which the surface formation pro-
cess depends on the process conditions [38]. This
means that it is impossible to take any mechanically
stable state of a solid as an equilibrium state without
671
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experimental proof of its equilibrium. It is indepen-
dence on the path of transition from the initial state to
the final one that is the main indication of reaching
equilibrium by the system and its existence in a state of
equilibrium. Therefore, solids are in a nonequilibrium
state in the vast majority of cases. It follows that the
theory of solid–vapor interfaces should reflect the
entire range of possible states of the system.

Thermodynamic equations do not depend on the
aggregate state or phase state of the system [37]; there-
fore, Gibbs’s thermodynamic definition for ST
equally applies to all types of coexisting phases. A sta-
tistical approach was proposed in [39, 40] that satisfies
the condition of complete phase equilibrium and
Gibbs’s definition for ST and is consistent with the
ratio of relaxation times of the mass transfer and
momentum transfer processes. Let us recollect that
the condition of complete phase equilibrium means
the presence of three types of partial equilibria, such as
the mechanical (in pressure), thermal (in tempera-
ture), and chemical (in chemical potential) equilibria,
each of which has its own relaxation time. The experi-
mental data for these relaxation times correspond to
relations τimp ! τtem ! τmas [41, 42]; i.e., the relaxation
time of the mass is much longer than the relaxation
time of the momentum. An excess of free energy in
coexisting phases rather than a hydrostatic approach
with balancing stresses is taken as a basis for Gibbs’s
thermodynamic definition. In order for the transition
region of the interface to exist, it is necessary to have
exactly the same three partial equilibria inside each
point of the transition region [39, 40], together with
the need to use the equimolecular surface of the sepa-
rating surface for a pure substance or its analogue in
mixtures [33, 43].

The aim of this study is to develop a method for cal-
culating the surface characteristics of solid solutions
with consideration of the ordered state of solid solu-
tion components inside the bulk phases and their cor-
related distribution. To solve the problem of describ-
ing the interface between an ordered alloy and vapor,
it is reasonable to take advantage of the molecular
approach based on the lattice gas model (LGM) [28,
38, 44]. This approach covers the density of all three
aggregate states, and this is the only approach enabling
the self-consistent description of all three types of
two-phase interfaces from a single point of view. It
takes into account the interactions between the mix-
ture components comparable in size. The LGM equa-
tions reflecting the discrete spatial distribution of the
mixture components are constructed taking into
account direct correlations in the modified quasi-
chemical approximation (QCA), allowing for the
inclusion of component oscillations. The theory also
focuses on the description of the effects of the inter-
face roughness, which allows one to estimate their spe-
cific surface areas, the surface segregation of compo-
nents, the region of disappearance of ordering near the
interface, etc.
PROTECTION OF METALS AND PHYSICAL
The proposed approach differs from the existing
level of studies by providing a possibility to describe in
more detail the behavior of the thermodynamic char-
acteristics of ordered systems at the interface. The
phase-transition methods based on order parameters
are analogous theoretical approaches that are widely
known in the literature. They operate with approxima-
tions that ignore short-range correlations effects for
ordered structures near the interface. In the systems
under discussion, the methods of stochastic Monte
Carlo simulation (compared to which the new theory
is characterized not only by significant speed, but also
greater accuracy) or the variational cluster method
[45, 46] (compared to which our approach better
describes the degree of defectiveness in the phase vol-
ume and the rough structure of interface) are also
used.

Under real conditions, a lot of contacting phases
with components that are not in equilibrium are pres-
ent at the solid–vapor interface. These chemically
nonequilibrium systems are in a state of mechanical
equilibrium and an approach used in [39, 40] can also
be applied to them, taking into account the fact that
the evolution of the solid phase is described by kinetic
equations and a thermodynamically equilibrated dis-
tribution of mobile phases and mechanical equilib-
rium are established in the solid phase and at its
boundary at each point in time [38, 47]. In this case,
one can use, instead of the equilibrium thermody-
namic potentials, nonequilibrium analogues that have
the same form as the equilibrium potentials through
the unary and pairwise distribution functions. This
allows us to formulate the following conditions for cal-
culating nonequilibrium STs and other analogues of
thermodynamic potentials: it is necessary to have
equations for the concentration profile near the inter-
face, and, for this purpose, it is necessary to have self-
consistent kinetic equations that can be transformed,
in the limit, into the equilibrium distributions of com-
ponents at the interfaces.

Obviously, the derivation of equations begins with
a strictly equilibrium case. A technique for such a der-
ivation has been published [28, 29], and the main
results are given here. We formulate a microscopic
model that allows us to simultaneously take into
account both the effects of ordering of solid solution
components and nonuniform distribution of the com-
ponents over the layers of the transition region
between the vapor and the bulk phase of the solution.
The obtained equations show how the surface charac-
teristics depend on the microscopic distribution func-
tions (DFs), the time dependence of which is
described by kinetic equations.

