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Abstract—A two-dimensional (0xz) numerical model that makes it possible to calculate the initial ele-
vation of the water surface in the source of a tsunami in a basin of variable depth is developed in the
potential theory of an incompressible f luid under the approximation of an instantaneous deformation
of the sea bottom. The model makes it possible to take into account the contribution of the horizontal
component of the bottom deformation and the smoothing effect of the water layer through the use of
the σ coordinate. To test the numerical model, we obtained an analytical solution to the problem of
the initial elevation in a basin with a f lat sloping bottom with a bottom deformation of a triangular
shape. The results of the test show that for a spatial step typical for numerical tsunami models, there is
close agreement between the numerical and analytical solutions. Using the developed σ model, we cal-
culate the initial elevations of the water surface during the Kuril earthquake on January 13, 2007 and
the Great East Japan Tohoku earthquake on March 11, 2011 (along the selected 2D sections).
The results obtained are used to test an approximate method for calculating the initial elevation,
known as the Kajiura filter, in which the ocean depth is assumed to be constant throughout the area
of the source of the tsunami.

Keywords: tsunami, initial elevation, potential theory, incompressible f luid, Kajiura filter, sigma
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1. INTRODUCTION
In the numerical simulation of a tsunami of seismic origin, the process of wave excitation is usually

considered to be instantaneous, see, for example, [1–3]. Only a few models take into account the dynam-
ics of the bottom deformation [4–6].

In the “instantaneous deformation of the bottom” approximation, it is understood that the deviation
of the free water surface from the equilibrium position (initial elevation) and the zero field of f low veloc-
ities must be set as the initial conditions for modeling. In this case, the initial elevation is equated to the
vertical component of the bottom deformation (e.g., [7]) or, more correctly, to the vertical displacement
of the bottom surface, calculated taking into account the relief inhomogeneities [8–12]. This approach
quite adequately reproduces the main mechanism of the generation of a tsunami—water displacement by
coseismic deformation of the bottom—but it does not take into account the smoothing effect of the water
layer [13–15]. Due to this effect, the initial elevation of the water surface is always characterized by a
smaller amplitude and is smoother (smoothed) compared to the bottom displacement [16, 17].

Until the end of the 20th century, the source of an earthquake was mainly represented as a rectangular
rupture area with a uniform displacement distribution (centroid moment tensor solution [18]). Such a
simplified representation made it possible to calculate the bottom deformation vector field only approxi-
mately; therefore, taking into account a rather weak smoothing effect could not noticeably improve the
quality of tsunami modeling. In recent decades, there has been a fundamental breakthrough in the recon-
struction of the slip structure in the earthquake source (finite fault model [19–21]). Despite the fact that
the data on the slip structure are available in the public domain with a significant delay (from two hours
to several weeks, https://earthquake.usgs.gov/), some scientific groups offer algorithms that allow us to
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restore the finite fault model in real time [20, 21]. Thus, using the example of the Tohoku catastrophic
event on March 11, 2011, it was shown in [21] that, in the presence of a dense network of GPS stations, the
source of an earthquake and, accordingly, the deformation of the earth’s crust can be reconstructed with
an accuracy of >99% in 2–3 minutes.

In addition, in the last ten years, there has been significant progress in the field of numerical modeling
of tsunami propagation. For example, it became possible to take into account the effect of density strati-
fication, water compressibility, the deflection of the ocean floor directly under a wave, and the related
change in the gravitational potential on the tsunami wave propagation velocity [22, 23]. The combined
consideration of these factors made it possible to reproduce the propagation time of the Tohoku tsunami
on March 11, 2011 over transoceanic distances with an error of 1 minute [23]. Obviously, it makes sense to
use such refined tsunami propagation models only if the generation models are of the appropriate quality.
In relation to this, the calculation of the initial elevation of the water surface in the source of the tsunami
with the maximum accuracy, which is only possible with the available seismic information, has become
an urgent need.

