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Abstract—A simplified model system of governing equations describing the motion of an ensemble of
solid fine-grained particles arising in the continual description of two-phase dispersed media is con-
sidered. The specific features of this system consist of a discontinuity in the characteristic velocity of
the propagation of small disturbances when the volume fraction equals the value of dense packing and
the possibility of forming void regions free of particles. A modification to the Godunov method based
on the exact solution to the Riemann problem and an approximate Harten–Lax–van Leer (HLL)-
type solver, which takes into account the mentioned specific features, is proposed for the system con-
sidered. The methods developed are verified on a set of test problems that are analogs of the bench-
marks by Sod and Shu–Osher, which are well-known in gas dynamics. The problem of decompaction
of a side-wall layer of compressed particles is also considered. The mechanism of particle detachment
and development of a near-wall void zone free of particles is described. The numerical results are com-
pared with the available analytical data.
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1. INTRODUCTION
Multiphase f lows of dispersed mixtures in the case when the volume fraction of the dispersed phase

varies over a wide range—from the values of rarefied practically noninteracting particles to the values of
close packing—occur in many applied problems, for example, in the study of internal ballistic processes
[1, 2], dispersion of dust layers behind shock waves [3], detonation propagation in dispersed systems [4],
and other. The model of two interpenetrating continuums is usually used as the main mathematical model
for describing such processes. In this model, each phase is described by its own continuum and character-
ized by its own fields of density, velocity, pressure, and other f low parameters. The system of constitutive
equations is derived based on the laws of conservation of mass, momentum, and energy for each phase and
a certain model of force and thermal interaction between phases.

For the case when both phases are compressible media with a spherical stress tensor and the corre-
sponding thermodynamic equations of state, the continuum model of a two-phase dispersed mixture was
derived quite strictly from the fundamental principles of thermodynamics in [4]. It is well known in the
modern literature as the nonequilibrium Bayer–Nunziato model. Alternative continuum models for the
flow of two-phase dispersed mixtures in regimes corresponding to small values of the volume fraction of
the dispersed component were also considered in [5, 6]. The construction of a model and analysis of the
properties of thermodynamic consistency and hyperbolicity for the cases of a small volume fraction of the
dispersed phase (rarefied mixture) and a relatively large one, corresponding to a dense packing of particles
of the dispersed phase, are given in [7–9]. In these papers, the assumption that both phases are compress-
ible is used significantly.

Relatively few works are available on models for the case of an incompressible solid dispersed phase.
First of all, the works of A.N. Kraiko with colleagues should be noted. The construction of a two-phase
two-velocity continuum model under the assumption that there are no collisions of particles is considered
in [5, 10]. The questions of the correctness of the Cauchy problem that arise in this case are studied in [11,
210
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12]. The works [13, 14] study dusty gas and the two-phase boundary layer. The mathematical features of
systems of Euler equations without pressure are discussed in [15, 16].

In this paper, some issues are studied related to numerical simulation of the f low of a two-phase dis-
persed medium, which is a nonequilibrium mixture of the gas carrier component and solid, small, incom-
pressible, and indeformable particles. The application of the model of interpenetrating continuums for
this case was considered in [1, 5]. To describe regimes with a dense packing of particles of the dispersed
phase, an additional tensor of intergranular interaction is introduced in these works. Its spherical part is
responsible for the intergranular pressure, which occurs only when the volume fraction is greater than a
certain critical value. It corresponds to the value of the close packing of the particles. At lower values of
the volume fraction, the intergranular pressure disappears.

The system of constitutive equations of the full model, without taking into account the terms describing
the interfacial force and thermal interaction, consists of equations describing the motion of the gas phase

(1)

and a system of equations describing the dynamics of the dispersed phase

(2)

The following notation is introduced here:  and  are the volume fractions of the carrier gas and dis-
persed phases, ρ and δ are density, u and v are speed, e and ε are the internal energies of the gas and par-
ticles, respectively, p is the pressure in the gas,  is the configuration energy of particles, and 
is the interparticle interaction tensor. The spherical part of tensor σ is the intergranular pressure. The total
energy of the dispersed phase is the sum of the thermal part of the energy  determined by the par-
ticle temperature , kinetic energy, and configurational energy (densification energy), determined by the
volume fraction and related to the intergranular pressure ,  [17].