LATTICE GAS MODEL

In the LGM, any volume V of the system is divided
into cells with a size of about particle volume
 CHEMISTRY OF SURFACES  Vol. 56  No. 4  2020



BASICS OF CALCULATING THE SURFACE PROPERTIES OF SOLID SOLUTIONS 673
, where λ is the linear size of the cell, γs is the
shape factor, and V = Nv0 (N is the number of cells (or
lattice sites) in the system, which is equal to the maxi-
mum number of molecules under the close-packing
condition). The number of different occupation states
f of any site of the system is denoted by s; each site can
contain only one molecule of type i (the center of mass
of molecule i is inside the cell) or vacancy V. If there is
a molecule of type i in the site, then site occupation
states 1 ≤ f ≤ N are defined by  values equal to  =
1, where i corresponds to the mixture of molecules and
vacancies comprised of s – 1 components; otherwise,

 = 0. Random variables obey the following relations:

,  = , where Δij is the Kronecker
symbol, meaning that any site is necessarily occupied
by any, but only one, particle (we will assign the last
index, s, to free/vacant sites.)

Let Ni denote the number of molecules of type i in

volume V. Then, N = , where Ni is the number
of these molecules in volume V. The concentration of
molecules of type i is ni = Ni/V. In the LGM, the con-
centration of a mixture component is characterized by
θi = = Ni/N (symbol A means the A value aver-
aged over the entire set of sites of the system). This
connects the conventional and lattice concentrations
of molecules of type i by relation θi = ni v0. We will
denote local density particles i in the cell under num-
ber f by , bearing in mind that normalization condi-

tion  = 1 is fulfilled for any cell. In addition,

total local concentration θf defined as θf =  is
introduced for the mixture. In the case of a homoge-
neous phase, the local  and θf values and concentra-

tions θi =  and θ =  averaged
over the phase volume are identical for different sites.

In the LGM, the lattice structure in the bulk phase
is characterized by number z of nearest neighbors. The
lattice gas model implies the presence of mixture com-
ponents with comparable (but different) sizes.

The distances between the sites of the lattice system
are convenient to measure in coordination sphere
(CS) numbers. We introduce the concept of CS radius
ρ around the central particle as a set of sites located at
a distance of ρ in the range of 1 ≤ ρ ≤ RL, where RL is
the radius of the Mie potential of lateral interactions
(the RL value corresponds to four or five CSs), around
any selected site f within the range of 1 ≤ f ≤ N. We denote
the number of sites of coordination sphere ρ by z(ρ).

In the general case, the populations of sites can be
different because of internal interatomic interactions
or external fields. This fact is characterized by the con-
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cept of type of sites with different numbers, but having
the same properties.

This makes it possible to simplify the description by
moving to group properties , where  is a
random variable that characterizes the occupation
state of a site of type q (the properties of  are similar

to the projection properties of  discussed above, i.e.,

 and ), and the  value char-

acterizes the type of site with number f. The  value
is considered to be a value that is known and
unchanged during the process of filling the lattice
structure with molecules (nonrearranging structure)
for 1 ≤ q ≤ t, where t is the number of site types. If site
f is a node of type q, then  = 1; otherwise,  = 0.

The complete set of values { } for 1 ≤ f ≤ N uniquely
defines the composition and arrangement of the struc-
ture, which can be random.

Averaged values  are pairwise prob-
abilities of finding particles i and j at sites with num-
bers f and g at a distance of CS radius ρ. Normalization

relations for pairwise functions  are
fulfilled for them.

For heterogeneous systems, the  values for differ-
ent cells f differ from each other; therefore, the values
of local concentrations  and volume averaged con-

centrations θi =  = , where Ff is

the fraction of sites of type q and = 1, are not
identical. Here, in the second equality, we switched
from site numbers to their types.

For heterogeneous systems, the lattice constant
values become dependent on the type of inhomogene-
ity and are denoted by λfg. Accordingly, the partial

contributions to lattice constant  from neighboring
pairs of molecules ij become dependent on the type of
sites in which interacting pairs of molecules are
located; . Here, the  function is the
average fraction of the nearest (ρ = 1) pairs of neigh-
boring molecules ij located at the pair of sites fg.

We denote the parameter of interaction between
particles i and j located at sites with numbers f and g
at a distance of ρ by  where

;  are
the distances between particles i and j in different cells
f and g at a distance of CS radius  within the range of
1 ≤ ρ ≤ RL,  and  are the parameters of the pair-
wise potential, and n and m are the parameters of the
Mie potential (n = 12 and m = 6 correspond to the
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Lennard–Jones potential). The interactions of parti-
cles with vacancies are equal to zero, i.e.,

. For a nonuniform lattice, the
interaction parameter of particles i and j located at
sites of type q and p with numbers f and g at a distance
of  is denoted by , since the site number

and its type are uniquely related by  values.
In the general case of a heterogeneous system, the

total energy of the system in the grand canonical
ensemble is expressed as follows [28]:

(1)

where the  value is the effective single-particle
contribution of component i (for a vacancy,

) to the energy of the system

( ), which is determined by the interac-
tion of a particle of type i with lattice site f (1 ≤ f ≤ М)
or , where Pi is the partial
pressure of component i in the thermostat, and by the
ratio of partition functions of the particles located in
the lattice system ( ) and thermostat ( ). Sym-
bol α describes the relationship between the type of
site f and the state of the environment of this central
site. The occupancy states of the sites are character-
ized by local retention coefficients  =

 =  of
components i at site q (in adsorption and absorption,
these are local partial Henry coefficients), where β =
1/(kBT); kB is the Boltzmann constant; T is the tem-

perature;  and  are the partition functions
of particle i at site q and molecule i in the gas phase
(thermostat), respectively; and  is the energy of the
external field acting on particle i in site q (in adsorp-
tion, this is the wall potential). Specific formulas for
these partition functions are given in [28, 48]. Energy
(2) determines the partition function of the system;
i.e., , in which the sum is
taken over all sites f of the system and all occupancy
states i of its sites.