At the moment, the most common way to calculate the initial elevation, taking into account the
smoothing effect, is an approximate method, known as the Kajiura filter, in which the ocean depth is
assumed to be constant throughout the source area of the tsunami. This method is based on the analytical
solution of the problem of tsunami generation by the instantaneous deformation of a f lat horizontal bot-
tom, obtained in the framework of the linear potential theory of an incompressible f luid [13, 14, 24–27]

(1)

where  is the initial elevation of the water surface,  is depth of the ocean,  =

 is the spatial Fourier transform of the vertical displacement of the bottom

, and . Formula (1) is known as the Kajiura equation [14, 28] and its application for
spatial bottom displacement filtering is called the Kajiura filter [29, 30]. Formula (1) was obtained for an
ocean of constant depth H0; therefore, when applying it in calculating the initial elevations in real tsunami
sources, the average source depth is used. Taking into account the fact that in the region of a real tsunami
source, the ocean depth can vary significantly, sometimes by an order of magnitude, the validity of using
the average source depth is doubtful and needs, at the very least, careful verification [16, 27]. The rele-
vance of such a check is also confirmed by the fact that the Kajiura filter is used not only in models devel-
oped in the instantaneous bottom deformation approximation but also in quasi-dynamic models—two-
dimensional codes ( )—which allow introducing a dynamic correction to the displacement of the water
surface in each time layer [30–32].

The main aim of this study is to develop a technique for numerically solving the problem of calculating
the initial elevation of the water surface in an ocean of variable depth, caused by the instantaneous defor-
mation of the bottom of an arbitrary shape. The technique is developed on a simplified two-dimensional
model ( ). The second aim of this study is to obtain an analytical solution to the problem of calculating
the initial elevation in a basin with a f lat sloping bottom caused by the bottom deformation of a triangular
shape. This analytical solution is necessary for testing the numerical model. This paper also demonstrates
the application of the constructed numerical model to the calculation of the initial elevation in the sources
of real tsunamis: the Kuril earthquake on January 13, 2007 and the Great East Japan Tohoku earthquake
on March 11, 2011. The results obtained are used to test the Kajiura filter, an approximate method for cal-
culating the initial elevation.

2. NUMERICAL SOLUTION
Certain approaches to the calculation of the smoothed initial elevation of the water surface were used

in numerical modeling and analyzed theoretically by various scientific groups [13, 14, 24–26, 33–37].
K. Kajiura used Green’s function for the velocity potential and presented the solution as a series consisting
of the sum of the integrals corresponding to multiple reflections of the source from the surface and from
the bottom [14]. T. Saito calculated the response of the water layer to a point source given by the Dirac
delta function, and then applied the superposition principle [34, 37]. The Laplace [24, 26] and Fourier
[13, 25] transformations were also used to solve this problem. We note the original approach proposed in
[33]. The authors of this paper calculated the initial elevation of the water surface in a basin with a slowly
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varying depth using an electrostatic analogy and presented the resulting solution as an iterative procedure.
This approach has found practical application in modeling real events [35, 36].

We have developed the concept proposed in [15, 16, 38]. In this concept, the dynamic problem of cal-
culating the response of the water layer to the seismic movements of the bottom, formulated in terms of
the velocity potential Φ [13, 14, 24–27], can be reduced to a simpler static problem. To do this, it is nec-

essary to introduce the displacement potential  and require compliance with the instantaneous

condition of bottom deformation , where τ is the duration of the bottom deformation at a par-
ticular point, H is the depth of the ocean, and g is the free fall acceleration [17]. We locate the origin of the
Cartesian coordinate system  on the undisturbed water surface with axis 0z directed vertically upwards.
In such a coordinate system, the static problem of finding the initial elevation will be formulated as follows
[15, 38]:

(2)

(3)

(4)

where  is the displacement potential,  is the depth of the ocean,  is the displace-
ment of the bottom in the direction of the normal,  is the vector residual deformation of the

bottom,  is the unit vector of the normal to the bottom surface, and  =  +  is

the displacement of water in the bottom layer in the direction of the normal. The initial elevation of the
water surface is expressed in terms of the displacement potential using a simple formula

