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Abstract—The results of the numerical investigation of the tone noise of the first booster stage of a high
bypass ratio turbofan in the far field in the approach (landing) operational conditions are presented.
The study is performed using the frequency domain numerical method of multistage turbomachines
tonal noise simulation, developed at the Baranov Central Institute of Aviation Motors (CIAM). A
variant of the method suitable for the calculations in a nonlinear setup is used. The calculation is per-
formed for several blade passages in each row. The harmonic balance method for multitonal distur-
bances with a frequency mapping is implemented. The results of the calculations are compared with
the results of the calculations in the time domain, presented in the previous paper (they were also per-
formed in a nonlinear setup) and with the experimental data obtained at the CIAM acoustic test facil-
ity. In general, satisfactory correspondence is found between the data in both cases. The results can be
treated as an argument for the validity of the proposed nonlinear frequency domain method of the
multistage turbomachinery tone noise calculations.
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1. INTRODUCTION
One of the components of the tonal noise of a turbojet engine is the interaction noise between the rows

in the booster stages of the low-pressure compressor. Although booster stages are much less significant as
a noise source than a fan, their noise can be noticeable in some engine operating modes [1, 2].

The peculiarity of retaining stages as a source of noise compared to a fan is that their noise is usually
determined by the interaction of several rows. For example, in the process of calculating the noise of the
first booster stage in the front hemisphere, it is necessary to take into account the interactions of the stage
impeller both with the input guide vane of the booster stages and with the stage guide vane. It is also nec-
essary to take into account the interaction of stage noise with the fan impeller.

The simplest approach to calculate the tonal noise of a multistage turbomachine in terms of formula-
tion is a direct nonstationary calculation in all impeller passages of each row. However, it is very expensive
in terms of computing resources. Therefore, it seems natural to use frequency domain methods that have
proven to be computationally efficient when applied to fan tonal noise calculations. Moreover, such meth-
ods for calculating the noise of multistage blade machines have indeed been developed. Examples can be
found in [1, 3, 4].

In the process of studying the tonal noise of the booster stages at the Central Institute of Aviation
Motors (CIAM), a method was developed for calculating the noise of multistage turbomachines in the fre-
quency domain [5, 6]. In this method, the pulsations in the rows are calculated in a linear approximation.
The solution in the blade row is sought in the form of a set of fields of harmonic fragments in one inter-
scapular passage of the row. The concept of a harmonic fragment—a set of disturbances in a row having
the same frequency and phase shift between the boundaries of the interscapular passage—was presented
in [5]. In this study, it is shown that the f low in the row can be decomposed into harmonic fragments, and
for each of the harmonics of the base frequency of disturbances in the row of the turbomachine, there is
only a finite number of harmonic fragments, determined by the geometry of the turbomachine. Taking
into account in the calculation only those harmonic fragments that correspond to the strongest compen-
sations generated in the turbomachine, the need for computing resources can be significantly reduced.
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64 ROSSIKHIN, MILESHIN
As a validation problem for the calculation method, we used the problem of calculating the noise of the
first booster stage of a low-pressure compressor (LPC) in the far field, taking into account the passage of
noise through the fan impeller. The paper [6] presents the calculation of tonal noise for a mode with a rel-
atively reduced rpm of N = 53.9% (the landing mode); and [7], also at a rpm of N = 75.5%. Both works
show that the calculation results are close to the experimental results obtained at the CIAM stand. It is
also worth mentioning the work [8], in which the tonal noise of three supporting stages was calculated,
and entirely satisfactory agreement was found between the calculation and experiment.

To further verify the calculation method in [9], the tonal noise of the same first booster stage was cal-
culated using a time domain calculation method. The calculation was performed in a nonlinear formula-
tion. Satisfactory agreement between the calculation results in the time and frequency domains is shown.

 Work [10] describes a generalization of the method proposed in [5, 6] to the case of calculation in a
nonlinear formulation using the harmonic balance method. It was shown that the calculation of the gen-
eration and propagation of noise in a multistage turbomachine using the harmonic balance method can
be carried out in a computational domain that includes only several impeller passages in each row of the
turbomachine. A similar approach, in which the calculation is carried out in a computational domain that
is reduced in the circumferential direction, was previously proposed in the time domain calculation
method in [11, 12].

