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Abstract—A mathematical model and numerical method for solving problems of the flow of two-
phase mixtures of gas and fine solid particles are considered. The particles are assumed to be absolutely
rigid, incompressible, and nondeformable. As the initial model, the continuum model of R.I. Nigmat-
ulin is considered. The model has two drawbacks: it is not strictly hyperbolic (i.e., it degenerates into
an elliptical one under certain flow regimes) and has a nonconservative form, which makes it difficult
to solve numerically. This paper proposes a method for regularizing Nigmatulin’s model at a discrete
level, which makes it possible to eliminate these shortcomings and develop a numerical model that is
well-conditioned for evolutionary problems of the flow of gas-dispersed mixtures with nondeformable
solid particles. The regularization method is based on splitting the original system into two subsystems,
each of which is strictly hyperbolic and has a conservative form. Difference schemes of the Godunov
type are developed for the numerical solution of these subsystems. Testing of the proposed model and
implemented methods includes checking the preservation of a homogeneous solution and the forma-
tion of shock waves and rarefaction waves in a gas, as well as compaction and decompaction waves in
the particle phase. The results of the numerical simulation of the interaction of a shock wave in a gas
with a near-wall layer of particles are also presented.

Keywords: two-phase dispersed media, continuum model of an ensemble of solid particles, regulariza-
tion of Nigmatulin’s model, Godunov’s numerical method
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1. INTRODUCTION

In various applied and fundamental problems, there are flows of two-phase mixtures consisting of gas
and solid small particles, which in the considered modes are practically absolutely rigid, incompressible,
and nondeformable. Examples include powder technological processes in the chemical and food indus-
tries [1], environmental problems related to environmental pollution [2], the development of porous
energy materials [3], ensuring safety, and preventing dust explosions [4]. When developing mathematical
models of such two-phase mixtures, it is necessary to take into account the features of the flow: the inter-
action of the gas and dispersed phases both due to viscous forces and the pressure gradient in the gas, and
the formation of compaction and decompaction waves in the dispersed phase, as well as vacuum zones
(areas of pure gas without particles) and a number of other features. In this case, it is necessary for the
mathematical model to describe all possible flow regimes, from the regime of close-packed particles, when
they are in contact with each other, to the regime of rarefied particles with a very small volume fraction.

One of the first models was the Marble model [5]. It describes only the class of rarefied flows when the
volume fraction of particles can be neglected. This model actually can be reduced to gas dynamics equa-
tions with a variable (depending on the mass concentration of the particles) adiabatic exponent in the
equation of state.

Continuum models that take into account the volume fraction of particles and, in principle, are suit-
able for a wide range of flows are proposed in [6—8]. These models are based on the fundamental laws of
conservation of mass, momentum, and energy; and they take into account, together with the viscous
interaction of phases, the Archimedean force due to the pressure gradient in the gas. The mass conserva-
tion equation in such a model has the form of the law of conservation of the number of particles or, equiv-
alently, the volume fraction of particles.

S64



NUMERICAL SIMULATION OF DYNAMIC PROCESSES S65

Although these models are widely used for practical problems, they have two significant drawbacks:
they are not strictly hyperbolic and have a nonconservative form. In this case, the eigenvalues can be
complex. This leads to ill-conditioned mathematical problem, instability of the numerical solution, and
the introduction of additional artificial stabilization algorithms, which, as a rule, do not always solve the
problem.

One of the ways to eliminate this drawback (hyperbolicity degeneration) is to use the Bayer—Nunziato
(BN) equations model, in which both phases, gas and particles, are considered in the continuum approx-
imation as two compressible continua with their own equations of state [9]. Each of these continua is
described by its own system of Euler equations: a set of laws of conservation of mass, momentum, and
energy. The resulting system of equations is closed by an equation for the volume fraction, which has the
form of a transport equation with a certain interfacial velocity.

The eigenvalues of the BN system of equations are real and, therefore, it is hyperbolic. The disadvan-
tage of this approach is that the dispersed phase has to be considered not as an ensemble of absolutely rigid
nondeformable particles, but as some fictitious compressible medium with its own equation of state. As a
rule, this equation of state is not a real equation that describes the properties of the particle material, but
is selected artificially [10]. In addition, the nonconservative transport equation for the volume fraction
does not guarantee the conservation of the number of particles, which is important for describing dis-
persed mixtures.