Ordered States of Solid Solutions in Bulk [49]

The lattice gas model reflects the case of an ordered
state of components in the bulk phase [49]. In this
case, the distribution of components becomes depen-
dent on the site number in the unit crystallographic
cell containing more than one site. Let the total num-
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ber of sites be partitioned into δm sublattices, among
which identical sublattices are possible. We denote the
weight of the sublattice of type δ by Fδ for 1 ≤ δ ≤ u,
where u is the number of sublattices of different types

( ). The nearest sites—one on each sub-
lattice—form a unit cell translationally repeated
throughout the entire lattice. Any node in the struc-
ture is defined by the following two indices (hk): cell
number h and site number k inside the cell. Regarding
the sublattice selection method, site number k is
uniquely related to sublattice type δ. The structure of
the ordered state is considered to be defined and char-
acterized by the number of neighbors of sublattice site
ϕ at a distance of ρ from sublattice site δ, i.e., .
Hence, the total energy of the ordered system can be
expressed as follows:

(2)

The meaning of molecular parameters is preserved,
taking into account the change in the meaning of the
selected sublattice sites. Summation with respect to
sites (hk) is performed over all lattice sites, and sum-
mation with respect to sites (gn)ρ is performed over
structure sites located at a distance of ρ from sites (hk),
including sites with h = g, but under condition n ≠ k.
Here, it is taken into account that each sublattice can
contain its own number of components (sδ) and inter-

nal degrees of freedom of the particle ( ),

and its interaction parameters  depend
on the type of sublattices [49].

Transition Region of the Interface
of Isotropic Phases [38–40]

We restrict ourselves to the analysis of a planar
interface between coexisting macroscopic phases. In
this case, symbol  refers to the sites located
in different monolayers. The properties of sites in the
transition region are varied from a monolayer to a
monolayer along the normal to the interface. The
structure of the isotropic system is defined by the set of
numbers of sites in the sites of monolayer p located at
a distance of ρ from the site in monolayer q, i.e., by

. The total energy of the isotropic planar transi-
tion region of the system can be expressed as follows:

(3)

It should be borne in mind here that neighbors of
type p are in adjacent monolayers at a distance of ρ
from the site in monolayer q; 1 ≤ q, p ≤ κ, where κ is
the width of the transition region of the interface, and
q – δr ≤ р ≤ q + δr, where the δr values reflect the rela-
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tionship between the distances along the monolayers
and the distances separating the neighbors in different
CSs; for example, in a cubic lattice, the first three
neighbors are located in neighboring monolayers with
δr = 1, the fourth neighbors are in the second mono-
layer with δr = 2, etc. Obviously, the δr value depends
on the structure of the initial lattice and on the spatial
orientation of the interface with respect to the initial
lattice.

Transition Region of the Interface of Ordered Phases

In the case of analysis of the interface between
ordered phases, it is necessary to simultaneously con-
sider both the structure of ordering defined in the vol-
ume by a unit cell or a pattern composed of sublattices
and changes in the properties of the system near the
interface. From the formal point of view, this requires
to combine features that distinguish different types of
sites, such as the ordered state from the bulk to the
interface and the change in the state of atoms of the
solid in the transition region. The structure of the
ordered system near the interface is determined by the
set of numbers of sites at the sites of monolayer p,
which are related to the sites of sublattices (p,ϕ)ρ and
located at a distance of ρ from the site in monolayer q
related to the sites of sublattices (q,δ), i.e., by

. The total energy of the ordered macro-
scopic planar transition region of the system is
expressed as follows:

(4)

This expression reflects the fact that the periodic
structure of the ordered arrangement of sites of differ-
ent sublattices near the interface requires refinement
because of conjunction with the interface plane. Here,
symbols q and p refer to transition region κ with 1 ≤ q,
p ≤ κ, which is determined solving an equation for the
concentration profile of the distribution of atoms near
the interface. In addition, the condition of consider-
ation of the interparticle interaction inside R of CS,
i.e., q – δr ≤ р ≤ q + δr, should be fulfilled. The mean-
ing of the δr value is explained above.

Equations for the Distribution of Mixture Components
The cluster approach developed for an arbitrary

type of heterogeneous systems [28] allows one to
obtain, in the standard way, the following equations
for the distribution of atoms in solid solutions in the
form of local isotherms that fix the chemical potentials
of components i at different sites of the system and for
the relationship between pairwise distribution func-
tions. The local partial isotherms for each monolayer q
and the considered type of sublattice site (δ) as a func-
tion of the external pressure on set {Рj} of partial pres-
sures are of the following form:

(5)

where Pj is the pressure of component j with 1 ≤ j ≤ sc.