(5)

For the numerical solution of problem (2)–(5) in a reservoir, the depth of which is given by an arbitrary
function , we pass to a curvilinear nonorthogonal coordinate system : , .
Value σ varies from 0 on the undisturbed free water surface to −1 at the bottom. The  coordinate sys-
tem makes it possible to map the computational domain of an arbitrary shape onto a rectangular domain
[39, 40], which greatly simplifies the setting of the boundary condition for impermeability at the bottom
in an ocean of variable depth. For the first time σ coordinate was proposed in [39] and is widely used to
this day in various versions in numerical models of the dynamics of the atmosphere and ocean [41–45].
The version we use is called depth-normalized σ-coordinates [46, 47].

Problem (2)–(5) in coordinates  takes the form [48]

(6)

(7)

(8)

(9)

where H′ and H′′ are the first and second derivatives of  in . We note that the scalar product 
does not depend on the choice of the coordinate system. Due to this, the vector components normal to
the bottom  and bottom deformation  required for the calculation of  can be specified in
the 0xz Cartesian coordinate system, which significantly simplifies the practical implementation of the
calculations.

Problem (6)–(9) will be solved numerically by the one-step iteration method [49]. The iteration
method is stable, as well as easy to implement and debug. As mentioned above, detailed information about
the structure of slips in the earthquake source (finite fault model) appears in the public domain with a
delay of two hours to several weeks (https://earthquake.usgs.gov/). In relation to this, at this stage, an
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increased rate of convergence of the numerical method is not required. Let us write the difference approx-
imations of the derivatives on the “cross” template. We choose the outer boundary of the computational
domain Γ passing through the ocean at such a distance from the zone of the maximum deformation of the
bottom that the displacement of the free surface and the deformation of the bottom on it can be neglected.
This will allow us to set the simplest Dirichlet condition F |Γ = 0 on the outer boundary.

The condition for terminating the iterative process is formulated as follows. Assume  is the total value
of the displacement potential over all nodes at the ith step of the iterative process. At each step, we will
calculate the value . When this value becomes less than 10−7, we assume that the required
accuracy is achieved and the iterative process can be stopped.

We set  as the zero approximation. From a physical point of view, this means
that, in the zeroth approximation, the initial elevation of the water surface is equal to the vertical compo-
nent of the bottom deformation (formula (9)). It is also obvious that condition (3) is automatically satis-
fied in this case.

3. ANALYTICAL SOLUTION FOR NUMERICAL MODEL TESTING
One of the possible ways to check the constructed numerical σ model is by comparing it with the

known analytical solution of problem (2)–(5) obtained for any particular type of function H(x).
The simplest case for which there is an analytical solution to problem (2)–(5) is a reservoir of constant

depth H0. The analytical solution of problem (2)–(5) in this case has the form

(10)

where  is the Fourier transform of the vertical displacement of the bottom.

However, this solution is unsuitable for testing σ models, since at  all terms in Eq. (6) containing
 and  vanish, as a result of which Eq. (6) itself is significantly simplified and reduced to the ordinary

Laplace equation written in an orthogonal coordinate system. Note that solution (10) exactly coincides
with the one-dimensional analog of the Kajiura equation (1), which is additional confirmation of the cor-
rectness of the displacement potential concept.