It should be noted that the BN model was initially proposed to describe the physicochemical processes
of a densely packed granular medium at high pressures, especially when calculating the transition from
deflagration to detonation in condensed explosives. For such processes, its use is justified, since the par-
ticles are in close contact with each other and can be modeled not as a dispersed medium but as some kind
of porous material. In particular, the process of particle dispersion and their transition to a rarefied state
with a low volume fraction is not described by the BN model. The BN model in the limiting case of a small
vanishing volume fraction does not transform into the Marble model.

The second feature of the system of BN equations is the behavior at a slightly varying density of the
dispersed phase. In this case, the law of conservation of mass leads to a balance equation for the number
of particles, which has a nondivergent form and thus contradicts the law of conservation of the number of
particles. In Nigmatullin’s model, the law of conservation of the number of particles has a divergent form.

Thus, from the point of view of physics, Nigmatulin’s model more adequately describes broad-ranging
dynamic processes in a two-phase mixture of gas and small solid particles than the BN model. At the same
time, the latter is correct in a mathematical sense for evolutionary problems. The aim of this study is to
correct this shortcoming of Nigmatulin’s model. To do this, we propose regularization of the model at a
discrete level, which consists of splitting the original system into two subsystems, each of which is strictly
hyperbolic and has a conservative form. As a result, we have a numerical model that inherits all the positive
properties of Nigmatulin’s physical model and corrects the shortcomings of the mathematical model.

The structure of the article is as follows. Section 2 presents the initial system of governing equations for
a two-phase mixture of gas and solid particles, analyzes its thermodynamic consistency and evolutionary
nature, and considers splitting it into two hyperbolic subsystems of a conservative type. Section 3 discusses
numerical methods of the Godunov type for solving the constructed subsystems. In Section 4, the
proposed numerical model is verified and tested on a number of one-dimensional problems related to the
formation of wave structures of the compaction and decompaction of particles during shock-wave
interactions.

2. SYSTEM OF GOVERNING EQUATIONS

A mathematical model is considered that describes the dynamics of a mixture of gas and solid particles
in the continuum approximation [3, 7]. We will denote the parameters of the gas phase by index 1, and the
parameters of the particle phase (also condensed phase, k-phase, dispersed phase) by index 2. The gov-
erning equations of the model are as follows:

0
% +V(oupu,) =0,

)
% +V(a,u,) =0,
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aalaslm +V(apu ®utp) =a,Vp+1,
(1)
ao‘gptzuz +V (0p,u, ® u, +0,m) = —0,Vp, + 1,
oo, E
IZL 4V (0upi B + pu) = ¥+ V[pos (wy = ua)] + uaf, +4,
% +V(0up, B>, + 01, ) = —0,u,Vp + uyf 5 +g;,

where o,p,u, E, p, and 7t denote the volume fraction, density, velocity vector, total energy, pressure, and
intergranular pressure; f, and g, are the relaxation values for the phase velocities and temperatures. It is
assumed that o, + o, =1, f, +f, =0, ¢, + ¢, = 0, and p, = const. The magnitudes of force and thermal
interphase interaction are expressed as f; = [W(u, —w,) and ¢, = k(7; — T,), where the coefficients L and k

are determined by empirical dependences [3], in which 7] and 7, are the gas and solid phase temperatures.
System (1) does not take into account the dissipative processes related to the viscosity and thermal con-
ductivity of the gas, with the exception of the force interaction at the interface. To approximate the inter-
granular pressure, the following approach is used [3]:

B((1- o)/ -0) =1], 0,20y,
0, 0o, <0y,

T, (az) = { (2)

where the parameter (xj determines the critical volume fraction of densely packed particles.

Note that the energy equation for the k-phase can be reduced to the equation for the internal energy of

the k-phase e, and further transformed to an equation for the temperature of the k-phase 7,. As the latter
is needed only to describe the interfacial heat transfer, this equation is not considered further.

The equation for the entropy of gas s, can be obtained from the subsystem of gas phase equations in the
standard way. It takes the following form:

oup 7} (% + ”1V51) = (u, —w)f + g, (3)

where 7] is the gas temperature. Thus, the system of equations (1) is thermodynamically consistent, but it
is not strictly hyperbolic and for some values of the flow parameters the eigenvalues of the Jacobian matrix
can be complex.