Excluding partial pressure values Pi from the left-
hand sides, we obtain equations for the relative filling
of sites of various types. For the bulk phase, the 
value—which represent the constant of retention by
the lattice system or is an analog of the Henry coeffi-
cient in adsorption—is defined as ratio

 of the partition functions of the

molecule in the lattice structure ( ) and in the bulk

phase ( ) (for more details, see [48]). Here,  is

the imperfection function in the QCA; ,
 is the gas constant; and  is the probability of

finding the pair nearby, providing that component j is
located in the cell of layer p and component i is located
in the cell of layer q at a distance of ρ.

Pairwise functions are related to each other in the
QCA by the following equation:

(6)

which takes into account direct correlations between
interacting particles.

The constructed set of equations reflects the fol-
lowing three situations indicated above: the ordered
distribution of components in the bulk phase (if we
neglect the transition region of the interface by omit-
ting symbols q and p for layer numbers); the isotropic
interface in the absence of ordering (if we neglect the
bulk ordering by omitting symbols δ and ϕ for cell
numbers and their sublattices); and the joint use of
ordering indices and transition region numbers, which
describes an ordered system near the interface. The
absence of lower indices refers to a homogeneous
dense phase without consideration of the ordering of
components.

The system of equations (5) and (6) is solved using
a change of variables, as specified in Appendix 1,
which sharply reduces its dimension.
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Knowing the concentration profile of the solid
solution, it is possible to calculate all the surface char-
acteristics necessary to obtain the values of thermody-
namic functions and structural information about the
transition region. In particular, it is possible to find the
roughness characteristics of the interface from the
concentration profile [50, 51], which allows one to
estimate their specific surface areas, the surface segre-
gation of components, the region of disappearance of
ordering near the interface, etc.

Below, we simplify the method of defining the
indices by returning to the original designation of sites
by their numbers f and g, implying complete notations
f = q, δ and g = p, ϕ.

FREE ENERGY AND SURFACE TENSION
Free Energy of the System

The expression for the Helmholtz free energy of
a system comprised of M sites can be written as follows
[52]: F = E – TS, where Е is the energy of the system
and S is the entropy of the system. The energy and
entropy of the system is expressed via functions as fol-
lows:

(7)

The use of expressions for  in the internal
energy allows one to take into account the internal
motions of components together with their interparti-
cle interactions. Another way,

(8)

where index k is any component of the system—it is
chosen on the basis of the convenience of operation
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where z( ) is the number of neighbors in the bulk
phase at a distance of CS radius .

Surface Tension

Using the definition for ST as an excess of free
energy in the transition region [38–40], we obtain

(10)

Provided that

(11)

where Γi is the usual Gibbs excess of component i for a
planar interface. Condition (11), which determines the
position of the separating surface, coincides with the
traditional requirement [43] for an analog of the equi-
molecular separating surface in a multicomponent
mixture. Formula (10) is defined at any density of the
mixture.

Mechanical Equilibrium

Helmholtz free energy derivative 
‒Ploc with respect to some local volume Vloc gives local
pressure Ploc for any phase state of the system. These
relations can be used to search for local lattice param-
eters λfg by means of the Gibbs–Duhem microscopic
equation [38, 39]. The local pressure is expressed
through the Gibbs–Duhem microscopic equation in

the integral form as , where Pf

is the total local mechanical pressure at site q, includ-
ing the consideration of changes in the volume of
vacancies due to deformation of cell f of the system and
due to a change in their number upon isothermal par-
ticle exchange with a thermostat tank. There is differ-

ence  in the differential. For
more details, see [38, 39]. The condition of local
mechanical stability of the molecules has the following
form:
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(12)

where  and   is the
average volume of cell f, which is connected with lat-
tice parameters through expression ;

; symbols  refer to
neighboring sites in direction σ = x, y, z; and Sfg is the
area of cell f to the normal along the fg bond. The
introduced  values are the distances between
pairs of sites of type fg along the σ axis. Here, renor-
malized imperfection function  means the ratio of
quantities from equation (5), calculated by formula

 taking into account the interac-
tions of all components. Free energy minimization
makes it possible to determine lattice parameters λfg of
a heterogeneous system.

NONEQUILIBRIUM STATE OF SOLIDS
The physical cause of the nonequilibrium state of

solids is the diffusive inhibition of the redistribution of
components in local volumes of solids. The evolution
of such processes is described by kinetic equations of
the diffusion type. The kinetic approach reflects its
dynamic nature, which is the most important property
of an equilibrium state. The LGM provides the con-
struction of kinetic equations on all time scales and is
applicable for all aggregate states of substances [38].
Within the QCA, all the probabilities of multiparticle
configurations, which describe the effect of surround-
ing particles on the rates of elementary processes, are
expressed via local concentrations  and pairwise

functions . The structure of the closed system of
equations for unary and pairwise correlators corre-
sponding to the nearest neighbors is expressed as fol-
lows (here, symbol α refers to the step number of the
multistep process):

(13)

The right-hand sides of Eqs. (13) contain contribu-
tions  and  from the rates of elementary

steps, namely: , i.e., the rates of
elementary one-site processes i ↔ b at sites of type f;
and , i.e., the rates of elemen-
tary two-site processes i + jα ↔ b + dα at pairs of
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neighboring sites fg. The structure of Eqs. (13) is
explained in more detail in Appendix 2.