A more complex case, for which there is also an analytical solution to problem (2)–(5), is a reservoir
with a f lat sloping bottom [16, 50]. In this case, it is convenient to use the cylindrical coordinate system
(r, ϕ) (Fig. 1). Problem (2)–(5) in a cylindrical coordinate system is written as follows:

(11)
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Fig. 1. Statement and solution of the problem of calculating the initial elevation of the water surface, caused by the instan-
taneous deformation of the bottom of a triangular shape in a basin with a f lat sloping bottom. The inset shows the results
of comparing the numerical and analytical solutions for different numbers of vertical layers. The normalized standard
deviation of one solution from another is shown in black, gray bars show the number of iterations.
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The details of the derivation of formulas (15) and (16) are described in detail in ([50], formulas (2.1.1)–
(2.1.14)). In general, integrals (15) and (16) are not calculated analytically. However, for some kinds of

 functions integral (16) is taken analytically and then the calculation of the initial elevation is reduced
to taking only integral (15). For example, this can be done if the deformation of the bottom has a rectan-
gular shape  =  [16]. However, this case is also inconvenient for checking the
numerical model due to the stepwise form of the  function.

Another case in which integral (16) can be taken analytically is the deformation of the bottom of a tri-
angular shape (Fig. 1)

(17)

where coefficients , , , and  are expressed in terms of the coordinates of the vertices of the triangle.
Formula (17) is the sum of two terms of the same form:

(18)
therefore, taking integral (16) analytically for the bottom deformation (18) and calculating the corre-
sponding integral (15) numerically, it is possible, using the superposition principle, to obtain the initial
elevation caused by the triangular bottom deformation (17).

We substitute the bottom deformation (18) into (16) and then into (15) and obtain

(19)
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where  and . The imaginary part  is an odd function and the real part is

even; thus, formula (19) can be simplified to

(20)

Formula (20) makes it possible to calculate the initial elevation of the water surface caused by the
instantaneous deformation of the bottom of form (18). When coefficient a in (18) vanishes, the deforma-
tion of the bottom takes the form of a rectangle, and the obtained solution coincides with the solution pub-
lished in [16]. Note that, if necessary, we can set the normal deformation of the bottom, limited by an arbi-
trary broken line, by taking any number of terms of form (18) required for this. The initial elevation of the
water surface caused by such a bottom deformation can be easily calculated using the superposition prin-
ciple and formula (20).

4. NUMERICAL MODEL TESTING

Solution (20) (Fig. 1) was used to test the numerical model. The computational domain was 100 km

long, the bottom slope was 0.1 ( ), and the ocean depth in the computational domain varied
from 1 km to 11 km. The normal deformation of the bottom had the shape of an isosceles triangle with a
base of 20 km and a height of 1 m (shown schematically in Fig. 1 by the bold solid line). The corresponding
vertical displacement of the bottom in Fig. 1 is transferred to the water surface and is shown on the same
scale with the initial elevation also by a bold solid line. The grid step along axis 0x was 500 m, which cor-
responds to the characteristic step of the digital bathymetric data (for example, 15 arcsec in
https://www.gebco.net/). The number of layers along the vertical (NZ) ranged from 10 to 50. Each calcu-
lation recorded the number of iterations NI and the two-dimensional volume of the initial elevation of the

water surface  = ; and a pointwise comparison of the numerical solution  and analytical

solution  was carried out by computing the normalized standard deviation of one solution from the
other:

(21)

The values of NI, , , and NRMSE recorded for each calculation are presented in Table 1.

Figure 1 shows the results of the calculations for NZ = 20. The numerical solution of the problem is
shown by the thick dashed line and the analytical solution is shown by the thin solid line. It can be seen
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Table 1. Comparison of numerical and analytical solutions

Number of partitions along vertical NZ 10 20 30 40 50

Number of iterations at numerical cal-

culation of NI

1682 3056 4865 7016 9445

Two-dimensional volume of initial ele-

vation for numerical solution , m2

10039.7 10044.5 10045.9 10046.3 10046.3

Two-dimensional volume of initial ele-

vation for analytical solution , m2

10049.8 10049.8 10049.8 10049.8 10049.8

Relative difference in volumes, 

 × 100%

0.10 0.05 0.04 0.03 0.03

NRMSE, % 0.74 0.37 0.25 0.20 0.18

numV

anV

ε = −an num an[( )/ ]V V V
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that the numerical and analytical solutions coincide almost perfectly. The results of a quantitative com-
parison of calculations for different values of NZ are graphically displayed in the inset in Fig. 1. As
expected, with an increase in the number of vertical layers, the difference between the numerical and ana-
lytical solutions decreases, but at the same time, the number of iterations also increases. The two-dimen-
sional volumes of the initial elevations also converge as the number of layers increases (Table 1). Note that

the values of the two-dimensional volumes are close to the volume of the bottom deformation  =

10049.9 m2. This is independent confirmation of the correctness of the obtained numerical and analytical
solutions.