The method described in [10] is used in this study to calculate the tonal noise of the first supporting
stage, previously studied in [6–9]. The calculation results are compared with the results of calculations in
the time domain, as well as with the experimental data. Although previous works did not reveal significant
differences between the calculation results in different formulations, this study made it possible to test the
method on a real three-dimensional problem and demonstrate its performance.

In [10], good conditionality of the matrices used to convert the data from the time domain to the fre-
quency domain in the harmonic balance method was ensured by selecting the moments of time at which
the f luxes were calculated using special algorithms. A feature of this work is the use of the harmonic bal-
ance method for multitonal disturbances, based on an artificial frequency mapping [13]. This approach
appears to have been rarely used in gas dynamic calculations. However, the significant simplification of
the calculation procedure provided by this method persuaded the authors to make this choice.

2. EULER EQUATIONS FOR DISTURBANCES

The numerical method used in this study is based on the use of linear or nonlinear Euler equations for
disturbances over the average stationary f low field in the blade rows. These equations are obtained by sep-
arating the f low parameters U = (ρ, ρu, , ρw, e) in the Euler equations in a conservative form for the
stationary f low field (indicated by index 0) and the pulsation field (indicated by the prime) and subtracting
from the resulting equations the parts that describe only the average f low field. In the reference system
rotating with angular velocity Ω around axis x, these equations can be written [14–16] in the form

(1)

where

(2)

U′ is the disturbance vector;  is the vector of the average f low field; , , and  are f low vectors for
disturbances; and  is the source required to describe the rotation effect, . In the
numerical method used, Eqs. (1) and (2) can be considered both in a linear approximation and contain
nonlinear terms.

3. HARMONIC BALANCE METHOD

In the case when the disturbance under study can be characterized by a finite set of frequencies, the
nonstationary problem can be reduced to a set of stationary ones. Let us imagine vectors at each point of
the computational domain  and  as

(3)
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APPLICATION OF THE HARMONIC BALANCE METHOD 65
(4)

where h is the harmonic number of the base frequency, ω is the base frequency, and h−k = –hk.
Substituting (3) and (4) into (1), we can obtain a set of systems of equations for harmonic fields

(5)

Since the f low field is real,  and, therefore, there are only Nh complex systems of
equations and one real system of equations (for harmonics with zero frequency).

To close Eq. (5), it is necessary to express  through a set of variables , . If Eq. (2)
is linear,  is easily expressed in terms of complex harmonic amplitudes [16]. In the nonlinear case, the
harmonic balance method is usually used to solve the problem [17]. The Fourier transform (3) is used to
reconstruct unsteady f low fields for the given set of times {tk}. After this the values  are calculated at the
given times. Then the inverse transformation to (4) is used to calculate .

To solve the resulting system of equations (5), in the numerical method under consideration, the
pseudo-time setting method is used. In this case, a local time step is used to accelerate convergence. Iter-
ation over time is carried out using the Runge–Kutta method.

4. ARTIFICIAL FREQUENCY MAPPING METHOD

It is usually more convenient to describe noise in a multistage turbomachine not by one tone and sev-
eral of its harmonics but by a combination of several tones and their harmonics. In the case of a multitone
harmonic balance, the construction of a transformation matrix from fields in the time domain to a set of
harmonic fields becomes significantly more complicated compared to a single-tone balance. As a rule, the
transformation matrix is constructed numerically, and significant efforts have to be made when choosing
{tk} in order for this matrix to be acceptably conditioned [13].

The frequency mapping method is a popular approach to solve multitone harmonic balance problems.
It is based on two observations. Firstly, when carrying out the calculation, it is necessary to calculate only
the spectrum of the vector  using the spectrum ; i.e., the time domain representation of
these two vectors is not important. Secondly, the coefficients of the Fourier series expansion for the vector

 do not depend on the frequencies that characterize the vector U′(t) [13]. We assume in the cal-
culation problem that the set of frequencies that describes the disturbances contains Nh harmonics with a
positive frequency. Then, according to what has been said, when using the harmonic balance method, this
set of frequencies can be replaced by some artificial set of frequencies, which represents the first Nh har-
monics of some basic frequency. For such a set of harmonics, the construction of a matrix for the direct
and inverse Fourier transforms is significantly simplified.