The presence of pairwise functions θij makes it pos-
sible to take into account the process prehistory, which
is determined not only by the initial distribution of
concentrations, but also by the initial values of the
pairwise distribution functions. Pairwise functions
play a key role in kinetic equations; in particular, they
not only describe the process prehistory in its dynam-
ics, but also provide self-consistency to the description
of the equilibrium and rates of elementary steps in the
equilibrium state [28, 38].

Nonequilibrium Thermodynamic Potentials
Knowing the solution of kinetic equations (13) with

respect to  and , any thermodynamic functions
that depend on them as functions on arguments,
including nonequilibrium thermodynamic potentials,
can be calculated at any point in time. The equations
constructed above for equilibrium distributions
through unary and pairwise functions preserve their
form in nonequilibrium states. Therefore, expressions
(7) serve as formulas for the Helmholtz nonequilib-
rium energy at any point in time, including also the
equilibrium state of the system. If nonequilibrium
states of solids are present, then in such situations we
can speak of nonequilibrium analogues of the equilib-
rium potentials of the contacting solid and mobile
phases, as shown in [47]. In the LGM, a theoretical
description at the microscopic level leads to the situa-
tion when all thermodynamic potentials are equally
expressed via unary and pairwise DFs, regardless of
the state of the system. The difference between the
equilibrium and dynamics consists in the way of
describing the unary and pairwise DFs themselves. In
the equilibrium state, unary and pairwise DFs are
related by equations that do not contain time (thus,
above, Eqs. (5) and (6) give an algebraic relationship
between them.) In the dynamics, unary and pairwise
DFs are explicitly related by kinetic equations via time
(time argument). Detailed diffusion-type equations
that describe processes in solid-state matrices were
constructed in [28, 38].

Thus, all the above-described equations for the free
energy and ST are expressions for calculating the non-
equilibrium ST at the interfaces in the process of solid
body evolution. The redistribution of components is
described by equations of type (13), and the corre-
sponding values of unary and pairwise DFs at each
point in time make it possible to find the ST values.

CONCLUSIONS
The constructed equations for the distribution of

mixture components with comparable sizes, which
take into account interparticle interaction and internal
motions, enable a microscopic description of planar

i
fθ in

fgθ
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macroscopic interfaces between ordered solid solu-
tions and vapor.

The developed theory makes it possible to simulta-
neously take into account two main factors of the
interfaces between solids, which are related to the
ordering of components in bulk phases and to their
nonequilibrium state determined by formation prehis-
tory of the material. Each of the factors plays an
important role in understanding the interaction of the
material with the environment and in the preservation
or targeted change of this state. It provides a closed
system of equations for the concentration profile of
solid solution components, which reflects the effects
of short-range order against the background of long-
range order in the bulk phase.

Two methods introduced by Gibbs for calculating
the ST is directly related to the following versions of its
description: the strictly equilibrium version of the the-
ory (Appendix 1) and the nonequilibrium version of
the theory (Appendix 2). We pay attention to the dif-
ference in the dimensions of the equation sets describ-
ing the interface according to whether the system is in
an equilibrium or nonequilibrium state. In an equilib-
rium state, pairwise variables are reduced (Appendix
1), but this does not happen in a nonequilibrium state
(Appendix 2) as long as the local equilibrium is not
established (in the local equilibrium, pairwise func-
tions are in equilibrium with densities). This is possi-
ble in bulk phases when describing diffusion pro-
cesses, but this is not possible in regions near inter-
faces, since a sharp change in the density requires
a more detailed description of the pairs.

The found concentration profiles can be used to
calculate the entire range of surface characteristics,
starting from the internal and free energies and ending
with the surface tension, as well as to analyze the
degree of roughness of the interface under consider-
ation (as in [50, 51, 54]). Concomitantly, the degree of
surface segregation of solution components and the
nature of order disappearance near the interface are
estimated. This kind of information is important for
the kinetics of various surface processes.

The theory is intended to describe a wide range of
solid solutions and compounds. The scope of the
developed approach is extended to numerous alloys,
oxides, salts, ferroelectrics, and nonstoichiometric
compounds, which form the basis of various materials
used in numerous catalytic, membrane, and adsorp-
tion technologies.

APPENDICES

Appendix 1. Reducing the dimension of the system
of nonlinear equations for the distribution

of components

An increase in the number of system components
increases the dimension of the system of equations for
PROTECTION OF METALS AND PHYSICAL
the unary ( ) and pairwise ( ) functions. The num-

ber of equations for  increases linearly as s increases,
and the number of equations of pairwise functions

 increases even faster as s(s – 1)/2. An increase
in the number of calculated monolayers κ (the system
has a nonuniform distribution of the density) gives rise
to a further increase in the dimension of the equation
set [28, 53].