5. CALCULATION OF THE INITIAL ELEVATIONS FOR REAL EVENTS 
AND VERIFICATION OF THE KAJIURA FILTER

Having tested the constructed numerical model using an analytical solution for the particular case of a
basin with a f lat sloping bottom, we used the constructed numerical model to calculate the initial elevation
in a basin with an arbitrary bottom topography. We emphasize that it is in this case (a basin with an arbi-
trary bottom topography) that the use of the σ coordinate becomes especially useful.

We calculated the initial elevations of the water surface during two real events: the Kuril earthquake on
January 13, 2007 and the Great East Japan Tohoku earthquake on March 11, 2011. In both cases, the cal-
culations were carried out along a certain section directed perpendicular to the deep-water trench
(Figs. 2a, 3a). The digital atlas GEBCO2014 was used as the source of the bathymetric data. The bottom
deformations were calculated by Okada’s formulas [51] using the code ffaultdisp
(http://ocean.phys.msu.ru/projects/ffaultdisp/). The ffaultdisp input consists of .fsp files that are freely
available on the USGS website (https://earthquake.usgs.gov/). The .fsp files were updated on the USGS
website on October 17, 2018. The horizontal bottom deformation component, obtained as a result of using
the ffaultdisp, was projected onto the direction of the section and substituted into the numerical model
together with the vertical component. The horizontal step in the numerical calculations was 500 m, there
were NZ = 20 vertical partitions (see Table 1). The results of the numerical calculations are shown in
Figs. 2b and 3b with a thick dashed line.

Note that the concept of the displacement potential, which is the base of our numerical model, is the
optimal approach to setting the initial conditions for the problem of the propagation of a tsunami in the
instantaneous tsunami generation approximation. The theoretical substantiation of this statement is pre-
sented in [15]. Therefore, the numerical solution we obtained can be used as a benchmark for testing

bV
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Fig. 2. (a) Bottom deformation area during the Kuril earthquake on January 13, 2007. White dashed isolines are bottom

subsidence, isoline spacing is 1 m, arrows are horizontal displacements of the bottom. Segment AB shows the section

along which two-dimensional calculations were carried out. (b) Bottom profile (thick solid line), vertical displacement of

the bottom transferred to the water surface (thick solid line) and initial elevations along section AB, calculated by different

methods. Horizontal straight lines show average depths by source H1 (dotted line) and H50 (thin solid line) used in the

Kajiura filter.
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Fig. 3. (a) Bottom deformation area during the Great East Japan Tohoku Earthquake on March 11, 2011. White solid iso-

lines are bottom uplift, white dashed lines are subsidence, isoline spacing is 1 m, arrows are horizontal displacements of
the bottom. Segment AB shows the section along which two-dimensional calculations were carried out. (b) Bottom profile
(thick solid line), vertical displacement of the bottom transferred to the water surface (thick solid line), and initial eleva-
tions along section AB, calculated by different methods. The horizontal thin straight line shows the average depth at the

source H50 used in the Kajiura filter.
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approximate methods for finding the initial elevation. The results of testing one of these approximate
methods (the Kajiura filter) are also given below.