Equations (1) and (2) are used in [18, 19] to describe the processes of propagation and damping of
shock waves in a medium with densely packed solid particles. In these works and in [20, 21], some issues
related to the peculiarities of the numerical solution of nonconservative systems of equations of two-phase
hydrodynamics are discussed. In [22], a method for the approximate solution of the Riemann problem for
an arbitrary nonconservative system of hyperbolic equations is proposed, which takes into account the
complete set of eigenvalues of the Jacobi matrix and the complete wave configuration of the problem cor-
responding to this set.

One of the features of the model considered is related to the degeneration of the intergranular pressure
when the volume fraction of particles falls below the value corresponding to their close packing. In other
words, the intergranular pressure becomes zero at values of the volume fraction less than some critical
value. This leads, firstly, to a discontinuity in the propagation velocity of small disturbances in the dis-
persed phase and, secondly, to the possibility of the formation of particle-free regions. These factors must
be taken into account when developing a numerical method. The numerical method must reproduce all
the main physical features of dynamic processes in the dispersed phase, including the discontinuity and
the formation of void regions in the particle phase. To this end, let us consider a simplified model that
describes the motion of only the dispersed (condensed) phase without taking into account the gas phase
and try to develop a numerical method for it, taking into account the features of the model mentioned
above.

The model simplified system of equations, which will be presented in this paper, can be considered as
a model for describing the dynamics of the dispersed phase of particles, neglecting the effect of the carrier
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phase (in a vacuum). In addition, this system arises in the numerical solution of the complete system of
two-phase equations by the method of decoupling into physical processes.

In the following sections, an analysis of a simplified continuum model of the motion of an ensemble
of particles is given, an exact solution of the Riemann problem and a two-wave approximate solution sim-
ilar to the Harten–Lax–van Leer (HLL) approximation for gas dynamics, are considered [23]. The solu-
tions are used to construct a numerical method of the Godunov type of the second order of accuracy,
which takes into account the indicated features of the model. The method is verified and tested on a set of
one-dimensional problems related to the formation of wave structures of the compaction and decompres-
sion of particles during shock-wave interactions.

2. SYSTEM OF DEFINING EQUATIONS AND ITS PROPERTIES
We consider a simplified mathematical model that describes the dynamics of an ensemble of solid non-

deformable particles in a vacuum in the continuum approximation. It is represented by the system of equa-
tions (2) in which all terms related to the carrier gas phase are neglected. In addition, we also neglect the
deviatoric part of the intergranular interaction tensor and take into account only its spherical part, the
intergranular pressure. The energy equation of the dispersed phase is also not taken into account, since in
the considered approximation it does not affect the first two equations (2) and determines the thermody-
namic state of particles (temperature). For simplicity, we also restrict ourselves to the one-dimensional
approximation. Then the system of defining equations can be written as follows:

(3)

The type of dependence of the intergranular pressure is determined both by the shape and the physical
properties of a certain particle material [1, 17]. In the case under consideration, in view of the assumption
of the incompressibility of the dispersed phase, the process of particle compaction leads only to an
increase in their volume fraction. Intergranular pressure is introduced to limit the growth of the volume
fraction of particles. It is determined by the following empirical dependence on the volume fraction:

(4)

Here the parameter  determines the critical volume fraction of particles in the case of point contact. The
empirical constants B and k are selected according to the experimental data on loading specimens with
particle filling.

The defining system of equations in primitive variables in a nonconservative form can be written as

(5)

It can be rewritten in vector form as

(6)

where , and

(7)

The matrix of the system of equations (6) has two eigenvalues:

(8)
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where  and can be interpreted as the square of the propagation velocity of weak discontinu-
ities. When approximating the intergranular pressure in form (4), we have

(9)

The system of equations (6) is not strictly hyperbolic. At a nonzero intergranular pressure, there are
two different eigenvalues. When the intergranular pressure degenerates, the system has one double eigen-
value.