To reduce the dimension, the system of equations
is constructed with respect to the functions of condi-
tional probability . The change of variables consists

in the fact that  are selected as independent

variables;  Conditional probabilities 
can be expressed through equations

—which reflect the essence of the

QCA—as  = . In that case,

unary functions  are calculated through given

desired variables , instead of set of equations (5), by
the following formula:

(A1.1)

where  is a pair conditionally called the “reference
pair,” which extends from site f and possesses the high-
est interaction energy between the components
located at sites of the pair. Using conditional densities
in sites , unary functions  and pairwise functions

 are recalculated.

Remaining functions , , and  are deter-
mined from the following normalizations:

(A1.2)

In the QCA, each coordination sphere is analyzed
independently; therefore, the above expressions for
the nearest neighbors are supplemented by similar
expressions for subsequent neighbors.

Appendix 2. Basics of the kinetic approach
In a nonequilibrium state, total distribution func-

tion Р({ },τ) varies because of a certain process. Let
the total process consist of many steps, and let the step
number of the elementary process be denoted by α
[28, 29]. The main kinetic equation for the evolution
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of the total distribution function of the system in state
{I} (for brevity, notation {I} ≡ { } is used) can be writ-
ten, owing to implementation of α elementary pro-
cesses in condensed phases, in the following fashion:

(A2.1)

where Wα({I} → {II}) is the probability of implemen-
tation of elementary process α (the probability of tran-
sition through channel α), as a result of which the sys-
tem passes from state {I} to state {II} at time point τ.
The sum with respect to index α is taken over all pos-
sible transitions for all realizable states of the system.

If the elementary process proceeds at one site, then
the lists of occupancy states {I} and {II} of the system
sites differ only for this site. One-site processes are the
processes associated with a change in the internal
degrees of freedom of a particle, with the adsorption
and desorption of nondissociating molecules, and
with a reaction proceeding by a shock mechanism. If
the elementary process proceeds at two neighboring
sites of the lattice, then the lists of states {I} and {II}
differ in the occupancy states of these two sites. Two-
site processes are the exchange reactions, the adsorp-
tion and desorption of dissociating molecules, the
migration processes by vacancy and exchange mecha-
nisms, etc. The partition function of state {II} corre-
sponds to the change in the occupancy states of all lat-
tice sites. The relationship between states {I} and {II}
depends on the process mechanism, which determines
the set of elementary steps α.

Equation (A2.1) is written in the Markov approxi-
mation, for which it is believed that the relaxation pro-
cesses of the internal degrees of freedom of all particles
proceed faster than the processes of changing the
occupancy states.

Transition probabilities α obey the following con-
dition of detailed equilibrium:

(A2.2)

where H({I}) is the total energy of the lattice system in
state {I}.

Within the QCA, all probabilities of the multiparti-
cle configurations describing the influence of sur-
rounding particles on the rates of elementary processes
are expressed through unary ( ) and pairwise cor-
relators. A closed system of equations for the unary
and pairwise correlators can be written in general form
as follows [28]:
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(A2.3)

(A2.4)

(A2.5)

where unknown unary and pairwise functions obey
normalization conditions (A1.2), which are fulfilled
for any point in time. The right-hand sides of Eqs.
(A2.3)–(A2.5) contain the rates of elementary steps.
The presence of equations for pairwise correlators
makes it possible to reflect any nonequilibrium state of
the components and provides a description of the
effect of the prehistory of the system state on the pro-
cess dynamics.

Rates of elementary steps. In Eq. (A2.3),  are
the rates of elementary two-site processes i ↔ b (here,
h ∈ zf),  are the rates of elementary two-site pro-
cesses i + jα ↔ b + dα (h ∈ ) at neighboring sites, and
the second term in (A2.5) describes step i + m ↔ b +
c at neighboring sites f and h.

All rates  and  of elementary steps
are calculated within the theory of absolute reaction
rates for nonideal reaction systems, which are written
in the QCA considering the interparticle interaction
[28, 29, 49]. The properties of the activated complex
(AC) in the theory of absolute reaction rates for noni-
deal reaction systems depend on the interaction
between particles in the transition and ground states.
This requires, in addition to knowledge of the  val-
ues in the ground state, knowledge of interparticle
interactions  in the transition state. Therefore, the

formulas for rates  and  depend on both

 and energy .
As an example, we give the following expressions

for diffusion shift rates  taking into account the
interaction of nearest neighbors (the general case is
given in [49]):

(A2.6)
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 is the factor of the imperfection func-
tion for the hop rate. The product in (A2.6) is taken
with respect to neighboring sites η (for central site f)
and χ (for central site g) by excluding bond fg, which is
indicated by asterisks in zf* and zg*.

Equations (A2.4) contain terms  and

 related to one- (i"b) and two-site (i + m"b +
c) reactions of particle i in the presence of neighbor
particle j. In this case, particle j itself does not take part
in elementary process α, but changes the value of the
activation barrier for reacting particle i in the case of a
one-site process and for reacting particles i and m in
the case of a two-site process. In the QCA, terms

 and  are closed through functions 

and , and no new unknown correlators appear.

For example (A2.6), the  functions in Eqs.

(A2.4) have the following form:  = 

 where 

 and 
In the limit of large times, system of kinetic equa-

tions (A2.4) transforms into Eqs. (6) for the equilib-
rium distribution of components.