The specific form of the display depends on the set of source frequencies being considered. In [13] we
can find different mappings associated with different ways of choosing the initial frequencies. In this study
we will consider disturbances whose frequencies are combinations of two frequencies, ω1 and ω2. The
number of frequencies in the set will be limited by the intermodulation order Kmax. This value determines
the permissible frequencies as follows: they can take values corresponding to the formula

(6)

The number of allowed frequencies M with a positive frequency is determined by the relation
. With this choice of the frequencies under consideration, the frequencies are dis-

played as follows:

where λ0 is some arbitrary positive real number. It is easy to show that in this case the frequencies from
set (6) are mapped into the set defined by the relation ω′ = pλ0, p = 0, …, M. Constructing direct and
inverse Fourier transforms for such a set of frequencies is trivial.
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66 ROSSIKHIN, MILESHIN
5. METHOD FOR CALCULATING THE NOISE 
OF A MULTISTAGE TURBOMACHINE

This section describes the method for calculating the tonal noise of the multistage turbomachine used
in this study. The method is based on kinematic relations describing the dependence of f low fields in a
turbomachine on time and the azimuthal angle, described earlier in [5, 6, 8, 10].

We assume that the turbomachine contains two groups of rows: stationary stator rows and rotor rows
rotating at a peripheral velocity Ω. The f low fields can be considered both in the reference system of one
group of rows and in the reference system of the other one. The belonging of physical quantities to one or
another group of rows will be indicated by a superscript. The index values for the stator rows are set to 1;
and for rotor rows, to 2. In the case where the value of the index is not specified, it is denoted by a capital
Latin letters. Two letters are used in a special way: index A denotes the group of rows in whose reference
system the field is considered; and B, the other group of rows.

Let us denote by  the number of blades in the μth row in the Cth group. The spectrum of distur-
bances in a turbomachine is determined by the greatest common divisors of the numbers of blades of
groups: P1 = gcd( , …, ) and P2 = gcd( , …, ). It can be shown [5] that the expression for the
disturbance of the f low field U′ in the f low path of a turbomachine in the reference system of the group of
rows A can be written as a superposition of components (azimuthal modes) of the form

(7)

where t, x, r, and θA are the time and cylindrical coordinates in the reference system associated with row
A. It is assumed that the second, third, and fourth components of  correspond to the components of the
mass f low pulsation vector, written in the cylindrical coordinate system, where

(8)

Here,  and hC are arbitrary integers. Equation (8) is a consequence of the known properties of Diophan-
tine equations. Thus, the basic frequencies of tonal noise in the stator and rotor reference frames are equal,
respectively, to P2Ω12 and P1Ω21. Here Ω12 = Ω denotes the rotor velocity relative to the stator; and Ω21 =
–Ω, the stator’s rotation frequency relative to the rotor.

The f low field in a turbomachine can be decomposed in each of the rows into harmonics of the base
frequency for this row. For the μth row in the group of rows A, the corresponding expansion for the vector
of conservative variables has the form

(9)

For a multistage turbomachine, the computational domain for the fields of complex harmonic amplitudes
in the row generally cannot be reduced to a single impeller passage (unlike a single-stage turbomachine).
The minimum size of the computational area by angle is a sector with a dimension of 2π/PA radians con-
taining interscapular passages for the given interscapular row  = /PA.