The model under consideration admits discontinuous solutions. Relations at a strong discontinuity
bind the values of velocity and the volume fraction to the left and right of the discontinuity. They are
derived from the conservative system of equations (3) and have the following form:

(10)

where D is the propagation velocity of a strong discontinuity and the parameters with index 0 are related
to the undisturbed region.

3. NUMERICAL METHOD

We write the conservative system of equations (3) in vector form by introducing the vector of conser-
vative variables  and the f low vector . Spatial discretization of the equations
is carried out on a grid with a variable step . We use integer subscripts i to denote discrete values related
to cells and half-integer indices i + 1/2 to denote the parameters at grid nodes, respectively. Applying the
finite volume method, we arrive at the following semidiscrete system of equations

(11)

where  =  is the cell’s average value of the conservative vector. The numerical f low vector

 is a function of the cell’s primitive vector values interpolated into the node points ,

. Here the superscripts − and + denote the value to the left and right of the node,
respectively. The numerical f low approximation function F is selected according to the method of
Godunov based on the solution of the Riemann problem of the decay of an arbitrary discontinuity.

To increase the order of approximation of scheme (11) in space, a subgrid reconstruction of the solu-
tion is used. To reconstruct the solution in the ith cell the values in three adjacent cells with indices i − 1,
i, and i + 1 are considered. In this case, quadratic interpolation is carried out, which gives the values of
the solution at the nodal points. The reconstruction procedure is described in [24] and was generalized to
the case of a nonuniform grid:

(12)

where  is the function that determines the order of the interpolation scheme. On a
uniform grid, parameter k is constant; the selection of  leads to the standard second-order MUSCL
scheme,  corresponds to an unstable second-order central difference scheme,  corresponds to
Fromm’s scheme, and when k = 1/3, the scheme becomes a scheme of the third order of approximation
[24]. At the same time,  +  in (12), which corresponds to the
Van Albada limiter [25]. The selection of the coefficient of k shown above is a generalization of the
MUSCL scheme with k = 1/3 in the case of a nonuniform grid.

= ∂ β�σ ∂β2 ( )c

= σ + β − β + β δ − β(1 /(1 )) / (1 ).с k Bk

β − β = β − β
β + βσ − β − β σ = β − β

0 0 0
2 2

0 0 0 0 0

( ),

( ),

u u D

u u D u u

= β,β( )uq β β σ= + β2 )( ,u uF
ih

[ ]+ −
∂ = − −
∂ 1/2 1/2

1 ,i
i i

it h
q F F

iq 1\ i ih dxC q

+1/2iF iz
+ −

+ +=1/2 1( , )i i iF Ф z z

± ± ± ± ±

+ −
+ −

+ −

+ −

 = ± δ − + + 

= − = −

δ = δ =
+ +

∓

1 1

1 1

0.5 (1 ) (1 ) ,

, ,

, ,

i i i i

i i

i i i i

s sk sk

h h
h h h h

z z Δ Δ

Δ z z Δ z z

δ = δ − δ2( ) (12 1)/12k
= −1k

= 1k = 0k

+ − + += Δ Δ Δ Δmax(0,2 /(s − −Δ Δ + ε))
MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 15  No. 2  2023



214 NEMTSEV et al.
For integration over time, we use an approach of the predictor-corrector type [26]. At the first stage,
the values are approximated to the cell interfaces according to (12). The obtained values  and  are used
to calculate the predictor in the form

(13)

where  is the time step.
At the second stage, the obtained predictor values are used to calculate the intermediate values of the

variables

(14)

Then they are approximated to the cell interfaces using the values of the increments from the nth time step

(15)

At the final stage, the f low vectors are calculated

(16)

The described scheme is an explicit two-stage scheme. It is stable under the Courant condition, which
in this case writes as follows

(17)

4. NUMERICAL FLOW APPROXIMATION

To select the numerical f low approximation function Φ, we apply Godunov’s method, which suggests
to approximate the numerical f low based on the solution of the Riemann problem of the decay of an arbi-
trary discontinuity at each node.