FUNDING

This study was performed within the framework of a
state order to the Institute of General and Inorganic Chem-
istry, Russian Academy of Sciences, in the field of funda-
mental studies.

REFERENCES
1. Krivoglaz, A.M. and Smirnov, A.A., Teoriya uporyado-

chivayushchikhsya splavov (Theory of Ordering Alloys),
Moscow: Gosudarstvennoe Izd. Fiziko-Matematich-
eskoi Literatury,1958.

2. Muto, T. and Takagi, Y., The Theory of Order-Disorder
Transitions in Alloys, New York: Academic Press, 1955.

3. Chebotin, V.N., Fizicheskaya khimiya tverdogo tela
(Physical Chemistry of Solid), Moscow: Khimiya,
1982.

4. Sirotin, Yu.I. and Shaskol’skaya, M.P., Osnovy
kristallofiziki (Fundamentals of Crystal Physics), Mos-
cow: Nauka, 1979.

5. Landau, L.D., in Sbornik nauchnykh trudov (Collection
of Scientific Works), Moscow: Nauka, 1969, vol. 1,
p. 97.

6. Landau, L.D., in Sbornik nauchnykh trudov (Collection
of Scientific Works), Moscow: Nauka, 1969, vol. 1,
p. 123.

7. Landau, L.D., in Sbornik nauchnykh trudov (Collection
of Scientific Works), Moscow: Nauka, 1969, vol. 1,
p. 234.

χβε θ*exp( )im V
h f

( ) ( )i j
fgU α

( ) ( )mi j
hfgU α

( ) ( )i j
fgU α ( ) ( )mi j

hfgU α i
fθ

( )in
fg rθ

( )VA A
hfgU

( )ij A
hfgU ,ij jА

hf fgU Y

(exp ) ,jА jA jА j
fg hg fg fgt SΨ = βδε =  ×j jk

fg k hgS t

βδε )exp ,( jk
fg .jk jk j

hg hg ht q q=
PROTECTION OF METALS AND PHYSICAL
8. Landau, L.D. and Lifshits, E.M., in Sbornik nauchnykh
trudov (Collection of Scientific Works), Moscow: Nau-
ka, 1969, vol. 1, p. 128.

9. Lifshits, E.M., Zh. Eksp. Teor. Fiz., 1941, vol. 11, p. 255.
10. Lifshits, E.M., Zh. Eksp. Teor. Fiz., 1941, vol. 11, p. 269.
11. Gufan, Yu.M., Strukturnye fazovye perekhody (Struc-

tural Phase Transitions), Moscow: Nauka, 1982.
12. Iona, F. and Shirane, G., Ferroelectric Crystals, New

York: Dover Publ., 1962.
13. Strukov, B.A. and Levanyuk, A.P., Fizicheskie osnovy

segnetoelektricheskikh yavlenii v kristallakh (Physical
Fundamentals for Ferroelectric Phenomena in Crys-
tals), Moscow: Nauka, 1983.

14. Khachaturyan, A.G., Teoriya fazovykh perekhodov i
struktura tverdykh tel (Theory of Phase Transitions and
Structure of Solids), Moscow: Nauka, 1974.

15. Katsnel’son, A.A. and Olemskoi, A.I., Mikroskopich-
eskaya teoriya neodnorodnykh struktur (Microscopic
Theory of Heterogeneous Structures), Moscow: Mos-
cow State Univ., 1987.

16. Vaks, V.G., Vvedenie v mikroskopicheskuyu teoriyu seg-
netoelektrikov (Introduction into Microscopic Theory
of Ferroelectrics), Moscow: Nauka, 1973.

17. Benson, G.G. and Yun, K.S., in The Solid-Gas Inter-
face, Flood, E.A., Ed., New York: Marcel Dekker,
1967.

18. Dunning, W.J., in The Solid-Gas Interface, Flood, E.A.,
Ed., New York: Marcel Dekker, 1967.

19. Laudise, R. and Parker, R., The Growth of Single Crys-
tals, New York: Prentice Hall, 1970.

20. Melikhov, I.V. and Merkulova, M.S., Sokristallizatsiya
(Cocrystallization), Moscow: Khimiya, 1975.

21. Hubert, A., Theorie der Domänenwände in geordneten
Medien, Berlin: Springer, 1975.

22. Boetzold, R.C., J. Phys. Chem., 1978, vol. 82, p. 738.
23. Saito, Y. and Muller-Krumbhaar, H., J. Chem.

Phys.,1979, vol. 70, p. 1078.
24. Chernov, F.F., Givargizov, E.I., Bagdasarov, Kh.S.,

Dem’yanets, L.N., Kuznetsov, V.A., and Lobachev, A.N.,
Sovremennaya kristallografiya (Modern Crystallogra-
phy), Moscow: Nauka, 1980, vol. 3.