In [5, 6] it was shown that harmonic fields can be decomposed into components, whose domain of
definition is limited to one interscapular passage. They can be characterized as the set of disturbances in
the row that has the same phase shift and frequency in the reference frame of the given row. In total there
is a row for each frequency  of harmonic fragments. Let us denote by θbb the angular coordinate, which
describes the position of a point inside the interscapular passage and is related to the angular coordinate
in the row by the relation , where n is the number of the interscapular passage, counted
from zero. According to [6]:
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(11)

Here,  is the vector of conservative variables for a harmonic fragment, defined in one impel-

ler passage. Surfaces (x, r) and (x, r) determine the boundaries of the zero impeller passage (for it,
 ≤ θbb ≤ ).
Frequency domain calculation methods are based on the assumption that the f low field in a row can

be characterized by a finite (and rather small) number of harmonics . The considered method for cal-
culating the tonal noise of multistage turbomachines is based on the assumption [5, 6] that the f low in the
row can be characterized by a small number of harmonic fragments . Substituting expansion (10) into
(5), we can get

(12)

To close Eq. (12), it is necessary to express  through a set of variables . In the linear case, the
equations for different harmonic fragments are independent, which is what the calculations in [5–8] were
based on. In the nonlinear case, to solve the problem, as before, we can use the harmonic balance method.
In this case, instead of transforming (3) from a set of harmonic fields to a set of fields for moments of time
{tk} and its inverse, we should use transformation (9), (10) from a set of fields of harmonic fragments to a
set of fields for the given pairs of moments of time and impeller passages {tk, nk} and the corresponding
inverse transformation. The disadvantage of this approach is the complexity of constructing a well-condi-
tioned transformation matrix and the high computational cost of converting from one data representation
to another.

Another approach to calculate the f low field in blade machines using the harmonic balance method
was proposed in [10]. If the f low field for some harmonic hk can be described by  harmonic fragments,

then in order to calculate these harmonic fragments, it is sufficient to know the f low field only in  inter-

scapular passages. Therefore, the calculation of fields for  harmonic fragments can be reduced to the
calculation of fields of complex amplitudes for harmonics hk, specified in the computational domain,

including  interscapular passages. In this case, special boundary conditions must be used at the bound-
aries of the computational domain. We assume that the passages are arranged in ascending order n from 0
to . Then the boundary conditions at the outer boundaries of the computational domain, corre-
sponding to the periodic boundaries of the impeller passages, can be specified based on the data on the
flow fields at the periodic boundaries of the impeller passages inside the computational domain. Accord-
ing to [10],

(13)

where the coefficient values  can be obtained from Eq. (10) and depend only on the harmonic number
and the given set of harmonic fragments. If the number of impeller passages is the same for all the consid-
ered harmonics, the standard harmonic balance method can be used for calculations in a nonlinear for-
mulation.

The advantage of this method is that calculations in a nonlinear formulation using the harmonic bal-
ance method are much simpler to set up and require less computational resources than calculations using
the method based on Eq. (12). Therefore, it will be used in this study.

6. GENERAL CHARACTERISTICS OF THE METHOD FOR CALCULATING 
THE TONAL NOISE OF BLADE MACHINES

The input data for the tonal noise calculation method are a stationary f low field in the computational
domain and a curvilinear multiblock computational grid consistent with the boundaries of the computa-
tional domain. The average steady-state f low field in the row of the turbomachine must be obtained using
a solver for the Reynolds-averaged Navier–Stokes equations, using a finite-volume mesh and a boundary
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68 ROSSIKHIN, MILESHIN
condition such as a mixing surface between the rows (the use of viscous equations is necessary to resolve
the traces). The obtained results are used as the input data for nonstationary calculations. It can be per-
formed in both the time and frequency domains.

The finite volume method is used for spatial discretization. To approximate the f lows, a fourth-order
dispersion relation preserving (DRP) scheme is used [18], rewritten for a curvilinear coordinate system
(additional details can be found in [15]). Various Runge–Kutta schemes can be used for integration by
time in the numerical method. In this study, fourth-order Runge–Kutta schemes of the highly accurate
large-step explicit Runge–Kutta (HALE-RK) type were used [19].

To suppress high-frequency parasitic disturbances, artificial viscosity with an 11-point pattern was
introduced in the scheme. In the nonlinear case, adaptive viscosity is used. Following [20], pressure is
used to detect large f low field gradients.

In the developed method, several types of boundary conditions are used at the boundaries of the blocks
that make up the computational grid. On solid surfaces, nonflow conditions are specified. The introduc-
tion and removal of disturbances from the computational domain is described using the one-dimensional
characteristic boundary conditions [21].