The Riemann problem is reduced to solving the Cauchy problem for the system of defining equations

(18)

with piecewise constant initial data

(19)

The solution of the Riemann problem is self-similar and depends on the self-similar variable x/t. This
condition is satisfied by the solutions of only two classes. One class consists of discontinuous solutions that
describe compaction waves, crossing which results in instant change of the volume fraction and particle
velocity. Exclusion of the velocity D from the relations on the strong discontinuity (10) results in the fol-
lowing dependence of the particle velocity on the volume fraction behind the wave front:

(20)

where subscript 0 denotes the background values (before the wave front), respectively, ; i.e.,
it does not match index L in formula (19). Expression (20) with the “+” sign corresponds to the wave
which is called the right wave. It has a mass f low  less than zero, so that particles
with undisturbed parameters  cross the discontinuity from right to left. Accordingly, the “–” sign
is taken for the left wave, for which the mass f low rate is greater than zero, and particles with parameters

 cross the discontinuity from left to right.

Strong discontinuity relations (20) are considered only for values . The branch , in princi-
ple, also takes place. It corresponds to a “decompaction shock.” However, this branch must be discarded,
since it corresponds to solutions that are unstable to small disturbances, which was shown by Lax in the
general case of an arbitrary hyperbolic system of equations in the form of a conservation law [27].

Another class of solutions describes a centered decompaction wave, in which the f low parameters
change continuously depending on the self-similar variable,  and β = β(λ). Relationships in the
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decompaction wave are written as a functional dependence of the velocity on the volume fraction for val-
ues , which has the following form:

(21)

where the upper sign corresponds to the right wave with , and the bottom sign corresponds to the
left wave with . For the right wave, the undisturbed region with parameters  is located to
the right of the wave; and for the left wave, to the left of the wave. From the differential relations of a cen-
tered wave , where the prime denotes the derivative with respect to λ, it can be shown that
for the right wave, , and for the left wave  always. Therefore, in relation (21), only the branch

 is considered.

Thus, taking into account the above, when passing through the right wave, the velocity is a function of
the volume fraction,

(22)

and when passing through the left wave,

(23)

The calculation of the integral on the right side of (21) leads to rather cumbersome formulas. Therefore,
we can consider a simple quadratic approximation for the speed of sound, which will significantly simplify
the subsequent reasoning.

Assume  is some fixed supercritical value of the volume fraction, . We denote ,
, . Then the quadratic approximation of the characteristic velocity  on the

interval  has the following form:
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Using this quadratic approximation on the interval , integral (21) can be approximately calculated
as follows:

(26)

The solution of the Riemann problem is built from two waves, left and right, which separate the dis-
turbed region from, respectively, the left and right undisturbed regions. To construct such a solution, we
introduce the functions  and  defining the state behind the left and right waves
separating the undisturbed state from the disturbed one, respectively:

(27)

(28)

where the relations for decompaction waves in (27) and (28) should be considered only for the values
. If in the undisturbed region , then the corresponding functions are reduced to con-

stants, .
The solution of the Riemann problem depends on the solution of the nonlinear equation

(29)
which determines the value of the volume fraction in the disturbed region between the right and left waves.
It is easy to see that this equation, depending on the initial data, always has either one root or no solutions
at all. Depending on this, various wave configurations arise in the Riemann problem, which can be divided
into the following five types.

I. Configuration without a discontinuity. In this case, the decay of the initial discontinuity gives rise to
a disturbed region with parameters  and , which is separated from the undisturbed initial data,
respectively, by the left and right waves. These waves can be either a compaction wave or a particle decom-
paction wave. We denote the velocities of these waves by  and .

II. Configuration with a particle-free region on the left. This configuration occurs when  and
there is decompaction of the compressed particles to the right of the initial discontinuity with the forma-
tion of a vacuum zone without particles . The right boundary of the vacuum zone is Lagrang-
ian and moves at a velocity of , equal to the velocity of the particles. The right disturbed region corre-
sponds to the decompaction wave, in which the parameters vary from the values of the undisturbed region
to the values , where . We denote the velocity of the weak discontinuity separating the
disturbed right-hand region from the undisturbed one by .