25. Cherepanova, T.A., J. Cryst. Growth, 1981, vol. 52, p.
319.

26. Tovbin, Yu.K., Dokl. Akad. Nauk SSSR, 1982, vol. 267,
no. 6, p. 1415.

27. Sparnaay, M.J., Surf. Sci. Rep., 1984, vol. 4, nos. 3–4,
pp. 103–269.

28. Tovbin, Yu.K., Theory of Physical and Chemical Pro-
cesses at Solid-Gas Boundary, Boca Raton, FL: CRC
Press, 1991.

29. Tovbin, Yu.K., Prog. Surf. Sci., 1990, vol. 34, nos. 1–4,
pp. 1–235.

30. Cammarata, R.C., Prog. Surf. Sci., 1994, vol. 46, no. 1,
p. 1.

31. Ibach, H., Surf. Sci. Rep., 1997, vol. 29, p. 193.
32. Sidorkin, A.S., Domennaya struktura v segnetoelektrika-

kh i rodstvennykh materialakh (Domain Structure in
Ferroelectrics and Related Materials), Moscow:
Fizmatlit, 2000.
 CHEMISTRY OF SURFACES  Vol. 56  No. 4  2020



BASICS OF CALCULATING THE SURFACE PROPERTIES OF SOLID SOLUTIONS 681
33. Adamson, A.W., Physical Chemistry of Surfaces, New
York:  Wiley, 1975.

34. Eriksson, J.C., Surf. Sci., 1969, vol. 14, p. 221.
35. Rusanov, A.I., Surf. Sci. Rep., 1996, vol. 23, nos. 6–8,

p. 173.
36. Rusanov, A.I., Surf. Sci. Rep., 2005, vol. 58, p. 111.
37. Gibbs, J.W., Elementary Principles in Statistical Me-

chanics, New York: Dover Publ., 1960.
38. Tovbin, Yu.K., Small Systems and Fundamentals of

Thermodynamics, Boca Raton, FL: CRC Press, 2019.
39. Tovbin, Yu.K., Russ. J. Phys. Chem. A, 2018, vol. 92,

no. 12, p. 2424.
40. Tovbin, Yu.K., Russ. J. Phys. Chem. A, 2019, vol. 93,

no. 9, p. 1662.
41. Prigogine, I. and Defay, R., Chemical Thermodynam-

ics, London: Longmans Green, 1954.
42. Landau, L.D. and Lifshits, E.M., Course of Theoretical

Physics, vol. 5: Statistical Physics, Oxford: Pergamon
Press, 1969.

43. Ono, S. and Kondo, S., Molecular Theory of Surface
Tension in Liquids, Berlin, Springer, 1960.

44. Hill, T.L., Statistical Mechanics. Principles and Selected
Applications, New York: McGraw-Hill, 1956.

45. Asta, M., in Theory and Applications of the Cluster Vari-
ation and Path Probability Methods, Moran-Lopez, J.L.

and Sanchez, J.M., Eds., New York: Plenum Press,
1996, p. 237.

46. Cenedese, P., in Theory and Applications of the Cluster
Variation and Path Probability Methods, Moran-Lopez, J.L.
and Sanchez, J.M., Eds., New York: Plenum Press,
1996, p. 255.

47. Tovbin, Yu.K., Russ. J. Phys. Chem. A, 2014, vol. 88,
no. 11, p. 1932. Tovbin, Yu.K., Russ. J. Phys. Chem. A,
2014, vol. 88, no. 11, p. 1965.

48. Tovbin, Yu.K., Russ. J. Phys. Chem. A, 2015, vol. 89,
no. 11, p. 1971.

49. Tovbin, Yu.K., Dokl. Akad. Nauk SSSR, 1984, vol. 277,
no. 4, p. 917.

50. Tovbin, Yu.K., Zaitseva, E.S., and Rabinovich, A.B.,
Russ. J. Phys. Chem. A, 2018, vol. 92, no. 3, p. 587.

51. Zaitseva, E.S. and Tovbin, Yu.K., Prot. Met. Phys.
Chem. Surf., 2018, vol. 54, no. 5, p. 749.

52. Tovbin, Yu.K., Zh. Fiz. Khim., 1992, vol. 66, no. 5,
p. 1395.

53. Tovbin, Yu.K., Molecular Theory of Adsorption in Po-
rous Bodies, Boca Raton, FL: CRC Press, 2017.

54. Zaitseva, E.S. and Tovbin, Yu.K., Fizikokhim. Pov-
erkhn. Zashch. Mater., 2020 (in press).

Translated by O. Kadkin
PROTECTION OF METALS AND PHYSICAL CHEMISTRY OF SURFACES  Vol. 56  No. 4  2020


	INTRODUCTION
	LATTICE GAS MODEL
	Ordered States of Solid Solutions in Bulk [49]
	Transition Region of the Interface of Isotropic Phases [38–40]
	Transition Region of the Interface of Ordered Phases
	Equations for the Distribution of Mixture Components

	FREE ENERGY AND SURFACE TENSION
	Free Energy of the System
	Surface Tension
	Mechanical Equilibrium

	NONEQUILIBRIUM STATE OF SOLIDS
	Nonequilibrium Thermodynamic Potentials

	CONCLUSIONS
	Appendix 1. Reducing the dimension of the system of nonlinear equations for the distribution of components
	Appendix 2. Basics of the kinetic approach
	REFERENCES

		2020-09-20T18:59:36+0300
	Preflight Ticket Signature