2.1. Model Regularization

As noted above, Nigmatulin’s model is not strictly hyperbolic. Setting up the evolutionary Cauchy
problem for it is, generally speaking, not correct. It is proposed to regularize it and eliminate this drawback
at a discrete level by introducing a special type of splitting at each time step of integration.

At the first stage, we can consider the movement of the mixture without taking into account the inter-
facial interaction; and at the second, only the interfacial interaction. Thus, at the first stage, the system of
equations (1) is solved without the right-hand sides and the energy equation for the k-phase, which serves
to determine the temperature of the k-phase,

o0,p,
— 4+ V(x =0,
at ( lplul)

9
% + V(O(zlb) = 0,

2% +V(opu;, @u, + p) =0, 4

% + V(o,p,u, ® u, +0,m) =0,
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% +V(oupEgy + puy) =0,

and the second stage takes into account the interfacial interaction

9oup, _
ot ’
doup,u
ot
d0,p,u, _
ot

= a2vp + fl:

E% = a,u,Vp + V[po, (u, —w,)] + u,f, + ¢,
00, _
ot

In the case under consideration, the system of equations (4) is split into equations for the dynamics of the
k-phase,

% + V(X2U2 = O,
ot

00L,P,u ©®
% + V (062p2u2 ® u, + (XQTE) = 0,
which determine the solution of o, and u,, and the gas phase equations
Jo
8_191 +V(oupu) =0,
t
% +V(opu; @u, + p) =0, 7

E% +V(oup, Ey + puy) =0,

to find the remaining components of the solution of p,, u;, and p.

Another important property of the system of equations of the gas phase (7) should be noted, which
makes it possible to construct a numerical method for its solution based on the developed methods of clas-

sical gas dynamics. Indeed, it is easy to verify that by introducing the average density p, = p,, the system
of equations of the gas phase (7) transforms into the standard system of Euler equations with respect to

variables P;, 4, and p. The equation of state will be reduced to
p={-Dpe, (2)

where ¥ = (y -0, ) / o, . Thus, (7) can be considered as a classical system of equations of gas dynamics of
a calorically perfect gas, with the only difference that the exponent depends on the spatial distribution of
the volume fraction of the k-phase.

System (4) is hyperbolic and has five eigenvalues:
Mp=wte,, Ay=uteds=u, )

where for the given approximation (2)
¢ = VRl + 0k /(1= ) + 0, B/py (1 = 0), ¢ =P (Y= ) /picti.

3. NUMERICAL METHOD

Spatial discretization of the equations is carried out for simplicity on a grid with a constant step 4. Inte-
ger subscripts are used to denote discrete values related to cells /; for parameters at the nodal points, half-
integer indices i + 1/2. At each time integration step, the system of equations (4) is first solved with the
initial data corresponding to the solution on the lower time layer. The resulting distribution is then used
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as the initial data for the system of equations (5), which is solved at the same time step and results in a
solution at the upper time layer. Selecting the time step size Az is discussed in more detail below. Due to
the conservativity of systems (4), (5), the semidiscrete form of the Godunov method can be represented as

aqi _ 1[ ek k
i LWL A 3)

where q; is the cell’s average value of the conservative vector and index k& = [, II refers to the numerical
method for systems (4), (5), respectively, which are further called stages. At the first stage, for the time
approximation, we use approach of the predictor-corrector type [11], and to increase the order of approx-
imation in space, a subgrid reconstruction of the solution is used, leading to the standard MUSCL-type
scheme. At the second stage, a first-order scheme is used.

3.1. HLL Method for the First Stage

For the system of equations (4), the conservative vector q = (p;, p;t;,p, E, ﬁz,ﬁzuz)T, the flow vector

f =@, Py + p, PLH,, Poty, Poti> + )" and H, = E, + p,/p,, then the Riemann problem for it is for-
mulated as follows:

a_q+£:0’ X € (—o0,40), 20,

ot dx A
(0 )_ qL9 XSO, ( )
0= qz x>0.