III. Configuration with a particle-free region on the right. This configuration is similar to the previous
one and corresponds to the situation when the decompression wave is on the left, and the vacuum region
without particles is formed on the right. The decompaction wave velocity is . The speed of the particle-
void interface is .

IV. Configuration with two decompaction waves separated by a region without particles. This situation
arises during the decay of the initial discontinuity in particles compressed to supercritical values of the vol-
ume fraction, when two waves of decompaction with specific parameters are formed. In compaction
waves, the parameters of the medium change in accordance with (27) and (28) from values in undisturbed
zones to values corresponding to the close packing volume fraction . The vacuum zone without particles
is determined by the corresponding velocities in the extreme characteristics, .

V. Undisturbed regions separated by a region without particles. This is the simplest situation of rarefied
particles, when the initial data correspond to subcritical values and the velocities satisfy the inequality
uL < uR. In this case, the initial discontinuity decays without the interaction of particles; the particles
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Fig. 1. Curves  and , corresponding to the left and right waves: (a) Eq. (29) has no solution, (b) Eq. (29) has one root.
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located on the left and right simply diverge due to the difference in velocities with the formation of a vac-
uum zone without particles.

It is easy to see that the nonlinear equation (29), which determines the solution of the Riemann prob-
lem, has no root under the initial conditions corresponding to the inequality  < 
(Fig. 1a). In this case, depending on the initial data, one of the II–V configuration types is implemented.

• Configuration II occurs if   and . In this case , and uSR =  > uL.

• Configuration III occurs if   and . In this case , and  < uR.

• Configuration IV occurs if  and . In this case  and , while uSL =

, , and .

• Configuration V is occurs if  and . If the above inequality is violated, Eq. (29) always

has one root  (Fig. 1b). The solution of the Riemann problem in this case is of type I and consists of
a two-wave configuration without a discontinuity. The particle velocity in the disturbed region is cal-
culated as

(30)

To solve the Riemann problem, it is required to find the root of the nonlinear equation (26). Due to
the fact that the functions  are piecewise smooth, the Newtonian iteration method is unstable. There-
fore, to solve (29), a less efficient but more reliable dichotomy method was used.

The solution of the Riemann problem  described above defines the numerical f low
function by the standard Godunov method as the value of the differential f low on the solution of the Rie-

mann problem:  = .

4.1. Approximate Riemannian Solver Based on HLL

To simplify the calculations, we can consider an approximate solution of the Riemann problem in the
same way as it is done in gas dynamics [28]. Let us describe an approximation based on the HLL approach.
This approach uses the two-wave approximation. The disturbed region is characterized by a state with the
average parameters . The velocities of the left and right waves bounding the disturbed region will be

β ,β( , )*L L LF u β ,β( , )*R R RF u

β < β*L β > β*R β = β*SR β β( , , )*R R RF u

β > β*L β < β*R β = β*SL = β β( , , )*SL L L Lu F u

β > β*L β > β*R β = β*SL β = β*SR

β β( , , )*L L LF u = β β( , , )*SR R R Ru F u <SL SRu u

β ≤ β*L β ≤ β*R

βs

= β β( , , ).s s L Lu F u

/L RF

= λ( , , )R R
L Rq q q q

− +( , )Ф z z − +( ( , , ))RF q z z 0
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Table 1. Initial parameters in the problem of transporting a layer of particles

0 < x < 0.05 x > 0.05

0.5 0
u, km/s 0.2 0

β

denoted, respectively, as  and . Writing the Rankin–Hugoniot relations (10) for the left and right
waves, we obtain

(31)

By analogy with [23], we will set the value of the disturbance propagation velocity in the form

(32)

where . Then the corresponding value of the numerical f low in the approximate Godunov
method takes the form

(33)