5.1. Kuril Earthquake on January 13, 2007

It can be seen from Fig. 2b that, for the Kuril earthquake, the amplitude of the initial elevation is
noticeably smaller than the amplitude of the vertical displacement of the bottom (by 0.71 m or 18%). The
smoothing effect in this event manifests itself so clearly for two reasons: firstly, the region of the maximum
bottom displacements is located at the bottom of the deep-water trench (from 6 to 8 km, Fig. 2b), and sec-
ondly, it has a relatively small horizontal extent (about 35 km) [15, 33, 38]. It is also worth noting that the
maximum of the smoothed initial elevation of the water surface is slightly shifted relative to the maximum
vertical displacement of the bottom (by 3.5 km). The reason for this is that those areas of bottom displace-
ment that lie at a greater depth are smoothed more strongly and those that lie at a shallower depth are
smoothed more weakly.

We use the obtained results to check the approximate method for calculating the initial elevation: the
Kajiura filter. In order to apply the Kajiura filter, it is first necessary to calculate the average depth accord-
ing to the tsunami source. Taking into account that the bathymetry data are known only in a discrete set
of points, we proceed as follows. We calculate the vertical displacement of the bottom η [9, 10]

(22)

and find the maximum modulo value of η throughout the deformation region. Next, we select the points
at which modulo η is more than 1% of this maximum value, and using the bathymetry data, we calculate
the average depth H1 for these points. Then we select the points where η is more than 50% of the maxi-

mum value, and calculate H50 for them. The obtained values (  m and  m) and the

vertical displacement of bottom (22) are substituted into the Kajiura equation (10). The results of the cal-
culation of the initial elevation obtained in this way are shown in Fig. 2b by the dotted (for H1) and thin

solid (for H50) lines.

The following integral characteristics were calculated for a quantitative comparison of the initial
elevations obtained from the numerical solution of the static problem and using the Kajiura filter:

two-dimensional volume  =  and potential energy E =  (  kg/m3 and

= +η z x
dHd d
dx

=1 5845H =50 7118H

V
+∞

ξ0
( )r dr

+∞
ρ ξ

2

0
(0.5 )g r dr ρ = 1030
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Table 2. Comparison of the integral characteristics of the initial elevations calculated by different methods for the
Kuril earthquake on January 13, 2007 and the Great East Japan Tohoku earthquake on March 11, 2011

Jan 13, 2007 Mar 11, 2011

, m2 78749 483983

, m2
78483 (–0.3% ) 482896 (–0.2% )

, m2 78746 (–0.004% )

, m2 78748 (–0.001% ) 485876 (+0.4% )

, ×109 J/m 1.29 21.69

, ×109 J/m 1.03 (–20% ) 21.11 (–2.7% )

, ×109 J/m 1.08 (–16% )

, ×109 J/m 1.00 (–22% ) 21.21 (–2.2% )

ηV

numV ηV ηV

1
KajV ηV

50
KajV ηV ηV

ηE

numE ηE ηE
1
KajE ηE

50
KajE ηE ηE
 m/s2). The calculations were carried out for the vertical displacement of bottom η, for the initial

elevation found from the complete solution of the static problem , and for the initial elevations found

using the Kajiura filter  and . The calculation results are summarized in Table 2.

The Kajiura filter overestimates (in absolute value) the amplitude of the initial elevation of the water
surface compared to the numerical solution of the static problem by 0.14 m (4%) when used as the average
depth H1 and understates the same amplitude by 0.02 m (0.8%) when used as the average depth H50. From

this, a useful practical recommendation follows for researchers using the Kajiura filter: when choosing the
average depth by the source, it is necessary to consider only the region of the maximum bottom deforma-
tions and substitute it in formula (10) as the average depth, for example, H50. Table 2 shows that the two-

dimensional volumes are close to each other in all cases (the difference does not exceed 0.5%). The vol-
ume calculated for solving the static problem is the smallest, due to the relatively small number of vertical
partitions (see also Table 1). The potential energy of the smoothed initial elevation is 20% less than the
potential energy of the bottom vertical displacement. This agrees with the above estimates for the ampli-
tudes of the initial elevation and is explained in a similar way. The same point can be made about the
potential energies calculated using the Kajiura filter.