An approximate solution to the HLL-type Riemann problem is constructed under the following
assumptions. As a result of the decay of the initial discontinuity, a disturbed region bounded by waves s,
and sy, is formed. The disturbed region is characterized by a constant conservative vector q* and flow vec-
tor f*. They are found from the condition of satisfying the weak form of differential equations,

I (qdx — fdr) = 0, for any closed loop 7. For this, it is sufficient to require that the Rankine—Hugoniot
¥
conditions be satisfied on the waves s, and s, which leads to the relations

«_ SrAr — 5.4, +f, —fr £ = Sefp — 5,fr + s;5p(AR — ‘IL). (12)
Sp — S SR —SL

q

We estimate the bounding wave velocities s; and s, as follows. We use the estimate [12] for the subsys-
tem of gas phase equations (7)

s, = min [0, min(@ - ¢,u; —¢ )], sz = max[0,max(@ + ¢, u g + ¢ g)]s (5)

where the overline denotes the mean values, i, = 0.5(u;; +u z), and ¢; = 0.5(c; ; + ¢, ). For the subsys-
tem of the condensed phase equations (6), we estimate according to [13] as follows:

0, = max(ly;,0 z),

Uy [0y [ + Uy pa] O
_ 2L 2L 2R 2R ) (XQ,L > 0 or (X2’R > O,
LI2 - \/az’l‘ +\/(X’2,R (14)
0, otherwise,
6 = ¢)(0Ly),

Sy =min(iy — G,y — €y 1,—€), S = Max(i, + G, uy g + ¢y, €).

Finally, the velocities of the confining waves are determined as extreme values of the velocities of propa-
gation of disturbances through the gas and dispersed phase

s, =min(s;;,s,,], sgp=max[s,z, 5] (15)
Then the corresponding value of the numerical flow in the approximate Godunov method takes the form

£,z 7,2 = 1%z, 2"), (16)
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where z~ and z" are approximated values of the primitive variables [13]. The scheme used is an explicit
two-step one. It is stable under the Courant condition, which in this case is written as

At < (h/(max(s;;,sg;))) forall i (17)

3.2. Flow Form of the HLL Method for the Second Stage

The solution of the split system (4), which does not take into account the interphase interaction, serves
as the initial data for the interphase interaction subsystem (5), which is solved at the time step A¢. This sys-
tem has the first integrals

oy = 04 (X),
Pr = Pr(x), (18)
oy + 0pP,u, = const(x).
The equation for the total energy of the gas is rewritten in the form of equations for the internal energy
doupe
ot

By introducing the mass-average velocity of the mixture and the relative velocity of the phases

= pV o, (u; —uy)]+(u, —u)f, + ¢, (19)

pu=pu +pu,, W=u,—u, (20)

where p = p, + P, and p, = p,0,, the equation for the relative velocity is transformed

PR _ Vi, @20
p ot

Taking into account p,(de;/dp), = 1/T", where I is the Mu—Griineisen coefficient (for an ideal gas, I' =
v— 1), (19) will be rewritten in the form

%3—’; = —pV (W) + (W,f,) + g, (22)

Equations (21) and (22) define w and p. This is a system of quasi-linear equations of the first order of the
hyperbolic type. The eigenvalues of the Jacobi matrix, which determine the propagation velocities of small

disturbances, have the form
7"1,2 =1, A =Ipo,p/(0,pip,). (23)

We write the system of equations (21), (22) in vector form

Q9P _g
ot 0x
piP>
— W f 24
_(e)_| P (o) _(» L (0,0 (24)
Q= = , ®= = , S=|wf,+¢ |, C= .
0, %4 (O oL,W _— 01
v—1
Due to the constancy of o, in a cell when writing a difference scheme
n n AtC,
Qz = Qz - T(q)m/z - (I)i—l/Z)' (25)
To approximate the numerical flow, we consider the Riemann problem:
23_Q+C82:O’ —00 < X < +oo,
ot 0x

{Q = QL: o, = O('Z,L’ X < 07 (26)

Q = QR’ 0(‘2 = (x2,R7 X 2 0
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We construct an approximate solution of the HLL-type problem. To do this, we define the velocities of
the boundary waves of the disturbed region as

S, = _k(aZ,L:QL)a Sp = }“((XQ,RaQR)- (27)

We will look for a solution in the disturbed region in the form of a piecewise constant function