5. CALCULATION RESULTS

The method described above was verified on a number of one-dimensional problems. In the consid-
ered problems, we used an approximation of the intergranular pressure with the parameters ,

, and , (  = atm/kg/m3).
The first test checks the ability of the numerical method to keep particles moving at a constant velocity

(the well-balancing property), and also compares the schemes of the first (the limiter in (12) is zero) and
the second order of accuracy. The second test compares the numerical and analytical solutions. The third
test considers the expansion of a compressed layer of particles into a vacuum. The fourth test demonstrates
the effect of a gradient catastrophe of the solution and formation of a sequence of compaction waves
during the passage of a compaction wave through a layer of particles with the nonuniform distribution of
the volume fraction. In the fifth test, the expansion of a preliminarily compressed near-wall layer of par-
ticles is numerically studied, accompanied by the formation of characteristic structures (detachment of
particles from the wall) and multiple reflections of compaction and decompaction waves from the bound-
aries of the layer of particles that have been detached from the wall.

5.1. Convective Transfer of a Flat Layer of Particles

We consider the motion of the particle layer with a subcritical volume fraction at a constant speed in
the direction of a region without particles. The initial data of the problem is given in Table 1. The initial
position of the layer boundary corresponds to  m. The calculation uses a uniform grid of 400 cells.

The calculation results are shown in Fig. 2. Here the numerical solutions at time t = 0.1325 are given.
The layer of particles at this moment is situated in [0.265, 0.765]. Due to numerical diffusion, the bound-
ary of the particle region is smeared on the distribution of the volume fraction. In this case, the particle
velocity remains constant. The zero velocity values on the graph correspond to points with a zero volume
fraction. The numerical results by the Godunov method with the exact solution of the Riemann problem
and by the approximate HLL method practically coincide and, therefore, are virtually indistinguishable
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Fig. 2. Distribution of parameters in the computational domain at the moment of time t = 0.1325 ms; Godunov’s method
with exact solution of the Riemann problem and approximate HLL. The calculation according to the scheme of the first
order is on the left; and the calculation according to the scheme of the second order is on the right.
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on the graph. The second-order scheme gives a monotonic nonoscillating solution, which, as expected,
more accurately resolves the boundaries of the particle layer with the vacuum.

5.2. Problem on the Decay of an Arbitrary Discontinuity
This test can be considered as an analog of the Sod test, which is well-known in gas dynamics. It is

characterized by the presence of a shock wave and a rarefaction wave, which here are waves of compaction
and decompaction of particles. The initial data for this problem is given in Table 2. It represents the initial
discontinuity, which is situated at x = 0.05 m. To the left of the discontinuity, the particles are compressed
to the supercritical value of the volume fraction; and to the right, the volume fraction corresponds to the
subcritical value. A uniform grid of 400 cells was used in the calculation. The scheme of the second order
was used.

Figure 3 shows the results of numerical calculations using the Godunov and HLL methods. Both
methods show almost identical results. In the disturbed region, compaction occurs up to a volume fraction
slightly higher than . The propagation velocities of the boundaries of the decompaction wave and the
compression wave are consistent with those in the analytical solution, which gives them values of –1.3878,
–1.0236, and 0.3536 km/s, respectively.

5.3. Expansion of a Compressed Layer of Particles into a Vacuum
The expansion of particles with a volume fraction above the critical value into a region without particles

is considered. Table 3 contains the initial data for this problem. The initial position of the boundary of the
particle layer is x = 0.05 m. A uniform grid of 400 cells was used in the calculation.