5.2. The Great East Japan Tohoku Earthquake on March 11, 2011

Let us now consider in more detail the results obtained for the earthquake in Japan on March 11, 2011.
It can be seen from Fig. 3b that in this case the smoothing effect is mainly manifested not in the decrease
in the amplitude of the initial elevation but in the spatial filtering of the vertical displacement of the bot-
tom. Mathematically, this is explained as follows. According to formula (10), the spatial spectrum of the

initial elevation of the water surface is modulated by the rapidly decaying function , where k is

the wave number. Consequently, the bottom movements cannot create disturbances on the surface with

the wavelength . Figure 3b clearly shows that the short-wavelength components of the bottom’s
vertical displacement are indeed not transferred to the surface due to the smoothing effect being taken into
account. Note that in the numerical simulation of the tsunami propagation, to adequately reproduce these
nonexistent components, it would be necessary to reduce the steps in space and time, which would lead
to an increase in the computation time. Thus, taking into account the smoothing effect not only makes it
possible to avoid errors in the calculation of the amplitude of the initial elevation but also improves the
efficiency of the numerical models [16, 17, 52].

The average depths that needed to be applied to the Kajiura filter in this case were H1 = 3456 m and

H50 = 3438 m. Considering that the obtained values are close to each other, as well as the conclusions

obtained in the analysis of the Kuril event, in this case, we carried out calculations using the Kajiura for-
mula only for H50. A noticeable difference between the numerical solution of the static problem and the

calculations using the Kajiura formula is observed only in shallow water. There, the Kajiura filter smooths
out the short-wavelength components of the bottom displacement much more strongly than the solution

= 9.81g
ξnum

ξ1

Kaj ξ50

Kaj

01/ch( )kH

λ < 0H
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of the static problem. This is logical, since the depth H50, used in the Kajiura filter, is obviously greater

than the depth of the ocean in shallow water. The results of a quantitative comparison of the two
approaches to the calculation of the initial elevation are shown in Table 2. It can be seen that the volumes
in this case also differ by less than 0.5%, and in terms of the potential energy, the role of the smoothing
effect can be estimated at 2–3% (for both methods of calculating the initial elevation).

6. RESULTS AND DISCUSSION

A two-dimensional (0xz) numerical model that makes it possible to calculate the initial elevation of the
water surface in the source of a tsunami in a basin of variable depth is constructed. The model is developed
in the approximation of an instantaneous deformation of the bottom and allows us to set the deformation
of the bottom of an arbitrary shape. The model takes into account the smoothing effect of the water layer
and the contribution of the horizontal components of the bottom deformation. The construction and test-
ing of such a model is a necessary methodological step in preparing for the numerical solution of the com-
plete three-dimensional problem of calculating the initial elevation in a basin with an arbitrary bottom
topography. In particular, the two-dimensional model makes it possible to work out the use of nonorthog-

onal coordinates  and adapt the iteration method for the given task.

To test the numerical model, an analytical solution was obtained for the problem of calculating the ini-
tial elevation for the case of a normal deformation of a f lat, inclined bottom, which has a triangular shape.
This solution is valuable not only for testing this two-dimensional model but also for testing a future three-
dimensional model, if such testing is carried out on an extended earthquake source along the 0y axis.
Moreover, it is highly likely that this solution will be the only possible test for a 3D model, as obtaining a
three-dimensional analytical solution of the static problem of the initial elevation in a basin with a f lat
sloping bottom is associated with significant mathematical difficulties (Bessel functions of an imaginary
order, etc.).

The initial elevations of the water surface along arbitrarily chosen sections for the Kuril earthquake on
January 13, 2007 and the Great East Japan Tohoku earthquake on March 11, 2011 are calculated using the
constructed two-dimensional numerical model. The numerically calculated initial elevations are used to
test an approximate method for calculating the initial elevation: the Kajiura filter. By comparison with the
numerical solution, it was found that it is advisable to take the average depth of the region of the maximum
bottom deformations as the average depth of the tsunami source. A method for calculating such an average
depth is given.
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