Qi s <x/r<0,

Qk 0 < x/t<sg

Q D =0P* 5, <x/t< s, (28)

The structure of vectors Qt /& 1s determined by the relations

* pPip2/P 0
=B ¥ B = . 29

QL/R L/RQ L/R [ 0 (Xl/(Y—l)j (29)

From the Rankine—Hugoniot relations on the waves bounding the disturbed region, we have
{SL(QL - B,Q*) =C (D, — DY), (30)

sr(Qg — BrQ*) = Cr(®y — D).
Values Q* and ®@* are defined as
Q* = C Fr — CiF, O* = B, s Fr — BgsgF, 1)
Crs B, — C 5zBg ’ Crs B, — C 5zBg ’

where F; p = C; /g ®; ,r — 5;,2Q,,z- In the absence of k-phase in Q, , the flow value has a limit value of
O* = @, . Comparing eigenvalues (9) and (23), we can find that the restriction on the time step at the

stage under consideration is weaker than at the first stage in the case p,/p, < (1 + o,)/,, which is true for
gases and solid particles under nonextreme conditions.

4. CALCULATION RESULTS

The proposed method is verified on a series of one-dimensional problems. We consider an ideal gas
with the adiabatic exponent y= 1.4. For particles, an approximation of intergranular pressure with param-
eters B, = 0.58, k£ = 0.57, and B = 0.15 ([B] = MPa) [13] is used. The interfacial interaction f,,q, is
neglected in the calculations because the properties of the basic numerical method are being studied.

In the first test, the ability of the numerical method to maintain the motion of a mixture of particles
and gas at a constant velocity (the property of well-balancing) is verified. The second test demonstrates
the formation of a compaction wave and a shock wave after reflection from a wall. The third test shows the
formation of a rarefaction wave in the presence of particles. The fourth test considers the formation of a
regular wave configuration in a region with a piecewise constant distribution of the volume fraction of par-
ticles. Numerical solutions are obtained for several values of the volume fraction of particles and are com-
pared with the exact analytical solution for the case of the stationary phase of particles. In the fifth test,
the interaction of a shock wave with a near-wall layer of light particles is numerically studied without tak-
ing into account the viscous interaction.

4.1. Convective Transport of a Flat Layer of Particles in a Gas

The movement of a backfill of particles with a subcritical volume fraction in a gas is considered. The
gas and particles move at the same constant velocity towards an area without particles. The gas pressure
in the region is constant, and the density undergoes a discontinuity at the boundary of the particle layer.
The initial data of the problem are given in Table 1. The initial position of the layer boundary corresponds
to x = 0.05 m. A uniform grid of 400 cells is used in the calculation. On the left boundary, the density,
velocity, and pressure of the gas, as well as the volume fraction and velocity of the particles, are specified.
On the right boundary, the interpolation condition is specified.

The calculation results are shown in Fig. 1. Here, the numerical solutions at the time # = 0.1325 ms are
given. The area of the particle layer at this moment is [0.17, 0.87]. Due to numerical diffusion, the bound-
ary of the particle region is smeared on the volume fraction distribution. The smeared width is greater than
for calculations without gas. In this case, the particle velocity remains constant. The zero velocity values
on the graph correspond to points with the zero-volume fraction.
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Table 1. Initial parameters in the problem of transfer of a layer of particles with a gas

0<x<0.05 0.05<x<0.1
o, 0.5 0
uy, km/s 0.2 0
P, kg/m’ 3.6 2.6
u, km/s 0.2 0.2
P, MPa 0.3 0.3

Table 2. Initial parameters in the problem of the formation of a compaction wave and a shock wave in a gas

0<x<0.1
o 0.5
u,, km/s —0.2
Py, kg/m? 0.036
uy, km/s —0.2
P, MPa 0.3

4.2. Formation of a Particle Compaction Wave and a Shock Wave in a Gas

The flow of a mixture of gas and particles with the same velocity in the direction of an impermeable
wall is considered. the flow rate of the particles and gas is given on the right boundary. The particles have
a subcritical volume fraction and density of 100 kg/m?3. Table 2 shows the initial parameters of the prob-
lem. The computational domain is 0.1 m long and contains 800 cells.