Figure 4 presents the results of numerical calculations by the Godunov method and HLL of the second
order of accuracy. In this problem, a decompaction wave propagates to the left of the discontinuity. After
it, the volume fraction of the condensed phase decreases, in contrast to the previous Sod problem, exactly
to the critical value , and the intergranular pressure vanishes in the condensed phase. The close packing

β*

β*
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Table 2. Initial parameters in the problem of the decay of an arbitrary discontinuity

x < 0.05 x > 0.05

0.65 0.4
u, km/s 0 0

β
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Fig. 3. Distribution of parameters in the problem of decay of the initial discontinuity at the moment of time t = 0.0174 ms;
Godunov’s method with the exact solution of the Riemann problem and approximate HLL. Scheme of the second order
of accuracy.
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Fig. 4. Distribution of parameters in the problem of expansion into a vacuum at the moment of time t = 0.0096 ms;
Godunov’s method with the exact solution of the Riemann problem and approximate HLL. Scheme of the second order
of accuracy.
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interface located to the right is the Lagrangian interface that separates the region of particles from the vac-
uum. There is no compaction wave. The decompacted particles continue to move at a constant velocity of
about 0.14 km/s. Note that in the calculation by the approximate HLL method at the interface of the con-
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Table 3. Initial parameters in the problem of the expansion of a layer of particles into a vacuum

x < 0.05 x > 0.05

0.65 0
u, km/s 0 0

β
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Fig. 5. Distribution of particle parameters in the wave train problem at time t = 0.036 ms; Godunov’s method with exact
solution of the Riemann problem and approximate HLL. Scheme of the second order of accuracy.
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densed phase and the region without particles, the velocity of the condensed phase is described less accu-
rately than in the Godunov scheme.

5.4. Propagation of the Compaction Wave over Inhomogeneously Distributed Particles (Wave Train)

In gas dynamics, the Shu–Osher problem [29], in which a shock wave propagates over a region with a
nonuniform gas density, is well known. In the problem under consideration, the compaction wave prop-
agates along the particle layer with a nonuniform volume fraction. Table 4 shows the initial data for this
problem. The compaction wave at the initial moment is located at the point x = 0.05. Before the wave, the
volume fraction changes according to a periodic law (second column of Table 4), when passing through
which the f low parameters change from the values  = 0.3 and u = 0 to the values from the first column
of Table 4. On the left boundary of the computational domain, the condition of the given f low rate of the
condensed phase is used; and the parameters from the computational domain are interpolated on the right
boundary. A uniform grid of 400 cells was used in the calculation.

Results of the numerical calculations by the Godunov and HLL methods of the second order of accu-
racy at the moment of time t = 0.036 ms are shown in Fig. 5. The compaction wave, propagating to the
right, begins to interact with the unevenly distributed particles. Behind the wave front, the distribution of
the velocity and volume fraction acquires a sawtooth character. The results for the Godunov and HLL
schemes show identical solutions. The disturbance farthest from the initial discontinuity has a smaller
amplitude, since the initial value of the volume fraction on the right corresponds to the zero value of the
sine. The decreasing sections of the solution profile (compression waves) become steeper as they move
away from the front of the leading compaction wave, which ultimately leads to the overturning of the fronts
(the phenomenon of a gradient catastrophe) and the formation of a sequence of compaction waves moving
one after another (wave train).

β
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Table 4. Initial parameters in the analog of the Shu–Osher problem

x < 0.05 x > 0.05

0.65 0.3 + 0.1sin(1000(x – 0.05))
u, km/s 0.320422579 0

β
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Table 5. Initial parameters in the problem of expansion of a near-wall layer of particles

x < 0.01 x > 0.01

β 0.65 0.4
u, km/s 0 0
5.5. Scattering of the Near-Wall Layer of Particles

The unloading of a thin layer of particles of 0.01 m, having a volume fraction above the critical and
located near a rigid wall, into a space filled with particles with a subcritical volume fraction is considered.
Table 5 shows the initial parameters of the problem. The wall condition is specified on the left boundary
of the region, and the first-order interpolation is specified on the right boundary. The computational
domain is 0.1 m long and contains 1000 cells.

Figure 6 shows the numerical distributions for several successive moments obtained using the
Godunov method and the HLL method of the second order of accuracy. Both methods show almost iden-
tical results. As a result of the decay of the discontinuity, a decompaction wave propagates along the com-
pressed dispersed phase to the left of the discontinuity, in which the volume fraction of particles changes
from the initial value to β1, slightly above the critical level of the volume fraction (Fig. 6а). In this case,
the compaction wave propagates to the right.