The boundaries between blocks are set by copying the f low parameters from the boundary cells into
the corresponding “foreign” cells of the neighboring blocks. At periodic boundaries, in addition to trans-
ferring the data to the corresponding boundary cells of the conjugate boundary, the velocity vector is
rotated by the angle of periodicity. When calculating in the frequency domain, additional phase shifts for
flow parameters can be introduced at these boundaries according to formula (11). The boundary condi-
tions for the boundary of the computational domain with several impeller passages are described by for-
mula (13).

The interaction between computational domains for adjacent rows in the time domain is carried out
using interfaces of the sliding grid type. The complete f low parameters are interpolated from the boundary
cells of one computational domain to the foreign cells of another at each step of the Runge–Kutta scheme.
The interpolated f low parameters, together with the parameters of the average f low field, are used to cal-
culate the f lows generated by unsteady disturbances. If the calculation is carried out in the frequency
domain, the parameters are transferred between the rows for a predetermined set of azimuthal modes of
the total f low field at each iteration. When constructing these boundary conditions, the formalism of the
harmonic fragments is used (the details can be found in [6]).

A semianalytical technique based on the Fox Williams–Hawkings equation is used to calculate the far-
field radiation [22].

7. OBJECT OF STUDY
The considered low-pressure compressor in the bench configuration is a model with a diameter of D =

700 mm. The model includes a fan with wide-chord impeller blades, designed for a promising civil aircraft
engine, as well as three supporting stages. A description of the model can be found in [6–8] and the ref-
erences given there.

The model has  = 18 blades in the fan impeller (FI),  = 71 blades in the inlet guide vane (IGVI) of

the booster stages,  = 86 blades in the impeller of the first booster stage (FII), and  = 100 blades in
the guide vane of the first booster stage (GVI). The data on the other two rows can be found in [8]. The
model diagram is shown in Fig. 1.

This paper studies the calculation of the tonal noise of the first booster stage, taking into account the
effects caused by the passage of noise through the fan impeller. The calculations were performed for the
subsonic landing mode at the corresponding relative shaft rotation frequency N = 53.9%. The bypass ratio
for this operating mode is 9.7, the peripheral velocity of the fan impeller is 212.9 m/s, and the peripheral
velocity of the first booster stage impeller is 119.4 m/s. For comparison, at the design point, the bypass
ratio is 8.5, the peripheral velocity of the fan impeller is 395 m/s, and the peripheral velocity of the first
booster stage impeller is 221.5 m/s. A feature of the landing mode is that for it the noise of the booster
stage prevails in the front hemisphere over the noise of the fan [7].

The results of the experiment [6, 7] show that the main contribution to the noise of the booster stages
is made by tones whose frequencies are combinations of the blade repetition frequency (BRF) of the
impeller of the booster stage, , and the frequencies of some BRF harmonics of the fan impel-
ler . The calculations performed by the authors earlier showed that the noise at these frequen-
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APPLICATION OF THE HARMONIC BALANCE METHOD 69

Fig. 1. Scheme of the model LPC: (a) general view, (b) enlarged fragment.

(a) (b)

Fig. 2. Scheme of the computational domain. Here, (1) are boundaries of the blocks of the original grid; (2) are bound-
aries of the detailed grid area in calculations performed using harmonic methods; (3) are boundaries of buffer blocks (only
partially shown); (4) is the surface for modal analysis.

3

3

3

3

2
4

1

1 2
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cies is generated predominantly as a result of the scattering of the azimuthal modes with the frequency
equal to the BRF of the stage impeller on the fan impeller. Therefore, our first priority was to correctly
describe the noise generation mechanisms of the noise stage at this frequency, as well as at frequencies of
f2 − f1 and f2 + f1.

8. PREPARATORY OPERATIONS

The stationary f low field in the model fan and booster stages were calculated at the first stage of this
study. The calculation was carried out using the Navier–Stokes equations, a semiempirical turbulence
model, and mixing-plane-type interfaces between rows. For the calculation, one of the CIAM calculation
methods was used [15].