Figure 2 shows the distribution of parameters after the shock wave is reflected from the wall. In the
compaction wave, the volume fraction of particles rises to supercritical values of about 0.64, and the veloc-
ity decreases to zero. To the left of the compaction wave, a shock wave propagates in the gas.

4.3. Formation of a Rarefaction Wave in a Gas with Particles

The formation of a rarefaction wave in a mixture of particles with a gas is considered. The particles have
a subcritical volume fraction and density of 100 kg/m?>. Table 3 shows the initial parameters of the prob-

1= 0.1325 ms —— 1,
0.45r v,
0.40%
0.35F
0.3090——0—0——0——0——0——0—1—0—
0.25F
0.20 i
0.154—=H i

0.0

2 0.04 0.06 0.08

X, m

10.25

0.20

U, km/s

o~
3

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

—&— oy, t=0ms

i —o— p, t=0ms 140
r —0— a,, t = 0.1325 ms 138
L —O0— p;, t=0.1325ms ’
>o—O—8—O0—eO0—4¢

0.02 0.04 0.06 0.08
X, m

Fig. 1. Distribution of parameters in the computational domain at the moment of time 7 = 0.1325 ms.
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8 t=0.06 ms 0
7 —0.05F
L < L
% 6 = —0.10
v -~
o 5r -~ —0.15F
a 3
4+ —0.20
3 1 1 1 1 J _025 1 1 1 1 J
0.9 0.84—nr—Nn—~N -0
0.8F e
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Fig. 2. Distribution of parameters in the problem of formation of a shock wave and a compaction wave.

4 t=0.15ms
- 3+
g <
o9 2f Eﬁ
a S
1+
0
03 08F —o—oay 10.25
DCS 02F <
S g £
= oalb =
0
002 004 006 008 010 0 0.02 0.04 0.06 0.08 0.10
X)m X,m

Fig. 3. Test with the formation of a rarefaction wave and an area without particles.

lem. The wall condition is specified on the left boundary of the region, and zero-order interpolation is
specified on the right boundary. The computational domain is 0.1 m long and contains 800 cells.

Due to the subcritical initial volume fraction of the particles, a decompaction wave is not formed in the
particle phase. The presence of a pressure gradient in a region with a nonzero volume fraction of particles
(Fig. 3) leads to a distortion of the profile of gas parameters compared to a conventional rarefaction wave
in a gas, as well as to a slowdown of particles in the near-wall region.
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Table 3. Initial parameters in the problem of the formation of a rarefaction wave

0<x<0.05
o, 0.5
uy, km/s 0.2
P, kg/m? 0.036
u, km/s 0.2
P, MPa 0.3
Table 4. Initial parameters in the problem of the transfer of a layer of particles
0<x<0.8 x>0.8
o, 0.1 0
u,, km/s 0.0 0
p;, kg/m? 3.6 3.23885
u, km/s 0.1 0.153785
P, MPa 0.3 0.2

4.4. Decay of the Initial Discontinuity in a Mixture of Gas and Particles

This test is given for comparison with the reference solution, since there are no exact solutions in the
literature for the considered system of equations (1). In [14], gas flows in regions with the given and time-
constant distribution of the volume fraction are considered. These flows are actually described by two-
phase equations in which the particle phase is stationary. Test C was chosen as the reference solution. The
initial data for it are given in Table 4 and the exact solution is shown in Fig. 4 by the lines without symbols.
The wave configuration resulting from the decay of the discontinuity in this test is regular; i.e., the result-
ing shock wave and rarefaction wave do not intersect with the porosity discontinuity. In model (1), the
pressure drop leads to the appearance of the k-phase velocity. In order to compare the solution obtained
by model (1) with the reference solution, solid-state particle densities of 102, 103, and 10° kg/m? are con-
sidered, since denser particles accelerate to a lower velocity. At a high density of the particles, they actually
remain in place; thus, the resulting numerical solution must coincide with the exact reference solution.
The calculations considered an area 2 m long containing 800 cells.

Figure 4 shows the results of the numerical calculations by the proposed method as lines with markers.
The solutions obtained for different particle densities are close to each other. As the particle density
increases, the value of the gas velocity between the rarefaction wave and the porosity discontinuity
increases and approaches the value of the reference solution. In this case, the particle velocities decrease
correspondingly. At a particle density of p, = 103 kg/m?, the particle velocities in the calculation are

~1076 km/s.