After reflection of the primary decompaction wave from the wall, a secondary (reflected) decompac-
tion wave is formed, in which the volume fraction varies from β1 to the critical value  (Fig. 6b). It can
be seen that in the region between the secondary decompaction wave and the wall, a distribution of the
medium’s parameters is formed, which is characterized by a value of the volume fraction, that is constant
in space and decreasing in time, and linear particle velocity profile (Fig. 6c).

To describe this structure, we consider a particular solution of Eqs. (3) of the form

(34)

It is easy to verify that such a solution exists if

(35)

where  and  are arbitrary integration constants.

Considering successive time moments  and , as well as the corresponding values of the volume frac-
tion  and , the constants can be expressed as follows:

(36)

We apply the obtained solution (35) and (36) to describe the near-wall region (Fig. 6). Let us choose
the time points  ms and  ms and the corresponding values of the volume fraction

 and  obtained in the calculation, then the values of the coefficients are
 and . Solution (34) with these values of the coefficients (Fig. 7) is consistent

with the numerical solution at subsequent times as well. The time required for a decrease in the volume
fraction by a factor of 100 from 0.5 to 0.005 is about 1.5257 ms, which can be considered as the particle
detach time and the duration of the formation of a vacuum near-wall region.

After the interaction of the secondary decompaction wave with the primary compaction wave moving
to the right along the layer of rarefied particles, a secondary compaction wave arises and begins to move
in the opposite direction (Fig. 6d). Reaching the left boundary of the layer, it is reflected as a decompac-
tion wave. Thus, the departure of a layer of particles from the wall is accompanied by a quasi-periodic wave
process. It consists of a sequence of compaction waves of decreasing amplitude moving to the left, and
decompaction waves moving along the layer to the right. As a result of this wave process, the momentum
is redistributed, the volume fraction in the layer gradually approaches the critical value, and the layer
velocity decreases. In the limit, the volume fraction in the layer reaches the critical value, and it stops at
some distance from the wall.
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Fig. 6. Expansion of near-wall compressed layer of particles. (a) Formation of a decompaction wave; (b) beginning of
reflection of a decompaction wave from the wall; (c) formation of a near-wall region of rarefied particles with a linear
velocity profile; (d) compaction waves after reflection from the right boundary of the particle layer; (e) low amplitude
compaction wave; (f) formation of a particle-free region near the wall.
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Fig. 7. Solution (34) and numerical solution at the time points corresponding to Fig. 6.
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6. CONCLUSIONS

In this paper, a modification of the Godunov method is constructed based on the exact solution of the
Riemann problem and the approximate HLL solution for a simplified continuum model of the motion of
an ensemble of solid particles. The proposed numerical method takes into account at a discrete level the
features of the system of constitutive equations of the model, which consist of the presence of a disconti-
nuity in the propagation velocity of weak disturbances in the particle phase at the critical value of the vol-
ume fraction and the possibility of forming vacuum regions without particles.

The proposed numerical method is verified on a series of problems that admit exact solutions or their
analytical estimates. The results of test calculations showed good agreement with the exact analytical solu-
tions for quantitative wave characteristics (amplitude, wave, and characteristics propagation velocity).

Comparison of the numerical results by the Godunov method with the exact solution of the Riemann
problem and the approximate HLL method showed, on the whole, almost complete agreement in all the
studied test problems. A slight difference was observed in the problem of the expansion of a compressed
layer of particles in the velocity profile near the particle-vacuum interface. This seems to be due to the less
accurate description of the disturbance propagation velocities in the HLL method compared to the
Godunov method based on the exact solution of the Riemann problem.

In the problem of propagation of a compaction wave over a layer of particles with an uneven distribu-
tion of the volume fraction, the effect of compression waves overturning behind the wave front (the phe-
nomenon of a gradient catastrophe) and the formation of a wave train was numerically obtained.

The expansion of a near-wall layer of particles preliminarily compressed to supercritical values was
studied. Quantitative characteristics were obtained and a description of the mechanism of detachment of
a layer of particles from wall with the formation of a near-wall particle-free zone was proposed.
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