To perform the calculations, a multiblock finite-volume mesh with N-topology, covering one impeller
passage for the FI, one impeller passage for the straightening apparatus (SA) in the outer contour, and one
impeller passage for each of the rows of the booster stages. The mesh is denser towards the boundaries of
the hard surface type, as well as near the leading and trailing edges of the blades. The size of the compu-
tational grid is 5.6 million cells. The diagram of the computational domain is shown in Fig. 2 with black
curves. The meridional projections of the rotor and stator blades are shown in dark gray (for the other
rows, the projections are not shown so as not to clutter the diagram). The calculation was performed under
the standard inlet conditions: P* = 101 325 Pa and T* = 288.15 K. The radial equilibrium condition is
specified in the exit section. The boundary condition at the outlet of the internal loop is set in the form of
the given value of the mass air f low.

The results of calculations for the relative Mach number showed that the f low for the 53.9% regime is
subsonic throughout the entire computational region. The obtained values for the integral gasdynamic
characteristics of the low-pressure compressor are close to the corresponding measurement results at the
CIAM stand.

The computational area for the unsteady calculations includes an area containing a fan impeller blade,
areas containing IGVI, FII, and GVI blades, as well as the area containing the entrance to the outer loop.
The region containing the SA was excluded from the calculation domain, since in this study, attention was
MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 16  No. 1  2024



70 ROSSIKHIN, MILESHIN

Fig. 3. Computational domains for calculations in different formulations: (a) calculation in the frequency domain in a lin-
ear formulation; (b) calculation in the time domain; (c) nonlinear calculation in the frequency domain. Black curves are
block boundaries.

Z
Z Z

Y Y Y
X X X

(a) (b) (c)
focused on calculating the noise in the front hemisphere. It was decided to neglect the process of ref lec-
tion of the noise from the stator.

The grid used in the nonstationary calculation was reconstructed from the grid for the stationary cal-
culation. For ease of parallelization, the grid was divided into a larger number of blocks. The x-coordinate
grid size in the FI was increased to ensure that the high-frequency disturbances generated by the propa-
gation stage propagate without a significant error. From the blocks related to the SA, only a part of the grid
remained, corresponding to the entrance to the outer contour. It was changed so that its angular size coin-
cided with the angular size of the part of the mesh containing the FI. In addition, the f low in it was aver-
aged over the azimuthal angle in order to remove the inhomogeneities related to the presence of the SA.
This made it possible to then set a rotation velocity for this area equal to the shaft rotation velocity, and
carry out calculations in it for the same harmonics as in the FI.

At the last stage of reconstruction, buffer blocks were added to the resulting computational meshes to
prevent nonphysical ref lections from the boundaries. A schematic representation of the computational
domain for calculating interaction noise (and for the stationary calculation) is shown in Fig. 2. The light
gray lines show the boundaries of the detailed grid, and the dashed-dotted lines show the boundaries of
the buffer blocks.

The total grid size was 4.2 million cells. In the blocks related to the FI and the entrance to the external
contour, there were 3.27 million cells; in the blocks related to the IGVI, 0.23 million cells; in the blocks
related to FII, 0.28 million cells; and in the blocks related to GVI, 0.42 million cells. The dominance of
blocks related to the FI is clear from a comparison of the blade sizes. The computational area included
74 blocks.

9. SUMMARY OF PREVIOUS STUDIES
For the object studied in this paper, tonal noise calculations were previously performed using two dif-

ferent methods. The calculations presented in [6, 7] were carried out using the system of equations (12).
The computational mesh described in the previous section was used without any modifications. The gen-
eral view of the computational domain (without buffer blocks) is shown in Fig. 3a.

The work [9] presents the results of calculations in the time domain in a nonlinear formulation, per-
formed using the system of equations (1), (2). As part of this calculation, the discretized equations were
directly solved for the given number of time steps using an explicit multirate Runge–Kutta scheme, which
allows the use of different time steps in different parts of the computational domain. The calculation area
in the circumferential direction had a size of 360°. The grid blocks for the nth interscapular passage of the
row was obtained by duplicating the blocks of the zero interscapular passage of this row, followed by rota-
tion to the required angle. The total size of the computational grid is 135 million cells. The diagram of the
computational domain (without buffer blocks) is shown in Fig. 3b.