4.5. Interaction of a Shock Wave with a Near-Wall Layer of Particles

In this test, we consider the impact of a shock wave with M = 2.73 on a layer of particles at rest located
near the wall. The initial data for this problem are given in Table 5. The initial volume fraction and thick-

Table 5. Initial parameters in the problem of the interaction of a shock wave with a near-wall layer of particles

0<x<13 1.3<x< 1.5 1.5<x<2.0
o, 0.0 0.0 0.5
uy, km/s 0.0 0.0 0.0
P, kg/m? 0.03405535 0.009483804 0.009483804
uy, km/s 0.75184007 0.0 0.0
P, MPa 0.008528383 0.001 0.001
MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 15 2023
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Fig. 4. Parameters in test C when varying particle density. The HLL method; scheme of increased order of accuracy.
Comparison with the exact solution for stationary particles.
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Fig. 5. Parameters in a test with a shock wave falling on a layer of particles after the formation of a compaction wave at the
layer boundary. The HLL method; scheme of increased order of accuracy.

ness of the particle layer are 0.5 and 0.5 m, respectively. The computational domain has a length of 2 m
and contains 1600 cells.

Figure 5 shows the distribution of parameters at time 0.6 ms. At this point, a reflected shock wave has
formed in the gas, propagating to the left. Under the action of the pressure gradient in this wave, particles
with alow volume fraction accelerate and also move to the left. In the backfill of particles, interfacial inter-
Vol. 15 2023
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Fig. 6. Parameters in the test with shock wave incident on a layer of particles after reflection of the transmitted shock wave
from the wall. The HLL method; scheme of increased order of accuracy.
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Fig. 7. Parameters in a test with a shock wave falling onto a layer of particles after the interaction of transmitted and
reflected shock waves. The HLL method; scheme of increased order of accuracy.

action leads to the compaction of particles to a subcritical volume fraction and the appearance of a low
positive velocity near the front of a passing shock wave. At the boundary of the layer of particles, by this
moment, the transmitted shock wave has formed a compaction wave, in which the volume fraction of par-
ticles increases to a supercritical volume. The propagation of a compaction wave in the presence of inter-
facial interaction leads to the formation of a gas velocity peak.
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Figure 6 shows the distribution of parameters at time 0.9 ms. At this point, the passing shock wave was
reflected from the wall. Under the influence of this wave, particles were compacted to a volume fraction
above critical. In this case, the particles near the wall move with negative velocity. On the right boundary
of this layer, a decompaction wave has already formed, in which the volume fraction decreases to the crit-
ical one. On the decompaction wave, the gas parameters undergo a discontinuity.

Figure 7 shows the distribution of parameters at 4.0 ms. Near the reflected shock wave, a cloud of par-
ticles with a low volume fraction, separate from the main backfill, was formed. The interaction of com-
paction waves led to the delamination of particles (the effect of the fragmentation a cloud of particles) and
the motion of the resulting layers in the direction from the wall.

CONCLUSIONS

This paper proposes a method for regularizing a mathematical model of the flow of a two-phase mix-
ture of gas and solid particles. The model of R.1. Nigmatulin is considered as a mathematical model under
the assumption of absolutely rigid, incompressible, and nondeformable particles. The regularization
method is based on splitting the original system into two subsystems that describe, respectively, the
dynamics of the phases and the interphase interaction. For each of the resulting systems, which are hyper-
bolic and have a conservative form, a Godunov-type method is constructed based on an approximate
HLL solution to the Riemann problem. For the first system, a numerical method of a higher approxima-
tion order is constructed.

The proposed numerical method was verified on a series of problems that admit exact solutions. The
results of the test calculations showed the ability of the numerical method to keep the movement of the
mixture at a constant velocity, as well as close agreement with the exact analytical solutions in terms of the
quantitative wave characteristics (amplitude, wave and characteristics propagation velocity).

The interaction of a shock wave with a near-wall layer of particles was simulated without taking into
account relaxation values in velocity. The effect of the stratification of a homogeneous backfill of light
particles under the influence of a passing shock wave and the resulting compaction and decompaction
waves was obtained.
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