The advantage of this technique is that its use does not require the explicit formulation of assumptions
about which interactions between the rows make a significant contribution to the noise of the turboma-
chine. All the interactions that the resolution of the computational grid used and the time step allow for
modeling are taken into account in the calculation. At the same time, one has to put up with the extreme
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resource intensity of this calculation method. It is difficult to consider it as a technique for performing
routine calculations, but it can be used to obtain data for verification of less resource-intensive methods.
In this study, the results of [9] are used precisely for this purpose.

10. DESCRIPTION OF THE CALCULATION PROCEDURE
The formulation of a nonstationary calculation in the method used begins with the determination of

the harmonic fragments for which the calculation is planned to be carried out in each row. First of all, we
should select the frequencies allowed in the rows. Circular frequencies of disturbances in this problem are
specified using the following relations:

(14)

(15)

The azimuthal mode, which in the reference frame related to the stator, is described by frequency (14) for
the given a and b, and in the reference frame related to the rotor by frequency (15) for the given c and d, is
characterized in these reference systems by the azimuthal number

(16)

In this study, the values  and  are chosen to be equal to two. The analysis showed that in this
case those modes that were dominant in the radiation according to the data of the previous calculations
are resolved [6, 7]. A tone with a frequency of f2 and simple combinations of tones f1 and f2 are obviously
allowed. In addition, this choice of values of Kmax makes it possible to take into account nonlinear inter-
actions between modes to some extent, as shown in [10, 14]. It is easy to show that with such a choice of
these values, in each row a calculation must be carried out for six nonzero frequencies, and for each fre-
quency a calculation must be carried out for five harmonic fragments.

The number of harmonic fragments allowed in the first two rows can be somewhat reduced. Some of
the harmonic fragments in these rows describe disturbances that, given the existing restrictions on the val-
ues of Kmax due to the large absolute value m cannot propagate upstream (the cutoff effect for acoustic dis-
turbances). They can be generated directly in these rows only due to nonlinear effects, which are assumed
to be relatively weak for these disturbances. In the first row they are primarily disturbances for which

 = . In the second row they are the disturbances for which
 = . In this study, it was decided to neglect the contribution to the f low

field from such disturbances. The analysis showed that in this case the number of harmonic fragments for
which calculations must be carried out for each frequency in the first two rows can be reduced to three.

The computational domain containing three impeller passages for the first two rows and five impeller
passages for the last two rows is presented (without buffer blocks) in Fig. 3c. The size of the computational
grid is 13.6 million cells. It can be seen that the computational grid used within this method is still notice-
ably smaller than the computational grid for calculations in the time domain. At the boundaries located
upstream and downstream of the computational domain, the characteristic boundary conditions were set
in the calculation. The nonflow conditions were set on solid surfaces. The boundary conditions described
by formula (13) were set at the outer boundaries of the computational domain, corresponding to the peri-
odic boundaries of the impeller passages.

The unsteady f low field was calculated using the time-based method; 20000 steps were completed.
To illustrate the results obtained, Fig. 4 shows the fields of the logarithm of the amplitude of static pres-

sure pulsations (normalized) for harmonics containing an azimuthal mode with ω = 86 Ω and m = 15 on
cylindrical sections of the computational domain. It can be seen that in the rows belonging to the booster
stage, the amplitudes of pressure pulsations differ significantly between the impeller passages, which indi-
cates complex interactions inside the turbomachine. At the same time, in the fan impeller, the various
impeller passages appear identical. It seems possible to reduce the number of passages for which calcula-
tions are carried out in blocks related to the fan impeller. Indeed, the numerical experiments have shown
that the number of passages can be reduced to at least two without significantly changing the calculation
results.

When the solution was established, a modal analysis of pulsations was carried out on the surface
located at the entrance to the LPC. The surface on which the modal analysis was carried out is shown in
Fig. 2 with a dashed line. The results of the modal analysis in the form of the powers allocated during the

2 2

1 2ω = + Ω + ≤ ∈1 1
max( ) , , , ,aB bB a b K a b Z

1 1

1 2ω = + Ω + ≤ ∈2 2
max( ) , , , .cB dB c d K c d Z

2 2 1 1

1 2 1 2= + + + .m aB bB cB dB
1
maxK 2

maxK

2
2signum( )bB +1 1

1 2signum( )cB dB
+2 2

1 2signum( )aB bB 1
2signum( )dB
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Fig. 4. Fields of the logarithm of the amplitude of static pressure pulsations for harmonics containing an azimuthal mode
with ω = 86 Ω, m = 15: (a) cylindrical section of the calculation area with diameter d = 0.9 D; (b) cylindrical section of
the calculation area with diameter d = 0.53 D.
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Fig. 5. The results of the modal analysis, presented in the form of azimuthal mode powers for harmonics with frequencies
68 Ω, 86 Ω, 104 Ω, 122 Ω.
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analysis of the azimuthal modes corresponding to the acoustic disturbances propagating along the f low
path are presented in Fig. 5. The modes are indicated by a pair of integers placed in parentheses, the first
of which is j2; and the second, m. Only modes with sound power levels less than 15 dB lower than the mode
with the maximum sound power level are shown. Figure 5 also shows a comparison of the results of the
modal analysis for the performed calculation with the results of the modal analysis for the time domain
calculation presented in [9]. For all modes except the mode with ω = 122 Ω and m = 51, the difference
between the powers of identical modes, according to the calculation results, is not more than 0.4 dB.

The results of the modal analysis were used to calculate the noise propagation through the air intake of
the model stage. The calculation procedure and the geometry of the computational domain fully corre-
sponded to those in [6–9]. To calculate noise propagation, linearized Euler equations were used for azi-
muthal modes in the frequency domain, specified on the meridional section of the air intake [16]. As a
result of the calculation, pulsation fields in the near field of the air intake were obtained for all modes
shown in Fig. 5. In turn, these data were used to calculate the pressure pulsations in the far field. They
were calculated at points evenly spaced over an angle range of 1°–90° at 1° intervals on a circular arc of
radius r = 4 m. The center of the arc was at the point of intersection of the surface passing through
the vertices of the leading edges of the fan impeller blades and the axis of rotation of the low-pressure cas-
cade shaft.

11. COMPARISON WITH EXPERIMENT

The results obtained were compared with the results of the experiment for the LPC under consider-
ation carried out at the CIAM stand. In the front hemisphere, the experimental setup allows comparison
for 12 microphones. The narrowband spectra obtained in the experiment were used as the initial data for
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Fig. 6. Comparison of radiation patterns in the front hemisphere for calculated and experimental data: (a) f2; (b) f2 + f1;
(c) f2 − f1; (d) f2 + 2f1.
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comparison, based on which radiation patterns for tonal noise were constructed for the desired
harmonics.

The radiation patterns in the front hemisphere for the calculated and experimental data are presented
in Fig. 6. The radiation patterns shown for frequencies f2 − f1, f2, f2 + f1, and f2 + 2f1, obtained through
this calculation, as well as the results of calculations in the time domain [9] and experimental data, are
shown. In general, close agreement between the calculations can be seen. Satisfactory agreement is also
observed between the calculation results and experiment.

12. CONCLUSIONS

This paper presents the results of computational studies of the tonal noise of the first booster stage of
an LPC in the landing mode using the method for calculating the tonal noise of multistage turbomachines
in the frequency domain developed at CIAM. For the first time, a version of the method is used for cal-
culations in a three-dimensional setting that allows nonlinear effects to be taken into account. Another
feature of this study is the use of the harmonic balance method for multitone disturbances with artificial
frequency mapping when performing calculations. The calculation results are compared with the results
of previously performed computational studies of the tonal noise of the given backup stage in the time
domain (this calculation was also carried out in a nonlinear formulation). In addition, the calculation
results were compared with the results of the experiment at the CIAM stand.

In general, the results of the calculations in the time and frequency domains are close to each other. In
this case, closeness is observed both in the predicted modal composition of the radiation from the air
intake and in the radiation patterns in the far field. In addition, for both calculations, satisfactory agree-
ment is observed between the results of the calculation and experiment. Therefore, the results of this study
can be considered as confirmation of the performance of the numerical method developed by the authors
for calculating the tonal noise of multistage turbomachines in the frequency domain in a nonlinear for-
mulation.
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